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ABSTRACT

As the circuit densities and transistor counts are increasing, the
package routing problem is becoming more and more challenging.
In this paper, we study an important routing problem encountered
in typical high-end MCM designs: routing within dense pin clus-
ters. Pin clusters are often formed by pins that belong to the same
functional unit or the same data bus, and can become bottlenecks
in terms of overall routability. Typically, these clusters have irreg-
ular shapes, which can be approximated with rectilinear convex
boundaries. Since such boundaries have often irregular shapes,
a traditional escape routing algorithm may give unroutable solu-
tions. In this paper, we study how the positions of escape termi-
nals on a convex boundary affect the overall routability. For this
purpose, we propose a set of necessary and sufficient conditions to
model routability outside a rectilinear convex boundary. Given an
escape routing solution, we propose an optimal algorithm to select
the maximal subset of nets that are routable outside the bound-
ary. After that, we focus on an integrated approach to consider
routability constraints (outside the boundary) during the actual es-
cape routing algorithm. Here, we propose an optimal algorithm
to find the best escape routing solution that satisfies all routability
constraints. Our experiments demonstrate that we can reduce the
number of layers by 17% on the average, by using this integrated
methodology.

1. INTRODUCTION

As the circuit densities and transistor counts are increasing, the
package routing problem is becoming more and more challenging.
In the current industrial designs, the limitations of commonly used
rip-up and reroute methodologies [1, 5, 9] are becoming more sig-
nificant [8]. So, new routing algorithms are needed to handle new
challenges effectively. One of the most difficult parts of the pack-
age routing problem is routing within dense pin clusters [7]. Both
packaging hierarchy and functional hierarchy imply potential pin
clustering at hierarchical interfaces. These clusters are formed typ-
ically by pins that belong to the same functional unit or the same
data bus. The highest wire demand is typically within such pin
clusters and in proximity of the cluster perimeters. As additional
objectives (such as delay and noise optimizations) impose further
constraints on the routing problem, getting the connections started
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Figure 1: A cluster of pins from a chip mounted on a ceramic
MCM module from a real IBM design. The convex boundary
enclosing the pin cluster is also illustrated.

correctly from the clustered pin areas is becoming an increasingly
important issue.

A cluster of pins from a real MCM design (from IBM) is il-
lustrated in Figure 1. As seen in this figure, these pin clusters
typically have irregular shapes. The empty areas in these clusters
can be due to islands of voltage pins, which are routed in dedi-
cated voltage layers. They can also be due to blind or buried vias
that do not span all layers of the package. In surface mount type
(SMT) components, such as ball grid arrays (BGAs), I/O signals
are typically transferred to inner component layers using blind or
buried vias [2, 11]. These vias are used to carry the I/O signals
from bare chips (on the top layer) to the layers on which the cor-
responding nets are routed. In other words, once a net is routed on
one layer, its pin is not extended further down the layer stack. As
a result, the cluster of pins typically shrinks as we go further down
the layer stack. Due to all these factors, the pin clusters often have
irregular shapes, as shown in Figure 1.

The escape routing problem has been studied extensively in the
literature [3, 4, 6, 10, 12] to route nets from individual pins to a
boundary. However, a rectangular boundary is assumed in these
algorithms most of the time, and the effects of irregular bound-
aries are not considered. Normally, a traditional escape routing
algorithm can also be applied on a pin cluster with an irregular
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Figure 2: (a) An escape routing solution for 14 nets from pins
to a convex boundary. (b) Only 9 out of 14 escaped nets can be
routed outside due to conflicts with each other.

