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Abstract 

We present techniques for improving the accuracy of 
geometric-programming (GP) based analog circuit design 
optimization. We describe major sources of discrepancies 
between the results from optimization and simulation, and 
propose several methods to reduce the error: Device modeling 
based on convex piecewise-linear (PWL) function fitting is in- 
troduced to create accurate active andpassive device models. 
We also show that in selected cases GP can enable nonconvex 
constraints such as bias constraints using monotonicily. which 
help reduce the error: Lastly. we suggest a simple method to 
take the modeling error into account in GP optimization, which 
results in a robust design over the inherent errors in GP device 
models. Two-stage operational amplijer and on-chip spiral 
inductor designs are given as examples to demonstrate the 
presented ideas. 
Keywords: convex optimization, geometric programming, ana- 
log circuit synthesis 

1. Introduction 

The recent trend in ICs is an increasing integration of analog 
and digital functions. This trend relies on design automation 
to meet time-to-market and cost-effectiveness. Digital design 
communitv has well-developed suites of design automation 

The major source of the discrepancy is two-fold. First, 
because GP is a subset of convex optimization, the discrep- 
ancy is inherent because accurate transistor characteristics in 
models such as BSIM3v3' are not convex functions. The 
approximation as a convex function inevitably leads to some 
degree of modeling error. Second, the error in estimating the 
circuit biasing by the GP can result in a significant prediction 
discrepancy between SPICE and GP. We refer to this error in 
estimating the hias,as a bias estimation error. 

This paper presents several methods to reduce the prediction 
discrepancies by addressing errors due to both modeling and 
bias estimation. Section 2 reviews previous work in this 
area and illustrates: several sources of error in the published 
approach. Section 3 presents a new device modeling method 
and its practical variant which enable us to achieve accurate 
modeling of device characteristics in deep suh-micron technol- 
ogy. Section 4 describes a useful technique that can reduce the 
bias estimation error by enabling posynomial equalities, which 
are non-convex constraints, utilizing monotonicity. Section 5 
suggests a simple method to take the inherent modeling errors 
into consideration in GP-optimization, which yields a robust 
design over modeling errors in GP. Section 6 shows how these 
ideas are applied to the design of a two-stage opamp and on- 
chip spiral inductor. We give concluding remarks in section 7. 

2. Previous work 
- 

tools that have helped designers significantly enhance prnduc- 
tivity; meanwhile design tools for analog and mixed-signal 
circuits still lag. To bridge the gap, there has been extensive 
research in computer-aided design of analog and mixed-signal minimize Jo(x )  

Geometric programming (GP) is an optimization problem 
that bas the following format 

subject to f,(z) 5 1, z = 1, , . . ,m 
i = 1, , . , , p  

circuits. 
Analog design synthesis has been a particularly active 

area of research 111. Recentlv a techniaue using geometric g&) = 1, (1) _ .  _ _  
programming (GP) [2] has attracted considerable attention 
by proving its viability in optimizing CMOS OPamPs [21, 
pipelined ADC 131 and CMOS DC-DC buck converter design 

The major limitations of this approach are the incapability 

xi > 0, i = l ,  . . . ,  n 

where fi are posynomial functions and gi are monomial 
functions. A posynomial function is defined as 

f41. K 

J(x1  ,..., zn) = 1 zi > 0. (2) of handling non-convex constraints, which can be critical in . .  
IC=, many cases, and the discrepancy between the results from the 

GP optimization and traditional circuit verification tools such 
as SPICE. One approach to alleviate the foner is solving a 
series of GPs as known as reversed GP (RGP) 151. while the 

Posynomial functions, or posynomials, are real-valued knc- 
tions of n real, positive variable x .  with nonnegative coeffi- 
cients ' lC  E R' When the and any real exponents 



Figure 1. Two-stage OPAMP design 

posynomial has only a single term, it is known as a monomial, 
i.e., 

g(z1,. . . , Z") = c12.;11z;x ' .  'Z?, z* > 0. (3) 

Geometric programs can be transformed to convex opti- 
mization problems by a change of variable and a transfor- 
mation of objective and constraint function [6] .  

