Self-Repairing and Self-Calibration: A Design/Test Strategy for Nano-scale CMOS

Kaushik Roy S. Mukhopadhyay, H. Mahmoodi, A. Raychowdhury, Chris Kim, S. Ghosh, K. Kang

School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN

Process Variation in Nano-scale Transistors

Inter and Intra-die Variations

Random dopant fluctuation

Device parameters are no longer deterministic

Process Variations: Failures, Test, Self-Calibration, and Self Repair

- Memories (Caches and Register Files)
 - Failure analysis
 - Updated March Test for process induced failures
 - Process/Defect tolerant caches
 - Self-Repairing SRAM's
 - Leakage and delay sensors for self-repair
- Logic
 - Failure analysis in pipelines and robust pipeline design
 - Delay sensor to measure critical path delays and integrated test generation for robust segment delay coverage
- Updated scan chain logic
 - FLH and FLS (First level hold and scan flip-flops) for lowpower (dynamic and leakage) and efficient delay testing
- Temperature control to prevent thermal runaway during burn-in

SRAM Memory Cell Failure

- Process variation: **Device miss-match** → **Cell failure**
- Primary source: **Random dopant fluctuation** \rightarrow V_{th} miss-match
- Results in three types of failures

AF: Access time failure **RF:** Read failure WF: Write failure **HF: Hold failure**

 $T_{ACCESS} > T_{MAX}$ AF: Access time failure

RF: Read failure

Flipping

VR

Time (lin) (TIME

600m

400m

200n

/oltages (lin)

BL

WL PCH

4n

BR

Mechanisms of Parametric Failures

Time ->

Time ->

Read Failure (RF)

Write Failure (WF)

$$P_{WF} = P(T_{WRITE} > T_{WL})$$

$$T_{WRITE} = \begin{cases} \left| \int_{V_{DD}}^{V_{TRIP}} \frac{C_L(V_L)dV_L}{I_{in(L)}(V_L) - I_{out(L)}(V_L)} \right|; if (V_{WR} < V_{TRIPWR}) \\ \infty; & if (V_{WR} \ge V_{TRIPWR}) \end{cases}$$

$$P_{WF} = \int_{W_R}^{\infty} f_{WR}(t_{WR})d(t_{WR}) = 1 - F_{WR}(T_{WL})$$

$$I_{in(L)} = \text{current into } L \approx I_{dsPL}, I_{out(L)} = \text{current out of } L \approx I_{dsAXL} \end{cases}$$

Hold Failure (HF)

Variation of and Distribution of V_{DDHmin}

$$P_{HF} = P(V_{DDHmin} > V_{HOLD})$$

 $V_L(V_{DDHmin}, \delta V t_{PL}, \delta V t_{NL}) = V_{TRIP}(V_{DDHmin}, \delta V t_{PR}, \delta V t_{NR})$ Solve for V_{DDHmin}

$$P_{HF} = \int_{V_{HOLD}}^{\infty} f_{VDDHmin}(v_{DDHmin})d(v_{DDHmin}) = 1 - F_{VDDHmin}(V_{HOLD})$$

Access Time Failure (AF)

Variation and distribution of T_{ACCESS} with variation in δVt

$$P_{AF} = P(T_{ACCESS} > T_{MAX}) \qquad T_{ACCESS} = \frac{C_{BR}C_{BL}\Delta_{MIN}}{C_{BL}I_{BR} - C_{BR}I_{BL}} = \frac{C_{B}\Delta_{MIN}}{I_{dsatAXR} - \sum_{i=1,...,N}I_{subAXL(i)}}$$

$$P_{AF} = \int_{t_{ACCESS}}^{\infty} f_{TACCESS}(t_{ACCESS})d(t_{ACCESS}) = 1 - F_{TACCESS}(T_{MAX})$$

Basic Modeling Approach

• Estimation of the mean and the variance of a function several independent normal random variable

$$T_{ACCESS} = f(V_{t1}, V_{t2}, ..., V_{t6})$$

= $f(\eta_{Vt1}, \eta_{Vt2}, ..., \eta_{Vt6}) + \sum_{i=1,..,6} (\partial f / \partial V_{ti})(V_{ti} - \eta_{Vti}) +$