boundary. However, the problem here is that routability outside the
boundary is not guaranteed, since the routes of nets that escape to
this boundary may conflict with each other outside. Figure 2 gives
a small example to illustrate this problem in more detail. Assume
that a set of nets have been routed to a set of escape terminals on
the boundary, as shown in Figure 2(a). Here, one problem is how
to determine whether all nets that have escaped to the boundary
can be successfully routed outside, since some of the escaped nets
can conflict with each other. In this example, there are 14 nets
that have successfully escaped to the boundary; however only 9 of
them can be successfully routed outside, as shown in Figure 2(b).
In Section 3, we propose a set of necessary and sufficient condi-
tions to determine routability based on only the positions of es-
cape terminals on an arbitrary convex boundary. Another problem
here is how to determine the maximal routable subset if a given
set of escape terminals is not routable. A maximal routable sub-
set is shown in Figure 2(b), together with a feasible routing so-
lution, corresponding to the escape terminals in Figure 2(a). For
this purpose, we propose an optimal algorithm in Section 4. In this
algorithm, the optimal subset is determined based on only the posi-
tions of the escape terminals, without performing any routing out-
side the boundary. After that, we focus on an integrated approach
in Section 5 to consider routability outside during the actual es-
cape routing algorithm. In other words, instead of using a two-step
methodology (escape routing followed by routability analysis), we
directly find the escape routing solution such that routability out-
side is also guaranteed. For example, Figure 3(a) shows a different
escape routing solution for the problem in Figure 2. Here, all the
nets that have escaped are routable, as shown in Figure 3(b). The
proposed algorithm for this purpose is also proven to be optimal.

The rest of this paper is organized as follows. We give a formal
description of this problem in Section 2. Then in Section 3, we
propose a set of necessary and sufficient conditions that exactly
model routability outside the given convex boundary. Based on
these constraints, we propose an optimal algorithm in Section 4 to
select the maximal subset of routable escape terminals. After that,
we propose an integrated approach in Section 5 that incorporates
the routability constraints into the original escape routing algo-
rithm in an optimal way. In section 6, we present our experimental
results, and demonstrate the effectiveness of our algorithms.

2. PROBLEM FORMULATION

Let P denote a cluster of pins, and let B denote the rectilinear
convex boundary enclosing P . Our purpose is to find a routing
solution from each pin in P to an escape terminal on B. Here, the
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Figure 3: (a) A different escape routing solution for the prob-
lem of Figure 2. (b) All 12 nets are routable outside the bound-
ary.

scarcity of routing resources inside dense pin clusters do not allow
usage of additional buried vias. Hence, the escape routing solution
needs to be planar on every layer.

As illustrated in Figure 2, the nets escaping to an irregular
boundary can have conflicts with each other outside. A given es-
cape routing solution is defined to be routable outside iff all nets
escaping to boundary B can be routed without conflicts, as illus-
trated in Figure 3(b). Here, let us assign a unique index to every
escape terminal on boundary B, as shown in Figure 4. Further-
more, let #t(x, y) denote the number of nets escaping to escape
terminals in the interval [x, y], e.g. #t(8, 13) = 5 in part (a), and
#t(8, 13) = 3 in part (b) of Figure 4. Here, the first problem we
focus on is how to determine whether a given escape routing so-
lution is also routable outside, using these #t(x, y) values. If the
given solution is not routable outside, the next problem becomes
how to select the maximal subset of routable escape terminals. Fi-
nally, the third problem is how to find an escape routing solution
in an optimal way such that overall routability is guaranteed. We
study these problems in this paper, and propose models and algo-
rithms to solve each of them optimally.

For simplicity of presentation, we will consider only a single
layer. In other words, our objective will be to find the maximal
escape routing solution on one layer, given a set of candidate pins.
It is possible to process layer by layer, and apply our algorithms
on every layer. However, our algorithms can also be extended to
multilayer problems in a straightforward way, by duplicating the
given constraints for every layer.

