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Abstract

Transitions on high capacitance busses in VLSI
systems result in considerable system power dissipa-
tion. Therefore, various coding schemes have been
proposed in the literature to encode the input signal
in order to reduce the number of transitions. In this
paper we derive achievable lower and upper bounds on
the expected signal transition activity. These bounds
are derived via an information-theoretic approach in
which symbols generated by a source (possibly corre-
lated) with entropy rate H are coded with an average of
R bits/symbol. These results are applied to, 1.) deter-
mine the activity reducing efficiency of different coding
algorithms such as Entropy coding, Transition coding,
and Bus-Invert coding, 2.) bound the error in entropy-
based power estimation schemes, and 3.) determine
the lower-bound on the power-delay product. Two ez-
amples are provided where transition activity within
4% and 8% of the lower bound is achieved when blocks

of 8 and 13 symbols respectively are coded at a time.

1 INTRODUCTION

The on-chip dynamic power dissipation of CMOS
circuits at a node is given by, Pp = %TC’L V2 f. where
T is the transition activity at the node, Cp is the
capacitance, Vyg is the supply voltage, and f is the
frequency of operation. At the system level, off-chip
busses have capacitances, Cf, that are orders of mag-
nitude greater than those found on signal lines internal
to a chip. Therefore, transitions on these busses result
in considerable system power dissipation. To address
this problem, various signal encoding techniques have
been proposed in the literature to encode the data be-
fore transmitting it on a bus so as to reduce the ex-
pected and the peak number of transitions. Hence,
the signal encoding approaches in literature achieve
power reduction by reducing 7" while keeping C more
or less unaltered. In this paper we derive achievable
lower and upper bounds on the expected transition ac-
tivity for any coding algorithm. These bounds are de-
rived via an information-theoretic approach in which
each symbol of a source (possibly correlated) with en-
tropy rate H is coded with R bits on average. The
concept of entropy, H, from information theory was
first employed for single-bit signals, albeit in an em-
pirical manner, in the area of high-level power esti-
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mation [2,3]. In contrast, the work presented here is
non-empirical, applicable to multi-bit signals, indepen-
dent of the coding algorithm, and completely unravels
the connection between the bounds on transition ac-
tivity and entropy. This work is a continuation of our
effort in developing an information-theoretic view of
VLSI computation [5], whereby equivalence between
computation and communication is being established.

In section II, we present the preliminaries neces-
sary for the development in the rest of the paper. In
section III, the main result is presented in the form
of Theorem 1. In section IV, we employ Theorem 1
to, 1.) derive lower and upper bounds for different
coding algorithms, 2.) bound the error in entropy-
based power estimation schemes, and 3.) determine
the lower-bound on the power-delay product. We also
present two examples where transition activity within

4% and 8% of the lower bound is achieved.
2 PRELIMINARIES

Let X be a discrete random variable with al-
phabet X and probability mass function p(z) =
Pr(X = 2), z € X. A measure of the
information content of X is given by its en-
tropy H(X), which is defined as [1], H(X) =
— > sex P(z)log, p(x) bits. The joint entropy H (X,
X2, ..., X,) of a sequence of discrete random vari-
ables (X1, X2, ..., X,) with a joint distribution
p(21, 22, ..., 2y) is defined as, H(X1, Xs,...,Xy) =
= > p(x1,®a, ..., 2n)logy (21, 22, ...,2,) bits. The
entropy rate of a stochastic process {X;} is defined by,
H = lim, .« %H(Xl,X2, ..., Xy) bits, when the limit
exists. The function H(x) is defined on the real inter-
val [0,1] as, H(z) = —x log, # — (1 — ) log, (1 — ) bits.
The function H(z) maps the probability of a binary-
valued, independent variable to its entropy. The in-
verse, H=1(y), of H, is defined on the real interval
[0.1] as, H™'(y) = 2. if y = H(z) and 2 € [0, 3]. The
function H~1() maps the entropy of a binary-valued,
independent variable to a probability value that lies
between 0 and % The transition activity of a bit-level
signal, b,, is defined as, t = Pr(b, = 0 and b,_1 =
1) + Pr(b, = 1 and b,—; = 0). We define a level en-
coding algorithm to be the case where the symbol ‘0’
is coded with the bit ‘0’ and the symbol ‘17 is coded
with the bit ‘1’. In a transition encoding algorithm,
the symbol ‘0’ is coded by transmitting the previous
transmitted bit and the symbol ‘1’ is coded by trans-



mitting the complement of the previous transmitted
bit. Hence, a ‘1’ is coded with a transition and a ‘0’
with no transition. Table 1 shows an example of tran-
sition coding.