Previous work, 121, casts a two-stage opamp design problem 
in Figure I as GP using monomial device models. Although 
it produced excellent results in long-channel devices, the 
predictions from GP-based optimization in the short-channel 
regime can deviate considerably from SPICE simulation. We 
illustrate this in the following example. 

We optimized the two-stage opamp in Figure I such that 
gain-bandwidth product is maximized by using the problem 
formulation in [2]. In order to extend the work to the short- 
channel regime, we created new monomial device models for 
TSMC 0.18 - pm technology where model fitting is done via 
L, minimization 16) over about 2000 data points. 

Table 1 shows the modeling errors of design parame- 
ters in NRMOS devices operating in saturation region. We 
listed madmean percentage modeling errors ( /(fmadel - 
fspice)/fsprcel li 100 ) for selected monomial design param- 
eters. Although errors are reasonable for some characteristics, 
the parameter such as gds exhibits significant modeling error 
whose maximum is over 100%. Clearly, these errors translate 
into the discrepancy between GP prediction and SPICE sim- 
ulation. 

Table 2 illustrates the bias estimation error and its impact 
on the small-signal gain specification. Note that in SPICE 
simulations, bias conditions (i.e. I D S )  are determined through 
bias calculations with the given W and L of the transistors 
and the circuit topology. The small-signal performance spec- 
ifications (i.e. D.C. gain) depend on the bias conditions. In 
the GP-optimization, we obtain the size (W and L), biasing 
( I D S )  and small-signal characteristics of all transistors simul- 
taneously as a result of solving the problem. When simulating 
the circuit with the GP-predicted W and L in SPICE, the 

Table 1. Madmean % modeling error in monomial 
models 

I Design Parameter I Variables I % error 1 YO error 1 
PMOS 1 

Table 2. Bias estimation error and its impact on 
performance 

SPICE 

159.4 181.6 

122.7 

discrepancy in bias-related variables, which we refer to as 
bias-estimation error, can result in significant deviation in the 
small-signal performance specifications. In this example, the 
bias estimation error in IDs6. as shown in the third TOW in 
Table 2, is compounded with the inherent modeling error of 
gds6 and reflected in the significant prediction error for open- 
loop gain as shown in Table 2.  

With these sources of errors, we propose several methods 
to help minimize the prediction error. First, in section 3, 
we minimize modeling error using a convex piecewise-linear 
function fitting that achieves the highest fitting accuracy for 
design parameters. Second, section 4 suggests a method to 
minimize the bias estimation error by enabling nonconvex 
bias constraints using monotonicity. Also, in section 5 we 
describe a GP-formulation technique that accounts for inherent 
modeling errors in the optimization which in tum helps the GP 
predictions meet the given specifications 

3. Convex piecewise-linear device modeling 
In order to cast the circuit design problem as a GP- 

optimization problem, design parameters must be either in the 
form of monomial or posynomial depending on where and 
how they appear in actual design constraints. For instance, a 
typical minimum gain (A,,,,") specification 

(4) 5" ' To = gm/gds 2 Amin 

Amin ' 11% ' gds 5 1 

translates into the following inequality 

( 5 )  

Since posynomials are closed under multiplication, ( 5 )  
remains a posynomial inequality as long as l /gm and gds are 
either monomials or posynomials of design variables. Note that 
posynomial type of gm and r0(= l/gds) does not result in a 
posynomial inequality. Since some of the device characteristics 
such as l / gm and gds in ( 5 )  can be modeled using posynomials 
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Figure 2. Covex piecewise-linear (PWL) function 
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Figure 3. 
fitiing 

Concept of convex piecewise-linear function 

instead of monomials, the model can he fitted to actual charac- 
teristics with greater accuracy. Unfortunately, however, there is 
no reported obvious convex formulation for posynomial fitting. 
Some methods are addressed in [7] and [8], hut both require 
heuristic parameter selections and it's difficult to address the 
optimality of the fittings. The method in [9] uses similar idea 
of this work, i.e. piecewise-linear function fitting, but does not 
consider the convexity of the fitting function, therefore is not 
compatible with GP. This paper proposes an altemative fitting 
algorithm which guarantees the smallest possible modeling 
error for a given set of data without heuristic intervention. 

First, we define 

f(Y) = m a x ,  f t ( Y )  (6 )  

as a coma piecewise-linear (PWL) function where f,(y) is 
a linear functions cf y. As illustrated in Figure 2, it can be 
easily proven that J(y) is a convex function (61. 