3. CONSTRAINT MODELING

Our purpose in this section is to investigate the relationship be-
tween escape terminal positions on a given convex boundary and
the overall routability. For this, we define a set of necessary and
sufficient conditions that exactly model routability outside the bound-
ary. For simplicity of presentation, we will first focus on a single
corner of a given convex boundary in Section 3.1, and then gener-
alize this model for an arbitrary convex boundary in Section 3.2.
This constraint modeling will be especially useful since it can be
incorporated into the original escape routing algorithm in such a
way to guarantee routability outside the boundary.

3.1. Corner Constraints

In this section, we will consider a boundary with a single corner,
as shown in Figure 4. Here, let r and r + 1 denote the escape ter-
minals on the corner, and let k denote the width of one side of the



(b)(a)

r=10

11

7

8

9

201918171615141312

1

2

3

4

5

6

11

3

4

5

6

k

k

2

r=10

7

8

9

201918171615141312

1

Figure 4: A boundary with a single corner is illustrated, where
filled circles represent the escape terminals at which an escape
route ends (the escape routes inside are not shown for clarity).
Two examples with different terminals are given in parts (a)
and (b).
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Figure 5: Routing solutions outside the boundaries for the
problem given in Figure 4. Three and one nets are unroutable
in the solutions of parts (a) and (b), respectively.

corner1. Furthermore, let #t(x, y) denote the number of nets that
have escaped to terminals in the interval [x, y]. Observe in the ex-
ample of Figure 4 that r = 10, and k = 10. Also, #t(9, 12) = 3
in part (a), and #t(9, 12) = 2 in part (b), etc. The following theo-
rem defines the necessary and sufficient conditions for routability:

Theorem 3.1. An escape routing solution is routable if and only
if #t(r-i+1, r+i) ≤ i, for each i, 1 ≤ i ≤ k. In other words,
routability is guaranteed if and only if the number of nets escaping
to terminals in the interval [r-i+1, r+i] is less than or equal to i,
for each i.

As an example, let us consider the boundary given in Figure 4,
where the escape terminals are marked from 1 to 20. Here, the
following conditions are necessary and sufficient for routability:
#t(10, 11) ≤ 1, #t(9, 12) ≤ 2, ..., #t(1, 20) ≤ 10. The
given escape routing solution in part (a) violates the conditions
#t(9, 12) ≤ 2, #t(8, 13) ≤ 3, and #t(5, 16) ≤ 6; hence 3 out
of 11 nets are unroutable, as illustrated in Figure 5(a). Similarly,
the solution in part (b) violates the condition #t(5, 16) ≤ 6, re-
sulting in one unroutable net.

PROOF. NECESSITY: We first prove that the constraints given in
Theorem 3.1 are necessary for routability outside. For any i value,

1For simplicity, assume that the widths of both sides are equal as
shown in Figure 4. The generalization will be given in Section 3.2.
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Figure 6: (a) Diagonal Dm has m escape outlets (shown as hol-
low circles). (b) If there is an unused outlet on Dm, all nets
are routable to Dm+1, even if both escape terminals r−m and
r + m + 1 are selected. (c,d) If all outlets on Dm are occu-
pied, then routability is guaranteed as long as at most one of
terminals r − m and r + m + 1 is selected.

let Di denote the diagonal line spanning the grid cells that have
Manhattan distance of i to the corner, as shown in Figure 6(a). It
is obvious that the number of outlets (i.e., grid cells through which
nets can escape) on Di is equal to i. Since a net escaping to a
terminal in the interval [r − i + 1, r + i] must use an outlet on Di,
the necessity of constraint #t(r − i + 1, r + i) ≤ i follows.