3 ACHIEVABLE BOUNDS

In order to derive bounds on transition activity, we
will employ Lemmas 1 and 2 presented below. Lemma
1 bounds z given y < H(z). Lemma 2 employs Lemma
1 to bound the expected number of 1’s in a sequence of
bits with a certain entropy rate H. Theorem 1 employs
Lemma 2 to bound the number of transitions/symbol
of a source with a certain entropy rate H given that
each symbol is coded employing an expected number
of R bits. The proofs are presented in the Appendix.

Lemma 1 For all (z,y) such that x € [0,1] and y €
[0,1], ify < H(z) then, H-}(y) <2 < 1- H7(y).

Lemma 2 If {B;} is a 0-1 valued stochastic process
with entropy rate greater than or equal to H and if
py = lim,_oc 237 | B; euists then, H-Y(H) < p; <
1— H-L(H).

Theorem 1 Let,

1. M be the entropy rate of a stochastic source {X;},

2. the symbols be coded in a uniquely decodable man-
ner into bits {B;} employing an expected number
of R(> M) bits/symbol,

3. the bits be transmitied in some arbitrary manner
over a finite set of wires such that a receiver can
uniquely decode the bits, and

4. T be the expected number of transitions in the bits
on the wires
per symbol (i.e. lim,_.oc L3 | B; @ B; exists,
where Bj precedes B; on the same wire and @ is
the exclusive-or operator) then, H_l(%)R <T<

(1-H Y (E)ER.

The lower and upper bounds on transition activity
computed by Theorem 1 for different values of R are
shown in Figure 1. Any coding algorithm will need
to reside in the region shown in Figure 1. The tran-
sition activity can be made arbitrarily close to 0 by
increasing R. In practice, however, R will typically
be less than approximately 10H because most of the
reduction in the lower bound is achieved by the time

R=10H.
4 APPLICATIONS OF BOUNDS

In this section, we provide applications of Theo-
rem 1. We first employ Theorem 1 and the value of R
specified by a coding algorithm to derive bounds for
that algorithm.

4.1 Entropy Coding

An entropy code is one for which the expected
number of bits/symbol is equal to the entropy of the
source.

Corollary 1 For an entropy coder, T' = %
Proof: From Theorem 1 and since R = H for
an entropy coder we have, H-Y(1)H < T < (1 —

H=Y(1))H. Substituting H=(1) = L, we get T = Z.
T

Therefore, as shown in Figure 1, the lower and upper
bounds on T are identical for entropy coding.

4.2 Transition Coding

We will redefine transition coding slightly in this
subsection as coding the less probable symbol (‘0" or
‘1") with a transition and the other symbol with no
transition.

Corollary 2 Transition coding achieves the lower
bound on the transition activity for an i.i.d. source

with alphabet X = {0,1} when R =1 bit/symbol.

Proof: From Theorem 1 and since R = 1, we
have H=Y(H) < T < 1— H7Y(H). Since the source
is i.i.d. with alphabet {0,1}, H=*('H) is also the prob-
ability of a ‘07 or the probability of a ‘1°, whichever
s less. Hence we can achieve the lower bound on the
transition activity by coding the less probable symbol
(0’ or ‘1’) with a transition and the other symbol with
a no transition. g

The upper bound on transition activity of 1 — H~1(H)
is greater than or equal to the upper bound of % in [2].

This is because, in the proof of the upper bound in [2],
the implicit assumption is made that the symbol ‘0’ is
coded with the bit ‘0" and the symbol ‘17 is coded with
the bit ‘1°, i.e., level coding is employed. It is possible
to achieve the higher transition activity of 1— H~1(H)
for the same entropy if the more probable symbol is
coded with a transition.

4.3 Bounds For 1-bit Redundant Codes

In algorithms such as Bus-Invert coding [6], the
transition activity on the bus is reduced by employ-
ing an additional bit. We now calculate the lower
bound for any coding algorithm that uses 1 bit of
redundancy. Thus K = H + 1 and from Theorem
1, the expected transition activity is bounded by,

(H+DH () < T < (H+ 1)1 - H ' (547)).
The extra bit may be either an extra line on the bus,
or an extra clock to transfer the data. If H = 8 then
the lower bound is 2.4506 transitions/symbol. For uni-
formly distributed, temporally independent data, Bus-
Invert coding achieves a transition activity of 3.269
transitions/symbol which is 33.40% above the lower
bound. The lower bound can be approached by cod-
ing larger and larger blocks of bits. Now, assume the
source entropy, H, is increased and R = H 4+ 1. The

ratio HL_H approaches 1 and T approaches % Thus,
as the entropy increases, the benefit of Bus-Invert cod-
ing or any 1-bit redundant code is reduced. The above

analysis can be extended for a k-bit redundant code.