Second, we note that data set (yc , f t ) ,  z = 1, _.  . ,m  
generated by any convex function can be fined by a PWL 
function with an arbitrarily small fitting error if we are 
allowed to tailor the PWL function with an arbitrarity /urge 
number of segments. An easy example of this argument is the 

(4 ). 

Figure 4.: PWL fitting with fewer planes 

maximum of tangential plan_es defined at every yi. In other 
words, the PWL function J(y) = 7riaxi aTy + b, where 
aTy+ b, represents tangential planes will exactly pass through 
the original data sets (y,, fi), i = 1, . . . ,m with no fitting 
error. Because posynomial function becomes convex after the 
logarithmic transfohnation, we can replace the posynomial 
function by PWL function in the logarithmic variable and 
functional value space. 

The following describes how such sets of planes, or PWL 
function, can be created for a given data set . The fitting can 
be cast as a following linear optimization problem [6]  

minimize ~ - film 
subject to 

- -  
f, 2 f, + gT(yj - y,). i , j  = 1, . . . ,m 

with variable Y E  Rm, g l , " ' , g m  E Rk, (7) 
for given data (y,, f,), i = 1,  . . . , m, 

yi E ~ ~ > f  E R ~ .  

Essentially, for a given ( g i , J t ) ,  we would like to find 5 as 
close as possible to, J;, but only under the condition that all 
fis are interpolated_ by PWL function. We find m planes that 
pass through (y,, Ji) with the slope g, while minimizing the 
fitting error denoted by I [ f -  film. Figure 3 illustrates the idea 
where a PWL function composed of seven planes is fitted to 
the seven data points. 

The resulting PWL function can be recovered by 
7' - 

.F(y).,itted = mazi=l ,..., m(f i  + gi (Y - ~ i ) )  

mazi=i,...,,(aTy + bi) ,  (8) 
I 

where ai = gi, bi = fi - S T Y i .  In terms of original real-domain 
variable z = ezp(y), - 

f ( x ) , f i t t e d  = max;=1, ..., ,,,ci x7.1 x ; , ~  . . ,xE**,  (9) 

where c, = exp(bi)  and air = kth component in a, E Rk. 

The challenge in this method of fitting is the size of the 
problem. Since the number of inequalities in (7) grows by 
m2, i.e., O(mz) ,  the problem is impractical when dealing with 
a large data set (2 10,000). In this paper, we present one 
possible variant with a problem size that grows linearly by m. 
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Model Monomial 
Dependency W, L, IDS 

119, 29.U10.9 
9da 132.7149.7 
vcs 11.3/3.5 
CGS 15.515.4 

Solve the following problem 
minimize l l f  - film 
subject to 2 f; + gy(yj  - y,), 

. - -  . . 

PWL 
W, L ,  IDS, VDS 

5.411.7 . .  

39.U9.4 
3.1410.79 N u m b . r d P W  

1 1.7/3.1 

higher for gds. Hence, the modeling accuracy of PWL fitting 
is reasonable supposing additional process variations. 

Table 4 shows the improvements in the modeling errors 
in on-chip spiral inductor model in the TSMC 0.13-pm 

a t a l , ~  = I , .  . . ,m 
with variable F E  R"wbere n is size of SI, (10) 

g i , . " , g m  ER'. 

technology. ASITIC [ 1 I ]  generates the data used in the fitting 
and models are fitted as functions of douL (outer diameter), 
1u (turn width), s (turn spacing), n (number of tums) and f 
(frequency). Again, significantly better accuracy is observed. 

Figure 6 shows the decrease in fitting error and the increase 
in the computation time with the increasing number of planes 

Calculate fitting error and quit if acceptable. 
Find index 2 which causes ma'' error' 
Add i to set 5'1 and go back to step I .  for the reduced-complexity method. From the two parameters 

shown and other fittings we studied, approximately 50 planes 
are enough in most cases in order to achieve the near-optimal 
result with reasonable computational effort 

Finally, we point out that PWL constraints are equivalent 

The algorithm described above is implemented in MATLAB 
and tested for both active and passive device models. MOSEK 
[IO]  is the optimization engine and the fittings are performed 
on a Xeon 2.8-GHz CPU with 2-GB memow runnine Linux. 