PROOF. SUFFICIENCY: Let us make the following inductive
hypothesis: If the constraints #t(r− i+1, r+ i) ≤ i are satisfied
for each i, 1 ≤ i ≤ k, then all nets escaping to terminals in the
interval [r − k + 1, r + k] can escape to diagonal Dk. Again, Dk

denotes the diagonal line spanning the grid cells that have Man-
hattan distance of k to the corner, as shown in Figure 6(a). It is
straightforward to show that this hypothesis holds for the base case
k = 1. Now let us assume that it holds for k = m, and we will
prove it for k = m + 1. For this, we need to consider two cases:

• Case 1: #t(r − m + 1, r + m) < m. Here, since there are
less than m outlets used on diagonal Dm, there is at least
one outlet unused (shown as a hollow circle in Figure 6(b)).
Even if there are two nets escaping to terminals r − m and
r + m + 1, all nets will still be routable to diagonal Dm+1,
as shown in Figure 6(b).

• Case 2: #t(r − m + 1, r + m) = m. For the constraint
#t(r − m, r + m + 1) ≤ m + 1 be satisfied, only one
net can escape to terminals r − m and r + m + 1. As
shown in Figure 6(c), and (d), all nets will still be routable
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Figure 8: Illustration of the boundary transformations given
in (a) Definition 3.2, and (b) Definition 3.3. The corresponding
constraints generated are also shown.

to diagonal Dm+1, as long as only one of the terminals r−m
or r + m + 1 is selected.

So, the inductive proof is complete.

3.2. Generalization to Arbitrary Convex Boundaries

In this section, the idea presented in Section 3.1 is generalized to
arbitrary convex boundaries. For a rectilinear convex boundary,
we can make the following definition:

Definition 3.1. A rectilinear convex boundary is defined to have
four different regions: falling-right, falling-left, rising-left, and
rising-right regions, as illustrated in Figure 7.

It is obvious that nets escaping to one boundary region (e.g.
falling-right region) do not interfere with nets escaping to other re-
gions outside the boundary. In other words, we can consider each
of falling-right, falling-left, rising-left, and rising-right regions in-
dependent of each other while determining routability outside the
boundary. So, in the rest of this section, we will propose the neces-
sary and sufficient conditions for only a falling-right boundary re-
gion. It is straightforward to generalize these conditions for other
region types.

For the ease of presentation, we will define the routability con-
ditions using the algorithm given in Figure 10. This algorithm
is based on boundary transformations that are defined in Defini-
tions 3.2 and 3.3. It is important here to note that these are only
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Figure 9: Illustration of routing conflicts outside a falling-right
boundary. (a) There is no H-segment after a V-segment; hence
conflict-free routing is possible outside. (b) The H-segment af-
ter V-segment causes routing conflicts.

conceptual transformations used for the purpose of presentation.
In other words, these transformations are not actually performed
(i.e., the original boundary still remains intact); however they are
used conceptually to generate the set of necessary and sufficient
conditions for routability. In the following, let H-segment, V-
segment, and D-segment denote horizontal, vertical, and diagonal
boundary segments, respectively.

Definition 3.2. Consider a corner of a falling-right boundary where
a V-segment is followed by an H-segment. We can (conceptually)
transform this corner as shown in Figure 8(a), and add the explicit
constraint #t(r, r + 1) ≤ 1, where the escape terminals on the
corner are denoted as r and r + 1. Intuitively, replacing a corner
with a diagonal as in this figure implies that we don’t have to con-
sider this corner anymore for routability analysis, as long as the
constraint #t(r, r + 1) ≤ 1 is satisfied.

Definition 3.3. Consider a falling-right boundary that contains a
V-segment, followed by a D-segment, followed by an H-segment.
We can (conceptually) transform this boundary as shown in Fig-
ure 8(b), and add the explicit constraint #t(r − k, r + k + 1) ≤
k + 1, where r and k are as defined in this figure.

Lemma 3.2. Let B denote the original escape boundary, and let
B′ denote the boundary after one of the transformations given in
Definitions 3.2 and 3.3 is applied on B. The routability character-
istics of B is equivalent to the routability characteristics of B′ iff
the additional constraint introduced during the transformation is
satisfied.

PROOF. The proof is very similar to the inductive proof of The-
orem 3.1.

