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Abstract— Transitions on high capacitance busses in VLSI
systems result in considerable system power dissipation.
Therefore, various coding schemes have been proposed in
the literature to encode the input signal in order to reduce
the number of transitions. In this paper, we derive lower
and upper bounds on the average signal transition activity
via an information-theoretic approach in which symbols gen-
erated by a process (possibly correlated) with entropy rate H
are coded with an average of R bits per symbol. The bounds
are asymptotically achievable if the process is stationary
and ergodic. We also present a coding algorithm based on
the Lempel-Ziv data compression algorithm to achieve the
bounds. Bounds are also obtained on the expected num-
ber of 1’s (or 0’s). These results are applied to, 1.) de-
termine the activity reducing efficiency of different coding
algorithms such as Entropy coding, Transition signaling, and
Bus-Invert coding, and 2.) determine the lower-bound on
the power-delay product given H and R. Two examples are
provided where transition activity within 4% and 9% of the
lower bound is achieved when blocks of 8 symbols and 13
symbols, respectively, are coded at a time.

Keywords— Low power, switching activity, achievable
bounds, CMOS circuits, information theory, busses

I. INTRODUCTION

Power dissipation has become a critical VLSI design con-
cern in recent years [3] and a substantial amount of re-
search is being conducted at the algorithmic [3], architec-
tural (such as pipelining [13] and parallel processing) logic
[9,18] and circuit [4,8] levels in order to develop power
reduction techniques. Most of these efforts focus upon re-
ducing the on-chip dynamic power dissipation of CMOS
circuits, which at a node is given by,

Pp = (1.1)
where 7' is the transition activity at the node, Cf is the ca-
pacitance (the product T'C represents the total switching
capacitance), Vyq is the supply voltage, and f is the fre-
quency of operation. At the system level, off-chip busses
have capacitances, Cf, that are orders of magnitude greater
than those found on signal lines internal to a chip. There-
fore, transitions on these busses result in considerable sys-
tem power dissipation. To address this problem, various
signal encoding techniques have been proposed in the lit-
erature [2,7,14,19,20, 23] to encode the data before trans-
mitting it on a bus so as to reduce the expected and the
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peak number of transitions. Hence, the signal encoding
approaches in [2,7,14,19,20,23] achieve power reduction
by reducing 7" in (1.1) while keeping Cr more or less un-
altered. In this paper, we will explore the limits to which
signal coding can be employed for the purpose of power
reduction.

The work in [23] exploits the fact that the data trans-
fers on microprocessor address busses are often sequential
(i.e., current data value equals the previous data value plus
a constant increment) due to instruction fetches. Hence,
transition activity can be reduced by employing Gray
codes, where only one bit changes between two successive
codewords. Another encoding algorithm for address busses
has been presented in [2]. In this algorithm, if the next
address is greater than the current address by an incre-
ment of one then the bus lines are not altered and an extra
“Increment” bit is set to one. In [7], Fletcher presents an
algorithm, termed Bus-Invert coding in [20], to reduce the
number of transitions on a bus. This algorithm determines
the number of bus lines that normally change state when
the next output word is clocked onto the bus. When the
number of transitions exceeds half the bus width, the out-
put word is inverted before being clocked onto the bus.
An extra output line is employed to signal the inversion.
The Bus-Invert coding algorithm performs well when the
data is uncorrelated. In [14], a two-step framework to re-
duce transition activity is presented in which data is passed
through a decorrelating function f;, followed by a variant
of entropy coding function, f2, which reduces the transi-
tion activity. The transition activity reducing algorithms
have an analogue in the area of optical communications
where the power dissipation depends on the number of ON
(1) bits. In [6], Faulkner presents an encoding algorithm
to reduce power dissipation in optical circuits by assigning
codewords with fewer 1’s to signal samples having a higher
probability of occurrence.

In this paper, we derive lower and upper bounds on the
average signal transition activity for any coding algorithm.
These bounds are derived via an information-theoretic ap-
proach in which each symbol of a process (possibly corre-
lated) with entropy rate H is coded with R bits on average.
The bounds are asymptotically achievable if the process is
stationary (i.e., signal statistics such as mean do not change
with time) and ergodic (i.e., the time average and ensemble
average are equal). The transition reduction efficiency of
existing coding algorithms are compared with the bounds
derived in this paper. This work is a continuation of our
effort in developing an information-theoretic view of VLSI
computation [15], whereby equivalence between computa-
tion and communication is being established. This equiv-
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alence has provided lower bounds on power dissipation for
digital VLSI systems [16,17] and has for the first time pro-
vided a common thread linking various levels of the VLSI
design hierarchy.