I 

Table 3 is the fitting result for saturated NMOS device in the 21.v charactenstie B S I M ~  ,,,,,del for TSMC 0.18-pm mixed-signal 
TSMC 0.18-wm technology. SPICE generated roughly 2000 model shows meadmax fining error of about 3%-5%. 
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large as possible. We then restrict (14) to be the only inequality 
in the problem that limits the increase of VDS~, hence (14) 
becomes always active at the optimum. This idea can be easily 
extended to activate more general KVL ”equalities”. More 
examples are discussed in (24), with the two-stage opamp 
problem. 

Note that this formulation implies that we must constrain the 
values of the exponents of the fitted model. In this particular 
case, exponents of VDS~ in gdsl  , l/gml and VDSAT~ have to 
be nonpositive. From the designs we studied, the degradation 
in model fitting due to this exponent limitation is negligible. 

S. Robust optimization Over 

- 
Figure 7. Simple common-source amplifie 

to a set of linear inequalities, thus are readily handled in GP. 
The details are described in the Appendix 

error 

Previous sections explored the methods to reduce the predic- 

4. Bias constraints as posynomial inequalities 
As mentioned in section 2, bias estimation errors can be 

critical in determining circuit performance. One source of bias 
estimation error is the incomplete bias description in GP. 

The difficulty in formulating the bias condition can be 
illustrated in the example shown in Figure 7 .  Bias conditions 
are often equalities. For instance, one of the bias constraints 
for Figure 7 is 

vDSl+ IVDSZl = VDD, (11) 

which is a posynomial equality given that VDsl and ~ V D S Z ~  
are design variables. In general, posynomial equality is anon- 
convex constraint therefore not compatible with GP. Here we 
provide a simple but useful method that can enable posynomial 
equality in many restricted cases. 

The technique we propose is first to relax the constraint (1 1) 
as a posynomial inequality 

(12) VDSl + IvD5’Zl 5 V D D ,  

tion errors by having accurate device model and better problem 
formulation. In select cases, there are device parameters (most 
notably g d s )  whose modeling errors are relatively large even 
in PWL fitting. Also, in analog circuit design problems, there 
are unavoidable cases where monomials must be used for the 
equalities. We propose to cope with these errors by expressing 
the problem based on the idea of robust design [2]. The 
following gives two examples. 

First, consider the small-signal gain constraint in ( 5 )  and 
suppose l/gm and gdr have a maximum modeling error (“h) 
of (I and respectively. We can include this uncertainty as 
(17) which retains the posynomial inequality 

A,i,.(1+a).l/g,’(l+P).gd, 51. (17) 

Similar method can also apply to the bias estimation error. 
As will be seen in section 5 ,  current-mirroring devices should 
have equal gate overdrive voltages 

I 

v0v,/v0v, = 1. (18)  

With the maximum % modeling error of a in VOV, (18) and ensure that (12) is active when the problem is solved. 
A simple method is to exploit the monotonicity inherent in 
the problem [61. For instance, consider the following GP 

can be modified to 
~~ . 

description of gain maximization problem in the amplifier in 
Figure 7. 

For simplicity, we only consider l /gml  as our PWL model 
which is described as (16), but the same argument can be 
applied to other models such as gdsl. Equation (14) becomes 
always active as long as other inequalities and objective values 
such as (13) and ( 1 5 )  improve or do not degrade as VDSl 
or lvDS2[ grow. More specifically, GP-optimizer wants to 
minimize the objective value (13) thus tries to push l /gml 
as small as possible. Provided that l / gml  monotonically 
decreases as VDsl, i.e. ai4 5 0, GP-optimizer pushes VDsl as 

v0vllvovz = Y. 
1-a where Y E  [G, 

We then simultaneously solve several sets of the problem 
that take the two extreme cases in (19) and one nominal case 
in (18). The solution guarantees that performance specifica- 
tions are satisfied within the range of the modeling errors. 
Interestingly, this method can result in more robust design 
over the process variations because process variations can be 
considered as the uncertainty in the device model. 