Intuitively, we can continue performing boundary transforma-
tions, and defining new conditions, until the transformed bound-
ary is guaranteed to be routable. The following lemma states the
routability condition for a falling-right boundary.

Lemma 3.3. A falling-right boundary B is guaranteed to be routable
outside if there is no H-segment after a V-segment in B.

PROOF. Figure 9 shows the main intuition. In part (a), there
is no H-segment after a V-segment, and all nets escaping to all



CREATE-CONSTRAINT-FOREST(falling-right boundary B)
C ← ∅ // the set of necessary and sufficient conditions
while there is no H-segment after a V-segment in B

perform a (conceptual) boundary transformation
add the corresponding constraint into C.

create the constraint forest F as follows:
for each constraint in C, a node exists in F .
Node u is a parent of node v in F iff u has the smallest

interval that is a proper superset of v’s interval.
return F

Figure 10: Algorithm to generate the set of necessary and suf-
ficient conditions for a given falling-right boundary.

terminals on the boundary are routable. On the other hand, there is
an H-segment after a V-segment in part (b), and routing conflicts
are possible outside the boundary.

Figure 10 gives the algorithm we use to generate the set of nec-
essary and sufficient conditions corresponding to a given falling-
right boundary. This set of conditions is represented as a constraint-
forest F , where each node in F corresponds to a constraint in the
form #t(x, y) ≤ z, i.e., the number of nets escaping to terminals
in the interval [x, y] is less than or equal to z. Here, if node u is
a parent of node v, then the constraint interval corresponding to
node u is guaranteed to be a proper superset of the constraint in-
terval corresponding to node v. Figure 11 illustrates the constraint
forest generation process with an example.

4. SELECTION OF MAXIMAL ROUTABLE ESCAPE
TERMINALS

In this section, we assume that escape routing to an arbitrary con-
vex boundary has already been performed, and our purpose is to
select the maximum subset of terminals that can be routed outside
without any conflicts. For this, we make use of constraint forest F ,
which was defined in Section 3. Before giving the details of this
algorithm, we will make some observations about the properties of
F as follows.

Remark 4.1. Consider two nodes u and v in constraint forest F .
If u is an ancestor of v, then the interval corresponding to u is a
proper superset of the interval corresponding to v.

Remark 4.2. Consider two nodes u and v in constraint forest F .
If u is neither ancestor nor descendant of v, then the intervals
corresponding to u and v do not overlap.

Remark 4.3. Consider a non-leaf node u that has the constraint
#t(x, y) ≤ z, The union of the constraints corresponding to all
children of node u is equivalent to #t(x + 1, y − 1) ≤ z − 1.

Remark 4.4. The number of nodes in constraint forest F is linear
in the number of escape terminals on the boundary.

These observations directly follow from the definition of the
constraint forest. Readers can refer to Figure 11 for an example.

The algorithm we propose for selection of maximal routable es-
cape terminals is given in Figure 12. The recursive function given
in this figure needs to be called for each root node in the constraint
forest F . Intuitively, we first process the children of the current
node r, and find the maximal set of escape terminals that satisfy
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Figure 11: Illustration of constraint forest generation on a con-
vex boundary with 28 escape terminals. The original boundary
is shown with dotted lines. (a) The boundary after the first set
of transformations, and the corresponding partial forest. (b)
The final boundary, and the constraint forest generated.

the descendant constraints. Then, we consider the constraint at
r, which is #t(x, y) ≤ z. From Remark 4.3, we know that the
escape terminals in the interval [x + 1, y − 1] have already been
processed by the descendants of node r. So, we consider only the
escape terminals x and y here. If the size of the selected terminal
set T is still less than z, then we add these terminals to T , making
sure that the constraint #t(x, y) ≤ z is not violated. The follow-
ing theorem states the optimality and the time complexity of this
algorithm.