- Expand 'f' in Taylor series with respect to Vt₁,...,Vt₆ around their mean and consider up to 2nd order terms.
- Estimate the mean and the variance as:

$$Mean (T_{ACCESS}) = f(\eta_{Vt1}, ..., \eta_{Vt6}) + \frac{1}{2} \sum_{i=1,...,6} \left(\frac{\partial^2 f}{\partial V_{ti}} \right) \sigma_{Vti}^2 \sigma_{Vti}^2$$
$$Variance (T_{ACCESS}) = \sum_{i=1,...,6} \left(\frac{\partial f}{\partial V_{ti}} \right)^2 \sigma_{Vti}^2$$

- Estimation of the probability distribution function of Y
 - Assume a normal pdf with the estimated mean and variance.
- The δ Vt of each transistors are assumed to be independent normal random variables.

$$\sigma_{\partial Vt} \alpha \left(1 / \sqrt{LW} \right)$$

Estimation of Overall SRAM Cell Failure Probability (P_F)

 $P_F = P[Fail] = P[A_F + R_F + W_F + H_F]$

Estimation of Memory Failure Probability (P_{MEM})

- *P_{COL}*: Probability that any of the cells in a column fails
- P_{MEM}: Probability that more than N_{RC} (# of redundant columns) fail

$$P_{COL} = 1 - (1 - P_F)^N$$
 and $P_{MEM} = \sum_{i=N_{RC}+1}^{N_{COL}} {N_{COL} \choose i} P_{COL}^i (1 - P_{COL})^{N_{COL}-i}$

Estimation of Yield

N_{INTER} : the total number of inter-die Monte-Carlo simulations (i.e. total number of chips)

Snapshot: Transistor Sizing and Yield

Proposed failure analysis assists SRAM designers to achieve maximum memory yield

Parametric Failures in SRAM Cell

SRAM Failure Mechanisms and Logic Fault Models

- Deceptive read destructive faults are overlooked in conventional test sequences
- Hold failures not detectable in conventional test sequences

Efficient Testing of SRAM*

Failures due to Process Variations

Test: Optimized March Test Sequence

Optimized March C-1.

> ((W0) (R0 W1) (R1 W0) (W0 W1) (HOLD) (↓ R1 R1 W0) (HOLD) (\$ R0 R0)

- + Good fault coverage
- Test time increases
 March Q
- 2.

 $(\Downarrow W0)$ (HOLD) ($\Uparrow R0$ W0 W1 R1) (HOLD) (\Uparrow R1 W1 W0 R0) (\Downarrow R0)

- Reduce the test time
- + Cover all the fault models induced by process variations
- Not able to detect Transition Coupling Fault and Address Decoder Fault

March test sequence comparison

Logic Fault Models	Conventional Test Sequences			Proposed Sequences	
	March C-	March B	March SR	Opt. March C-	March Q
Address Decoder Fault	+	+	-	+	-
Data Retention Fault	-	-	+	+	+
Low Supply Data Retention Fault	-	-	-	+	+
Stuck-at Fault	+	+	+	+	+
Transition Fault	+	+	+	+	+
Random Read Fault	+-	+-	+-	+-	+-
Read Destructive Fault	+	+	+	+	+
Deceptive Read Destructive Fault	-	-	+	+	+
Incorrect Read Fault	+	+	+	+	+
State Coupling Fault	+	-	+	+	+
Disturb Coupling Fault	+	-	+	+	+
Incorrect Read Coupling Fault	+	-	+	+	+
Read Destructive Coupling Fault	+	-	+	+	+
Transition Coupling Fault	+	+-	+	+	+-
Test Time	10N	17N	14N	12N	10N

Double Sensing: A Novel DFT Circuit to Reduce Test Time

- In order to reduce test time, double sensing is used to detect Deceptive Read Destructive Fault in one cycle
 - However, the WL can NOT be extended too long for
 - testes///cerim herentenderdegtag foretheoligpsingutdsstill/ opegatestationed trequency.
 - Distribution and the present of the pr

The

flipping

is

sensed

• Then the required WL extension time is minimized.

Parametric Failures and Yield

What is the effect of Inter-die variation on Parametric Failures?

Inter-die Variation and Cell Failure

 Inter-die shift in process parameter amplifies the failure due to intra-die variations.

Inter-die Variation and Memory Failure

 Memory failure probabilities are high at high when interdie (global) shift in process is high. How can we improve yield considering both inter-die and intra-die variations?