It is however noteworthy that this technique results in a 
bigger problem size, and potentially causes over-design. The 
optimum is some (often slight) distance away from the true 
optimum without modeling errors. To avoid significant over- 
design, the strategy should be used judiciously for specifica- 
tions that are more sensitive to modeling errors such as D.C 
gain specification. By using this method, modeling errors are 
dealt with in a more predictable way. 
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6.  Design examples and results 
Previous sections have investigated several error-reduction 

methods in GP-based circuit optimization. This section applies 
the presented methods to the design of two-stage opamp and 
on-chip spiral inductor. 

6.1. lko-stage opamp design 
The two-stage op-amp design in Figure 1 is the test 

vehicle in [2] and is revisited here. Using the proposed error 
reduction techniques, constraints related to bias description 
and D.C. gain are rewritten while some of the small-signal 
specifications such as phase margin constraints are reused. 
As pointed out earlier, the design parameters such as V D ~ A T ,  
VGS, gds and l/gm are fitted as functions of W ,  L, IDS,  
and VDS. Due to the space limitation, only parts of the GP 
descriptions are shown. 

A.  Biasing and voltage swing. 
To keep the devices in saturation, we specify 

(20) V i s .  (VDSAT + A V D S A T , ~ ~ ~ )  i 1, 

where AVDSA,,~,  is the predetermined margin in VDS to 
avoid operating in the linear region. We used AVDSAT,,,,,,, = 
50mV in this optimization. Since VDs is one of the design 
variables, (20) is a posynomial inequality provided that VDSAT 
is a posynomial or PWL function. We employ PWL model for 
VDSAT. Diode-connected devices (M8,M3, and M4) have an 
additional constraint 

1 

V G S l V D S  1, (21) 

which is a monomial equality when a monomial model of VGs 
is used. 

At the output, the voltage swing specifications are applied 
to M6 and M7 as 

vgd~,~ , , ,  ' (vDSAT6 + AVDSAT.~~" )  6 1, (22) 

( V D D  - VOUT,maz)-' ' (VDSATT + AVDSAT,min) 5 1, (23) 

where VO,,,,,,, and VOUT,,,,~~ are given minimum and the 
maximum output voltages, respectively. Inequalities (22) and 
(23) are posynomial inequalities because we employ PWL 
model for V D ~ A T .  

B. KCL,KVL and circuit lopologv 
The drain-source voltages in transistors should satisfy 

KVLs given by the circuit topology. This requires the 
following three equalities 

(IVDSSI + l v G S l I ) / ( v D D  - %cm) = 1, 
( v D S 3  f lVDSl1  + I V D S S ( ) / v D D  = 1, (24) 

( v D S 6  + ( V D S I ( ) / v D D  = 1, 

where V,,,cm is the common-mode voltage at the gate of M I .  
All of the equalities in (24) are written as posynomial inequal- 
ities and activated by utilizing monotonicity as explained in 
section 4. We use a PWL model for IVcslI. 

Performance GP- SPICE 
Measure Spec. PWL -PWL 

Table 5. GP-prediction and SPlCE simulation for both 
PWL and monomial model-based optimizations 

GP- SPICE 
MON -MON 

We specify KCL and current mirrors as monomial equali- 
ties, i.e., 

I D S 5  = 2 ' IDS>-4 ,  I D S 6  = 1 0 ~ 7 ,  (25) 
vOV8 vOV5 = VOV7,  (26) 

The connection between the 1st and 2nd stages translates 
where overdrive voltage, Vov, is a monomial. 

into the following monomial equality 

v D S 4  = VC.76, (27) 

where monomial VGSS model is used. 

C. Gain specification 
Since PWL model of gds has relatively large modeling 

error, we use the robust optimization technique described in 
section 4.3 to describe the gain specification, i.e., 

+ %) ' 1/Qm1 ' ((1 4- / I (p)gdsZ + (1 + 0n)gdsl) '  

(1 f a n )  ' 1/gm6 ' ((1 + / I p ) l / S d s 7  f (1 + On)Yds6) 5 1, 

where ap,an,/Ip, and /In are maximum modeling percentage 
error of lis,,, and gds respectively (the subscripts p and 
n denote PMOS and NMOS), and A,,,,,, is the minimum 
specified gain. We employ PWL models for l/gm and gds. 