4.4 Error Bounds For Entropy-Based
Power Estimation Schemes

The bounds on transition activity from Theorem

1 can be employed to calculate the maximum error

in schemes that estimate power dissipation from en-

tropy [2,3]. For given H and R, the error in estimat-

ing T, will be less than or equal to the maximum of



the difference between the upper bound and the es-
timate of T, and the difference between the estimate
of T' and the lower bound. As an example, assume
that a source with entropy ‘H = 6 bits is transmitted
over an 8-bit bus. Since R = 8, the lower bound on
transition activity at the bus can be calculated from
Theorem 1 to be 1.716. The upper bound, assum-
ing no glitching, is 6.284. Assuming an estimate, 7,
for transition activity, the error in the estimate is less
than max(7T, — 1.716, 6.284 — T,). If additional infor-
mation beyond H and R is not available, then it is not
possible to obtain tighter bounds on the error in esti-
mating transition activity. This is because the bounds
on transition activity are achievable.

4.5 Lower Bound On Power-Delay

If the capacitance Cp, the supply voltage Vaq,
and the frequency of operation, f, are given, then
the minimum average power dissipation is proportional
to the lower bound on the transition activity. The
delay (for instance, for transmitting the data on a
bus) is proportional to R. Hence the lower bound
on the power-delay product, PowerDelaymin . given 'H
and R, is given by, PowerDelaymy, = KH_l(%)RQ,
where K is a constant of proportionality. The graph
of PowerDelay,,;, versus R for a given value of ‘H
is shown in Figure 2. For given H, we can find
the R that minimizes PowerDelaymin, by equating
its derivative with respect to R to 0. The value of
R that minimizes PowerDelay,,;, is found to be,
Rumin power—detay = 1.25392 'H. Thus, a source with
entropy rate, H, requires approximately an average
of 1.25H bits/symbol to encode for minimum power-
delay product. If R > 1.25H, then the delay increases
resulting in a non-optimal power-delay product. Sim-
ilarly, if R < 1.25H then the power component in-
creases because less redundancy is being added.

4.6 Bounds For An i.i.d. Source
Consider an i.i.d. source with a 5 symbol alpha-

bet X = {A, B,C, D, E'} with probabilities %, %, %,

11—6, and 11—6 respectively. The entropy rate is equal to
18—5 bits. If an average of R = 3 bits are employed
to code a symbol then from Theorem 1. the bounds
on transition activity are, 0.468426 < 7' < 2.531574.
We now calculate the actual transition activity that
is achieved by various coding algorithms and compare
them with the bounds. To simplify the calculation
of transition activity, we assume transition coding is
employed to transmit the bits, i.e., a ‘1’ is transmit-
ted with a transition and a ‘0’ is transmitted with no
transition. Thus, the number of transitions is equal
to the number of 1’'s. We can make the assumption
of transition coding in the examples because the pur-
pose of the examples is to show the existence of coding
algorithms that approach the lower bound.

Entropy Coding Followed By Spatial Re-
dundancy Coding: In this algorithm, we initially
employ an entropy coder to code the symbols employ-
ing the minimum expected number of bits/symbol. A
code that achieves the entropy is A =0, B =10, C =
110, D = 1110, and E = 1111. At the output of the

entropy coder we have an average of % bits/symbol.

Since R = 3 bits/symbol, if we code a block of 15 bits
from the entropy coder with 24 bits, we can employ
the redundancy to reduce the number of transitions.
This is an extension of Bus-Invert coding and results
in a code in which the expected number of transitions
(or 1’s) is 0.565499 transitions/symbol, which is within
18% of the lower bound.

Probability Based Coding: An alternative al-
gorithm to reduce the number of transitions is by cod-
ing the most probable symbol A as 000 or no tran-
sitions, B = 001, C = 010, D = 100, and E = 011.
The expected number of transitions/symbol is 0.5625,
which is within 17% of the lower bound. We can fur-
ther reduce the number of transitions by coding blocks
of symbols. The transition activity/symbol for differ-
ent block sizes is shown in Figure 3. Thus, we can
achieve a transition activity within 4% of the lower
bound by employing a block size of 8.