The concept of entropy from information theory was em-
ployed in the area of high-level power estimation in [10,
12]. In [12], entropy was employed as a measure of the av-
erage activity to be expected in the final implementation
of a circuit, given only its Boolean functional description.
In [10], information theory is employed to estimate power
dissipation at logic and register-transfer levels. First, the
output entropy of a circuit is estimated from the input
entropy. Next, the entropy per circuit line is calculated
from the input and output entropy values and used as an
estimate for the average switching activity. In [10], the ex-
pected transition activity of a 1-bit signal is shown to be
upper-bounded by one-half of its entropy under the tem-
poral independence assumption and assuming level signal-
ing. In contrast, the work presented here is applicable to
multi-bit signals, independent of the coding algorithm, and
completely unravels the connection between the bounds on
transition activity and entropy rate. Also, the focus of this
paper is not to estimate average switching activity, but to
provide information-theoretic bounds on average switching
activity.

In section II, we present the preliminaries necessary for
the development in the rest of the paper. In section III,
the main result is presented in the form of Theorem 1. In
section I1I, we also present a coding algorithm that asymp-
totically achieves the lower bound for stationary and er-
godic processes. In section IV, we employ Theorem 1 to,
1.) derive lower and upper bounds for different coding al-
gorithms, and 2.) determine the lower-bound on the power-
delay product. We also present two examples where tran-
sition activity within 4% and 9% of the lower bound is
achieved.

II. PRELIMINARIES

In this section, we define terms employed in the rest of
the paper. Let X be a discrete random variable with alpha-
bet X and probability mass function p(z) = Pr(X = x),
z € X. A measure of the information content of X is given
by its entropy H(X), which is defined as follows [5],

- Z p(z) log, p(x) bits.

rzeX

H(X) = (2.1)

This definition of the measure of information implies that
the greater the uncertainty in the source output, the higher
is its information content. In a similar fashion, a source
with zero uncertainty would have zero information content
and therefore its entropy would identically be equal to zero
(from (2.1)).

The joint entropy H(X1, Xa, ..., X) of a collection of
discrete random variables (X, Xa, ..., X,,) with a joint
distribution p(z1, za, ..., z,) is defined as,

H(X1, Xs,..., X,) =

—Zp(ml,a:z, cooyn)logy p(ar, e, ..., 20) (2.2)
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Fig. 1. A plot of the function H(-)

The entropy rate of a stochastic process {X;} is defined as,

1
lim —H(Xl,XQ, e

n—oco N

H = , X») bits, (2.3)
when the limit exists. For an independent, identically dis-
tributed (i.i.d.) process, the entropy rate is equal to the
entropy.

The function H(z) is defined on the real interval [0,1] as

follows,

H(z) = -—wlogye— (1—z)logy(l — ) bits. (2.4)
The function H(z), shown in Figure 1, maps the proba-
bility of a binary-valued discrete random variable to its
entropy and has the following properties,

1. H(0) and H(1) are both defined to be 0

2. Hx)=H(l —2)

3. H(z) is a concave function, i.e., a line drawn be-
tween any two points on the curve will lie below the
curve. This is also referred to as Jensen’s inequality:

4. The derivative of H(z) with respect to x, H'(z) =

l—zx

log,

5. H(m)xis monotonically increasing in the interval (0, %]
because H'(z) > 0 in the interval with the equality
occuring only at z = %

6. H(z)is monotonically decreasing in the interval [%, 1)
because H'(z) < 0 in the interval with the equality
occuring only at z = %

The inverse, H~1(y), of H(), is defined on the real interval

[0,1] as follows,

H Yy) =z, ify=H(z)and z € [0,%]. (2.5)
The function H~!() maps the entropy of a binary-valued
discrete random variable to a probability value that lies
between 0 and % Following the convention in literature,
we denote three different functions as H(). In (2.1) the
argument of H() is a single random variable, in (2.2) the
argument of H() is a sequence of random variables, and in
(2.4) the argument of H() is a real number between 0 and
1. It will be clear from the context which function we are
referring to.
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The transition activity of a bit-level signal, b, is defined
as [11],

t =Pr(b, =0and bp_1 = 1)+ Pr(b, =1 and b,_1 = 0).

We define level signaling to be the case where the bit ‘0’
is used to transmit the symbol ‘0’ and the bit ‘1’ is used to
transmit the symbol ‘1’. In transition signaling, the sym-
bol ‘0’ is transmitted by sending the previous transmitted
bit and the symbol ‘1’ is transmitted by sending the com-
plement of the previous transmitted bit. Hence, a ‘1’ is
signaled with a transition and a ‘0’ with no transition.

III. BouNDS ON SIGNAL TRANSITION ACTIVITY

In this section, we present the main results of this paper;
namely, lower and upper bounds on the expected number
of transitions. The bounds are asymptotically achievable
if the process is stationary and ergodic. We also present a
coding algorithm that asymptotically achieves the bounds.
The proofs are presented in the Appendices.

In order to derive bounds on transition activity, we will
employ Lemmas 1 and 2 presented below. Lemma 1 bounds
z given y < H(z). Lemma 2 employs Lemma 1 to bound
the expected number of 1’s in a sequence of bits with a cer-
tain entropy rate. Theorem 1 employs Lemma 2 to bound
the number of transitions per symbol of a process with a
certain entropy rate given that each symbol is coded em-
ploying an expected number of R bits.