Adaptive Repairing of SRAM Array

• Reduce the dominant failures at different inter-die corners to increase width of low failure region.

How can we reduce the dominant failures at different inter-die corners?

Body Bias and Parametric Failures

Proper body bias can reduce parametric failures

 Forward bias reduces Access & Write failures
 Reverse bias reduces Read & Hold failures

Adaptive Repair using Body Bias

• Reduce the dominant failures at different inter-die corners to increase width of low failure region.

Self-Repair Technique in SRAM

How we can identify the inter-die Vt corner under a large random intradie variation ?

- Monitor circuit parameters e.g. delay and leakage —Effect of inter-die variation can be masked by that of intra-die variation
- Adding a large number of random variables reduces the effect of intra-die variation

$$Y = \sum_{i=1}^{n} X_{i}$$

$$\Rightarrow \mu_{Y} = \sum_{i=1}^{n} \mu_{Xi} = N \mu_{X} \& \sigma_{Y}^{2} = \sum_{i=1}^{n} \sigma_{Xi}^{2} = N \sigma_{X}^{2} \Rightarrow \frac{\sigma_{Y}}{\mu_{Y}} = \frac{1}{\sqrt{N}} \frac{\sigma_{X}}{\mu_{X}}$$

Vt Binning by Leakage Monitoring

Self-Repair using Leakage Monitoring

- On-chip monitoring of leakage of entire array
- Body-bias is generated based on leakage monitor output
- Leakage monitored is bypassed in normal operating mode

Yield Enhancement using Self-Repair

 Self-Repairing SRAM using body-bias can significantly improve design yield.

Self-Repairing SRAM: Die Photo

Schematic and measurement of self-repair mechanisms

Bodybias generation logic (MUX switches are designed with level converter for negative bias, not shown here)

Measured waveform of body voltage foß6 Reverse bias with On-chip RBB generator
Design and Measurement of Current Sensor

Failure Probability in SRAM Memory Cells

Intrinsic Fluctuation of V_{th} due to random dopant effect

• $P_{Fault} = P_{AF} U P_{RF} U P_{WF}$

In 45nm technology σ_{Vth} ≈ 30mV → P_{Fault} > 1.0x10⁻³
 Large number of faulty cells in nano-scale SRAM under process variation

Fault Statistics in 32K Cache

 $N_{Faulty-Cells} = P_{Fault} X N_{Cells}$ (total number of cells in a cache) • Conventional 32K cache results in only 33.4% yield Need a process/fault-tolerant mechanisms to improve the yield in memory

Basic Cache Architecture

Index = Row Address + Column Address

Multiple cache blocks are stored in a single row
 Minimize delay, area, routing complexity
 Column MUX selects one block

Basic Cache Architecture

BPTM 45nm technology, 32KByte direct mapped cache

# of Block in a Row	1 Block	2 Blocks	4 Blocks
Decoder Delay	0.086ns	0.085ns	0.084
Wordline Delay	0.069ns	0.075ns	0.128ns
Bitline to Q Delay	0.452ns	0.355ns	0.313ns
Total Delay	0.608ns	0.515ns	0.525ns
Energy	0.166nJ	0.181nJ	0.195nJ

• For 32K cache best # of cache blocks/row = 2

We choose 4 blocks in a row for our design

- Results in higher yield 16.25% increase
- > 2% cache access penalty
- > 7% energy overhead

Fault-Tolerant Cache Architecture

 BIST detects the faulty blocks
 Config Storage stores the fault information Idea is to resize the cache to avoid faulty blocks during regular operation

Resizing the Cache

Force the column MUX to select a non-faulty block in the same row if the accessed block is faulty

Handle large number of faults without significantly reducing the cache size

Resizing is transparent to processor → same memory address

Config Storage

	Cache 32KByte	Config Storage 1Kbit	
Blocks per row	4	x	
Block Size	32Byte	4bit	

Accessed in parallel with cache

4 bit fault information about 4 blocks stored in a single cache row

- One bit fault information per cache block
- Bits are determined by BIST at the time of testing
- Accessed using row address part of INDEX
- Provides the fault information of all the blocks in a cache row to controller