4.7 Bounds For A Markov Process

Consider the 3-state stationary Markov process
Ui, Uz, ... having the transition matrix F;; in Table 2
[1]. Thus the probability that S; follows Ss is equal to
zero. An algorithm to encode the process will consist
of 3 codes Cy, C5, and C3 (one for each state Sy, Sa,
and S3), where Cj is a code mapping from elements of
the set {S1, Ss, Ss3} into a code-word in C; (see Ta-
ble 3 for an example) To encode the current symbol
Sj, we note the previous symbol S; and select code
C’ We send the code-word in Cj corresponding to S;.
This is repeated for the next symbol. The statlonary
distribution of this Markov chain is y = [%, %, %]T
The entropy rate of the stationary Markov process is
given by [1]. H(X) = =} ,; pi Pijlog, Pij = 2 bits.
A code that achieves the entropy rate is shown in
Table 3. If R = 2 bits/symbol, then from Theo-
rem 1, 0.347904 < 7' < 1.652096 transitions/symbol.
The transitions/symbol for entropy coding followed by
redundancy coding and probability based coding is
shown in Figure 4 for different block sizes. We can
achieve a transition activity within 8% of the lower
bound with a block size of 13 symbols.

APPENDIX

We now present proofs of Lemma 2 and Theorem
1. The proof of Lemma 1 is omitted because of lack of
space and because it can be verified from a plot of H ().
The proofs of achievability of Lemma 2 and Theorem
1 [4] are also omitted due to lack of space.
Proof Of Lemma 2

From the definitions of entropy rate and H
in the statement of Lemma 2, H < lim,_
%H(Bl,BQ: oo Bp) &> H < limp %2?21 H(B;)
[ Independence bound on entropy | = H <

H(lim, _oc + - >.%_, B;) [ Jensen’s inequality and con-

cavity of H ] => H < H(py) [ Since pp =
lim, o & - ZZ 1 Bi ]. Thus, we can substitute H for y
and pp for x in Lemma 1 to obtain Lemma 2. §

Proof Of Theorem 1

Let (By, Ba, ..., B,) be the n bits that encode
a block of N symbols (X1 X2, ..., Xn), where this
mapping from the symbol sequence (Xl, Xa, .. XN)



to the bit sequence (By, Ba, ..., B,) can only be ei-
ther one-to-many or one-to-one (and not many-to-one
or many-to-many) because the coded bitstream needs
to be uniquely decodable. Since the symbols are coded
employing an expected number of R bits/symbol, for
large N, n = NR. The entropy rate, Hp, of the code
bits is given by, Hy = lim,_« %H(Bl,B2,...,Bn)

= Hb = hmnﬁoc %Zp(bler:”':bn)
log, p(b1,ba,....by) [ From the definition of joint en-

tropy ] = Hy > limy—o 52 p(#1,22,...,2N)
log, p(#1,22,...,2zx5) [ From n = NR and the pos-
sibility of a 1-many mapping. The inequality will be
an equality if the mapping from symbols to bits is one-
to-one. | = H; > X,

Define a function g on (Bi,Ba,...,B,) as,

(C1,Cs,...,Cp) = ¢g(B1,Bs,....,By), where, C; =
B; @ B;. and B; and B; are transmitted on the same
wire and B; immediately precedes B;. If B; is the
first bit transmitted on the wire, then B; is ‘0°. Bit
C; is transmitted on the same wire and in the same
order as bit B;. Clearly, we can compute B; given
C; as, B; = C; @ Cj, where C; and C; are trans-
mitted on the same wire and C; immediately pre-
cedes C;. If C; is the first bit transmitted on the
wire, then Cj is ‘0°. Since (Bi, B», ..., B,) and
(C1, Cy, ..., Cy) are functions of each other and

Hy > % we have, lim,_ %H(C’l, Cy,....Cy) =
LH(B:1.Bs.....B,) = Hy > % Let p. =
limy, — ec %2?21 C;, where p. is the probability of C;
being a ‘1’. The limit exists because of assumption
(4) in Theorem 1. Since C; is a binary random vari-
able, p.n is the expected number of 1’s in (C4, Cs, .. .,
Cy) for large n. Substituting p. for p; and % for H in
Lemma 2 we have, H=1(%) < p. < 1-H~Y(Z). Since
there are on the average R bits/symbol and Cj; is ‘1’
iff there was a transition at B;, T' = p.R. Multiplying
the inequality H_l(%) <p.<1l-— H_l(%) by R and
substituting p. R with 7" we have Theorem 1. §

limy, o
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Table 1: Transition Coding

[ Time ]| Level Code [ Transition Code |
0 000000 000000
1 000011 000011
2 000010 000001
3 010000 010001

Table 2: Transition Matrix

[ Previous state [[ 51 [ So [ S3 |

T I

51 I I I
I 1

So 1 1 1
I

S3 0 5 =

Table 3: Entropy Code for Markov Process
| [ 5[5 [Ss]

Cy 0] 10 [ i1

Cy, [[ 10| o011

Cs - 0] 1