Theorem 4.5. The algorithm proposed in Figure 12 returns the
maximal subset of escape terminals that are routable outside the
boundary. The time complexity of this algorithm is linear in the
number of escape terminals on the boundary.

PROOF. The time complexity of the algorithm directly follows
from Remark 4.4, since each node in the forest is processed only
once. For optimality, first let us consider Remark 4.2, which in-
dicates that different subtrees rooted at r specify constraints for
non-overlapping intervals. In other words, terminal selection in
each subtree can be performed independent of each other. Now,
we will prove the optimality of this algorithm using induction. As
the base case let us consider a forest consisting of only leaf nodes.
It is obvious that our algorithm will give the optimal solution, since
each leaf is independent of each other (due to Remark 4.2). Now,
assume that the inductive hypothesis holds for each child subtree
of node r, i.e., each recursive call to a child of r returns the opti-
mal solution. Let us denote the constraint corresponding to node
r as #t(x, y) ≤ z. We know that the intervals corresponding
to different subtrees do not overlap with each other (due to Re-
mark 4.2), and the union of the intervals considered in r’s child



SELECT-ESCAPE-TERMINALS(Node r)
T ← ∅ // the selected terminal set
for each child u of r do

T ← T ∪ SELECT-ESCAPE-TERMINALS(u)
Let #t(x, y) ≤ z be the constraint corresponding to r
If there is an escape route ending at terminal x

T ← T ∪ {x}
If there is an escape route ending at terminal y

if |T | < z
T ← T ∪ {y}

return T

Figure 12: The algorithm to select the maximal routable es-
cape terminals. This algorithm needs to be called for each root
node in the constraint forest.

subtrees is [x + 1, y − 1] (due to Remark 4.3). From the induc-
tive hypothesis, we can state that after the recursive calls, T con-
tains the maximal routable set of escape terminals in the interval
[x + 1, y − 1]. So, while processing node r, we only need to
consider whether we should add escape terminals x and y into T .
Note that the maximum number of escape terminals that can be
selected in the interval [x, y] is z due to the constraint at node r.
Now, let us consider two cases: (1) #t(x + 1, y − 1) < z − 1,
and (2) #t(x + 1, y − 1) = z − 1. In the first case, both x and y
can be added to T , if there are escape routes ending at these termi-
nals; hence the optimal solution in the interval [x, y] is obtained.
In the second case, we need to make sure that the number of se-
lected terminals does not exceed z before selecting terminals x or
y. However, we know that the maximum size of T can be z in any
routable solution; hence the optimal solution in the interval [x, y]
is still maintained. So, our inductive proof is complete.

5. ROUTABILITY-DRIVEN ESCAPE ROUTING

In the previous sections, we have assumed that the escape rout-
ing solution has already been found, and we have proposed a set
of constraints to determine the routability outside the boundary. In
this section, we propose an integrated approach to solve the escape
routing problem in such a way that routability outside is guaran-
teed. For this purpose, we define a flow network corresponding to
the constraint forest proposed in Section 3, and then we augment
it to the original flow network which corresponds to the escape
routing problem.

It is well known that the problem of escape routing can be
solved optimally using network flow [4]. In the literature, there
have also been different improvements proposed for the purpose of
reducing execution time and space requirements [3, 6]. Our con-
straint models can be applied to different flow models; however
we will focus on the basic network flow formulation for simplicity
of presentation.

Let us assume that flow network N is modeled corresponding
to the original escape problem (to a convex boundary) as follows:
For each grid cell, there is a vertex in N , with node capacities
equal to 1. The vertices corresponding to the neighboring grid
cells are connected by edges in N . Furthermore, there are two spe-
cial vertices: the source and the sink vertices in the flow network.
There is an edge from the source vertex to every vertex that corre-
sponds to a grid cell on which a net terminal exists. Similarly, there
is an edge to the sink vertex from every vertex that corresponds to a
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Figure 13: The flow network NC corresponding to the con-
straint forest given in Figure 11(b). The dark and light circles
represent t-vertices and c-vertices, respectively. The capaci-
ties of c-vertices, and the terminal indices of t-vertices are also
shown.