Proposed GP descriptions are combined with other 
design constraints such as matching, phase margin, and power 
consumption previously shown in [2], and optimizations 
are carried out such that gain-bandwidth (GB) product is 
maximized. In order to evaluate the amount of error reduction, 
we conducted two optimization-simulation scenarios as shown 
in Table 5. 

In Table 5, The GP-PWL refers to the result from a GP op- 
timization using PWL models and new description techniques. 
The SPICE-PWL is the SPICE simulation based on GP-PWL 
predicted variables. To compare with prediction errors, GP- 
MON is the GP-optimization that uses the published GP 
description in [2] and monomial device models. SPICE-MON 
is the corresponding SPICE simulation. Note that all of the 
specifications are met in SPICE-PWL while there is a 15dB 
violation of gain specification in the SPICE-MON case. 

Figure 8 illustrates the GP-prediction and SPICE simulation 
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Figure 8. Optimal GB product from G P  and SPICE 
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Figure 9. D.C. gain from GP and SPICE 

discrepancy both in GP-PWL and GP-MON cases over differ- 
ent DC power constraints ranging from 0.lmW to 0.5mW. 
Clearly, PWL-based scenario achieves significantly better ac- 
curacy of gain-bandwidth product prediction. Interestingly, 
GP-MON and the corresponding SPICE simulation have larger 
GB-product than the GP-PWL counterpart. However, Figure 9 
reveals that the higher GB-product in GP-MON is at the cost 
of significantly violating the D.C. gain specification. 

6.2. On-chip inductor  design 

A second example uses an integrated inductor as the design 
problem. A common goal is to maximize the quality factor 
(QL)  for a given inductance (LVe,,) with a lower bound on 
the self-resonance frequency (w.?). The design problem can 
be cast as (28), 

~ 
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Figure 10. Optimal QL vs. inductance L 

We created new.PWL model of l lQ~, 1/L, and 1/waT 
as a function of do,, (outer diameter), zu (turn width), s 
(turn spacing), n (number of turns) and f (frequency). Note 
this extends the models in [I21 by including the frequency 
dependency. The problem, (28), can be rewritten as follows 

Because we use PWL inductance model, we must impose 
the inequality to replace L = L,.,. Since the optimizer will 
try to find the smallest possible inductance to maximize the 
quality factor, L is driven to the lower bound, L,,,, and the 
inequality is therefore active when the problem (29) is solved. 

In Figure 10, we show the GP-prediction and ASITIC 
simulation of the maximum quality factor versus inductance at 
f = 1GHz. Again, significantly improved prediction accuracy 
is observed in the GP that utilizes the PWL model. 

7. Conclusion 
This paper illustrates several techniques to reduce errors in 

GP-based analog circuit optimization. The contributions of this 
paper are summarized as follows. 

First, an improvement in the device modeling for GP-based 
analog design optimization is reported. This paper presents an 
efficient method to create GP-compatible device models and it 
is demonstrated that this method is capable of creating accurate 
device models in today's deep sub-micron technology. 

Second, several improvements to the circuit design formu- 
lation in GP are described. It is shown that bias-related non- 
convex constraints can be enabled by exploiting monotonicity, 
which reduces the bias estimation error. Also, it is shown that 
simple approach that takes the modeling error into account 
can result in a robust optimization over the inherent modeling 
error. 

Presented ideas are verified by optimizing a 2-stage opamp 



and an on-chip inductor. The results are compared with pre- 
viously published techniques and show significantly improved 
matching with SPICE simulations. 

8. Appendix 
P W L  inequality is equivalent to a set of linear inequalities, 

thus readily handled in GP. For instance, suppose we’ve 
created P W L  model for gds as 

( . . WU” . LU.1 , 12; . “U,“) 
Sds = nl(W=i,...,m C, Ds . (30) 

Then ( 5 )  can be written as 

Ami,, . l /gm. (mazici. We’” .La*’ . I22 . G;) 5 1. (31) 

By introducing slack variable t, we can rewrite (31) as a 
following m + 1 equivalent inequalities 

Am,” , l / g m . t  5 1 (32) 
5 t ,  i = 1,. . . m, (33) c; ’ We,’ , L“2 ’ I$; ’ v;; 

which is still GP-compatible inequalities [6].  Also, it’s 
noteworthy to point out that we can’t use equalities for PWL 
functions just as posynomial functions [6]. 
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