Column address selection based on fault location

		Accessed Column Address				
Faulty Blocks in	Fault Information by Config Storage	00	01	10	11	
Accessed Row		Forced Column Address				
		\downarrow	\downarrow	\downarrow	\downarrow	
None	0000	00	01	10	11	
3 rd Block	0010	00	01	00	11	
2 nd &3 rd Block	0110	00	00	11	11	
1 st , 2 nd & 3 rd Block	1110	11	11	11	11	
All four Blocks	1111	NA	NA	NA	NA	

Based on 4 bits read from Config Storage controller alters the column address

Column address selection based on fault location

		Acce	ssed Colı	Imm Address 10 11 nn Address ↓ ↓ ↓ 10 11 00 11 11 11 11 11 11 11	
Faulty Blocks in Accessed Row	Fault Information by Config Storage	00	01	10	11
		Forced Column Address			
		\downarrow	\downarrow	\downarrow	\downarrow
None	0000	00	01	10	11
3 rd Block	0010	00	01	00	11
2 nd &3 rd Block	0110	00	00	11	11
1 st , 2 nd & 3 rd Block	1110	11	11	11	11
All four Blocks	1111	NA	NA	NA	NA

One block in a row is faulty

Selects the first available non-faulty block e.g 3^{rd} block $\rightarrow 1^{st}$ block

Column address selection based on fault location

		Accessed Column Address				
Faulty Blocks in	Fault Information by Config Storage	00	01	10	11	
Accessed Row		Forced Column Address				
		\downarrow	\downarrow	\downarrow	\downarrow	
None	0000	00	01	10	11	
3 rd Block	0010	00	01	00	11	
2 nd &3 rd Block	0110	00	00	11	11	
1 st , 2 nd & 3 rd Block	1110	11	11	11	11	
All four Blocks	1111	NA	NA	NA	NA	

Two blocks in a row is faulty

Selects two non-faulty blocks respectively e.g 2nd block \rightarrow 1st block 3rd block \rightarrow 4th block

Column address selection based on fault location

		Acces	ssed Colı	lumn Address			
Faulty Blocks in	Fault Information by Config Storage	00	01	10	11		
Accessed Row		Forced Column Address					
		\downarrow	\downarrow	\downarrow	\downarrow		
None	0000	00	01	10	11		
3 rd Block	0010	00	01	00	11		
2 nd &3 rd Block	0110	00	00	11	11		
1 st , 2 nd & 3 rd Block	1110	11	11	11	11		
All four Blocks	1111	NA	NA	NA	NA		

Three blocks in a row is faulty

All the blocks are mapped to non-faulty block, e.g 4th block

One non-faulty block in each row, this architecture can correct any number of faults

Energy, Performance, and Area Overhead of Config Storage and Controller

BPTM 45nm technology, 32KByte Cache, 1Kbit Config Storage

Energy and Performance	32KB Cache	Config Storage & Controller
Delay (ns)	0.45	0.22
Area overhead	NA	0.5%
Energy overhead	NA	1.8%

- Controller changes the column address before data reaches at column MUX
- Does not affect the cache access time
- Negligible energy and area overhead (excluding BIST)

Results: P_{op} (ECC, Redundancy and Proposed Scheme)

- P_{op}: Probability that a chip with N_{Faulty-cells} can be made operational
- Faults are randomly distributed across chip
- Yield is defined as:

$$Y_{chip} = \frac{1}{N_{Tot}} \sum_{N_{Faulty_Cell}} P_{op}(N_{Faulty_Cell}) * N_{chip}(N_{Faulty_Cell})$$

- Each scheme add some extra storage space
 - P_{op} includes the probability of having faults in these blocks
 - > To consider area, yield is redefined as:

 $Y_{chip}^{eff} = Y_{chip} \frac{A_{chip_without_any_scheme}}{A_{chip_with_fault_tolerant_scheme}}$

Results: Por

% of the chips with 105 faulty cells which can be saved by

- Proposed scheme ~ 65% (high fault tolerant capability)
- ECC ~ 6%
- Redundancy ~ 0%

Results: P_{op}

P_{op} improves with redundant rows in config storage

 r = 2 is optimum for 32K cache with 1Kbit config storage

Results: P_{op}

 Adding redundant rows (R) in cache in proposed scheme improves the P_{op} further (optimum is R =8 for 32K cache)