grid cell on the boundary. It is known that the maximum flow from
the source vertex to the sink vertex in N gives the optimal solution
for the escape routing problem. Further details about this basic
network flow formulation can be found in [4]. Note here that this
formulation does not consider the routability constraints outside
the boundary, and it is possible to obtain a routing solution that
is not routable outside the convex boundary, as illustrated in Fig-
ure 2. For the purpose of incorporating the routability constraints,
we define the following flow network NC :

Definition 5.1. The flow network NC corresponding to constraint
forest F is created as follows:

• Create a t-vertex corresponding to each escape terminal on
the convex boundary. Set the capacity of each t-vertex to 1.

• Create a c-vertex corresponding to each node in the con-
straint forest F .

• Consider each c-vertex vc, which corresponds to the con-
straint #t(x, y) ≤ z. Set the capacity of vc to z. Then,
create the incoming edges to vc as follows:

– Create an edge to vc from t-vertex corresponding to
escape terminal x.

– Create an edge to vc from t-vertex corresponding to
escape terminal y.

– Create edges to vc from the c-vertices that correspond
to children of vc (in the constraint forest F).

• Consider each c-vertex vr that corresponds to a root node
in the constraint forest F . Create an edge from vr to sink
vertex of F .
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Figure 14: An example illustrating how to augment constraint
network NC to the original flow network N . Here, an edge
exists from each terminal vertex in N to the corresponding t-
vertex in NC .

The flow network corresponding to the constraint forest of Fig-
ure 11(b) is illustrated in Figure 13 as an example. Note that the
size of NC is linear in the number of escape terminals on the con-
vex boundary, due to Remark 4.4.

Definition 5.2. The flow network NC (corresponding to constraint
forest F) can be augmented to the original flow network N (corre-
sponding to the escape routing problem inside the convex bound-
ary) as follows:

Consider each vertex v in N that corresponds to an escape
terminal on the boundary. If this escape terminal has a constraint
associated with it in constraint forest F , then:

• The edge from v to the sink vertex is removed.

• An edge is created from v to the corresponding t-vertex in
NC .

This augmentation process is illustrated in Figure 14 with a
simple example. Here, the terminals on the corner (terminals 1-8)
are connected to the corresponding t-vertices in NC . Since no con-
straint is associated with terminals 9-12, they are still connected to
the sink vertex directly.

Theorem 5.1. LetN denote the original flow network correspond-
ing to the escape problem inside the boundary. Let NC denote the
constraint flow network as given in Definition 5.1. Assume that
we augment NC to N as described in Definition 5.2 to obtain the
final flow network NF . The maximum flow on NF will give the
optimal escape routing solution that is also routable outside the
convex boundary.

PROOF. Here, we need to prove that there is a one-to-one cor-
respondence between the maximal flow in NF and the maximal
escape routing solution that is also routable outside the convex
boundary. First, we will prove that any valid flow solution in NF

Table 1: Comparison of routability-driven escape routing with
the traditional algorithm

TRADITIONAL ROUTABILITY-DRIVEN
PIN CLUSTER ESCAPE ROUTING ESCAPE ROUTING
Area # Pins # layers time # layers time
7167 1687 13 1:12 10 0:57
8530 2080 14 1:44 11 1:26
9237 3742 26 3:34 21 2:53
9930 4885 31 5:02 26 4:13

10620 5984 38 7:04 32 5:51
12534 7638 47 11:02 40 8:59

Table 2: Single-layer routing characteristics of the traditional
and routability-driven escape routing algorithms

TRADITIONAL ROUTABILITY-DRIVEN
PIN CLUSTER ESCAPE ROUTING ESCAPE ROUTING
Area # Pins # escape # routable time # escape # routable time
7167 1687 308 239 0:14 290 290 0:13
8530 2080 322 264 0:17 310 310 0:17
9237 3742 329 270 0:21 319 319 0:21
9930 4885 337 287 0:24 331 331 0:24

10620 5984 344 285 0:27 333 333 0:26
12534 7638 368 299 0:35 353 353 0:34

corresponds to a valid escape routing solution. We can state that
any valid flow solution in NF must satisfy all the conditions de-
fined in Section 3, since NC models the constraint forest exactly.
We have also shown in Section 3 that these constraints are suffi-
cient for routability outside the convex boundary. Hence, there is
a valid escape routing solution corresponding to any flow in NF .
Then, we can prove that there is a flow in NF corresponding to
any valid escape routing solution. We have proven in Section 3
that the constraints defined are necessary for routability outside
the convex boundary. So, any valid escape routing solution must
satisfy all these constraints; hence must have a corresponding valid
flow in NF .

6. EXPERIMENTAL RESULTS

We have performed experiments to evaluate the practical effective-
ness of the models and algorithms we have proposed. We have
implemented all algorithms in C++, and performed the experi-
ments on a Linux system with Intel Centrino 1.5GHz processor,
and 512MB memory.

For comparison purposes, we have applied a network flow based
escape routing algorithm on a set of test circuits, and then used
the optimal algorithm (proposed in Section 4) to select the max-
imal subset of routes that are also routable outside the boundary.
In other words, escape routing is performed without considering
routability outside in the beginning, and then the unroutable nets
for the current layer are removed. The results of this methodology
are given in Tables 1 and 2 under the columns traditional escape
routing. We have also implemented the integrated approach (pro-
posed in Section 5), which considers routability constraints outside
the boundary during the actual escape routing algorithm. A sample
routing solution using this integrated methodology is given in Fig-
ure 15. Note here that all the necessary and sufficient conditions
defined in Section 3 are satisfied in this solution, and it is guaran-
teed that all nets can be routed outside without any conflicts.

Table 1 gives the final routing results corresponding to these
two methodologies. When routability outside the boundary is not
considered during the actual escape routing, more routing layers
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Figure 15: The escape routing solution on one layer of a sample pin cluster. 227 out of 414 nets have been routed on this layer. The
solution found is also guaranteed to be routable outside.

are needed, as can be observed in this table. However, when these
constraints are integrated into the actual escape routing algorithm,
the number of necessary layers decreases by 17% on the average.

We have also listed the number of nets routed on the first layers
of each circuit in Table 2. These quantities are important to observe
the characteristics of these algorithms more closely, because each
algorithm tries to route the maximal number of nets on the first
layer. In this table, we list not only the number of nets that have
escaped to the convex boundary, but also the number of nets that
are routable outside. On the average, the traditional escape routing
algorithm routes 3.7% more nets on the first layer. However, on
average 18.1% of these nets are not routable outside the boundary;
so they need to be removed from the solution of this layer (and
need to be propagated to the lower layers). However, when we
consider routability constraints during the actual escape routing
algorithm, it is guaranteed that the escape routing solution found
is completely routable outside.

7. CONCLUDING REMARKS

In this paper, we have studied the escape routing problem of irregular-
shaped pin clusters, which are encountered frequently in in high-
end MCMs. We have shown that routing nets to the cluster bound-
ary without considering routability outside may lead to inferior
solutions. We have proposed a set of necessary and sufficient con-
ditions that model routability based on the positions of escape ter-
minals on the boundary. Then, we have proposed an algorithm that
selects the optimal subset of escape routes that are also routable
outside. This algorithm is especially useful when a traditional rout-
ing algorithm is applied on a cluster of pins with a convex bound-
ary. Then, we have shown how to integrate these constraints into
the original routing algorithm without losing optimality. Our ex-
periments have shown that the integrated methodology can reduce
the number of layers by 17% on the average.
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