Effective Yield of 32K Cache

ECC + Redundancy yield ~ 77%

 Proposed architecture + Redundancy yield ~ 93% (with 2 blocks in a cache row yield ~ 80%)

Fault Tolerant Capability

 Proposed architecture can handle more number of faulty cells than ECC, as high as 419 faulty cells

 Saves more number of chips than ECC for a given N_{Faulty-Cells}

Process Tolerance: Fault Statistics in 64K Cache

 $N_{Faulty-Cells} = P_{Fault} X N_{Cells}$ (total number of cells in a cache) • Conventional 64K cache results in only 33.4% yield Need a process/fault-tolerant mechanisms to improve the yield in memory

Process-Tolerant Cache Architecture

• BIST detects the faulty blocks

 Config Storage stores the fault information Resize the cache to avoid faulty blocks during regular operation

Fault Tolerant Capability

 Proposed architecture can handle more number of faulty cells than ECC, as high as 890 faulty cells with marginal perf loss

CPU Performance Loss

- Increase in miss rate due to downsizing of cache
- Average CPU performance loss over all SPEC 2000 benchmarks for a cache with 890 faulty cells is ~ 2%

Register File: Self-Calibration using Leakage Sensing

C. Kim, R. Krishnamurthy, & K. Roy

Process Compensating Dynamic Circuit Technology

• Keeper upsizing degrades average performance

Process Compensating Dynamic Circuit Technology

C. Kim et al., VLSI Circuits Symp. '03

Opportunistic speedup via keeper downsizing

Robustness Squeeze

5X reduction in robustness failing dies

Delay Squeeze

• 10% opportunistic speedup

Self-Contained Process Compensation

Fab

Wafer test

Process detection

On-Die Leakage Sensor For Measuring Process Variation

C. Kim et al., VLSI Circuits Symp. '04

High leakage sensing gain
Compact analog design sharing bias generators

Leakage Current Sensing Circuits

T. Kuroda et al., JSSC, Nov. 1996

M. Griffin et al., JSSC, Nov. 1998

Susceptible to P/N skew and supply fluctuation
Large area due to multiple analog bias circuits

Limited leakage sensing gain

Single Channel Leakage Sensing Circuit

 Basic principle: Drain induced barrier lowering
 Low sensitivity to P/N skew and supply fluctuation

S. Narendra et al., VLSI Circuits Symp. 2001

- Sub-1V process, voltage compensated MOS current generation concept
- Reference voltage, external resistor not required
- Scalable, low cost, flexible solution

PV Insensitive Bias Voltage (V_{BIAS})

E. Vittoz et al., JSSC, June 1979

- PTAT containing no resistive dividers
- Based on weak inversion MOS characteristics
- Desired output voltage achieved via sizing

- 2-stage differential amplifier
- Already designed I_{REF} is used for bias current 72
PV Sensitivity of Designed I_{REF}, V_{BIAS}

1.2V, 90nm CMOS, 80°C

- I_{REF} variation < 4%, V_{BIAS} variation < 2%
- Under realistic process skews, ±100mV supply voltage fluctuations

Proposed Leakage Current Sensing

Superimposed I-V Curves

1.2V, 90nm CMOS, 80°C

1.9-10.2X higher V_{SEN} swing than prior-art

Process-voltage insensitive design

Incremental mirroring ratio for multi-bit resolution leakage sensing

Shared bias generators → compact design

• Process-voltage insensitive I_{REF}, V_{BIAS} gen.

Multi-Bit Resolution Leakage Sensing

1.2V, 90nm CMOS, 80°C

Process skew

- Leakage level determined by comparing V_{SEN1} through V_{SEN6} with V_{REF}
- 6-channel leakage sensor gives 7 level resolution

Example: Operation at Fast Process Corner

• Fast corner: output code '101'

Example: Operation at Typical Process Corner

Typical corner: output code '010'

On-Die Leakage Sensor Test Chip

Technology	90nm dual Vt CMOS
V _{DD}	1.2V
Resolution	7 levels
Power consumption	0.66 mW @80C°
Dimensions	83 X 73 µm²

Leakage Binning Results

Output codes from leakage sensor

Conclusion

 Statistical Failure Analysis Helps Enhance Yield

 Post Silicon Tuning/Calibration is Becoming Promising for Si Nano systems

 Built-In Leakage/Delay Sensors Provide Information on Intra-Die Process Variations