Lemma 1: For all (z,y) such that x € [0,1] and y €
[0,1], ify < H(z) then,

H'(y) <z <1-H '(y). (3.1)

The relation between z and y in Lemma 1 is shown in

Figure 1.

Lemma 2: If,
1. {B;} is a 0-1 valued stationary and ergodic process
with entropy rate greater than or equal to 'H,
2. pi=Pr(B; =1), and
3. py = limp_oo 231, p; exists then,
H™ ' (H) <py <1—H'Y(H), (3.2)
and the bounds in (3.2) are asymptotically achievable.

Theorem 1: Let,

1. 'H be the entropy rate of a stationary and ergodic pro-
cess {X;},

2. the symbols be coded in a uniquely decodable manner
into bits represented by the binary random variables
By, Bsy, ... employing an expected number of R(> M)
bits/symbol,

3. the bits be transmitted in some arbitrary manner over
a finite set of wires such that a receiver can uniquely
decode the bits, and

4. T be the expected number of transitions in the
bits on the wires per symbol (ie. lim,_oo 137,
Bi @ Bprev(i) exvists, where the function prev(i) re-
turns the index of the bit that immediately precedes B;
on the same wire and € is the exclusive-or operator)
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then,

H

=R,

= (3.3)

- hr<r <0 n7
and the bounds in (3.3) are asymptotically achievable.

In (3.3), H_l(%) is the lower bound on the bit-level tran-
sition activity (this will be proved in Appendix C) which
is scaled by R to give the lower bound on the expected
number of transitions per symbol since R bits (on average)
are employed to encode a symbol. The lower and upper
bounds on transition activity computed by Theorem 1 for
different values of R are shown in Figure 2. Any coding
algorithm (such as those in [2,7, 14,19, 20,23]) will need to
reside in the region shown in Figure 2.

The lower bound on transition activity computed by
Theorem 1 for different values of R is shown on a larger
scale in Figure 3, where we see that the transition activity
can be made arbitrarily close to 0 by increasing R. In prac-
tice, however, R will typically be less than approximately
10H because most of the reduction in the lower bound is
achieved by the time R is equal to 10H.

Theorem 1 also indicates that a coding algorithm that
achieves the lower bound on transition activity can be mod-
ified to achieve the upper bound by mapping a transition to
a no transition and a no transition to a transition. This is
possible, since the sum of probabilities of a transition and
of no transition is unity, the bit-level transition activity of
such a coding algorithm is 1 — H_l(%), thereby achieving
the upper bound in (3.3).

Remark 1: The bounds on the expected number of 1’s
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per symbol, P, are the same as those for T', 1.e.,

- r<p<a-nr

The proof of (3.4) is similar to that of Theorem 1.

(3.4)

A. An Asymptotically Optimal Coding Algorithm

We now present a modified Lempel-Ziv (MLZ) algo-
rithm, that is asymptotically optimal in that it achieves the
lower bound on transition activity for a stationary and er-
godic process. The purpose of presenting this algorithm is
to show how a widely used data compression algorithm can
be modified to approach the lower bound in (3.3). While
the MLZ algorithm will minimize 7" in (3.3), it may not
minimize power dissipation because of the increase in Cp
due to the encoding and decoding process. The MLZ algo-
rithm has the same resource requirements as the original
Lempel-Ziv algorithm [25], and is universal, i.e., it does not
require the source probability distribution be computed.
Without loss of generality, we will assume that the source
alphabet consists of only two symbols ‘0’ and ‘1’. The MLZ
algorithm accepts the average number of bits per symbol,
R, as a parameter.

1. Pass 1: The source sequence is sequentially parsed
into phrases that have not appeared so far. For ex-
ample, if the string is 1011010100010..., we parse it
as 1,0,11,01,010,00,10,.... After every comma, we look
along the input sequence until we come to the shortest
phrase that has not been marked off before. Since this
is the shortest such phrase, the phrase consisting of
all but the last bit of this phrase must have occurred
earlier. In pass 2, we code this phrase by giving the
location of the prefix and the value of the last bit.

2. Pass 2: Let ¢(n) be the number of phrases in the
parsing of the input n-sequence. We employ nR bits
in total to code the n input bits. Hence, the number
of bits available to describe the location of the pre-

fix is c”(—f) — 1 and 1 bit to describe the last bit. We
choose the addresses in order of increasing number of
1’s, i.e., the all 0’s pattern, followed by words with
exactly one ‘1’, followed by words with exactly two
1’s, and so on. For example, the code for the above
sequence (assuming the number of bits, c"(—f) — 1, em-

ployed to code the location of the prefix is three) is
(000,1)(000,0)(001,1)(010,1)(011,0)(010,0)(001,0),. ..
where the first number of each pair gives the index of
the prefix and the second number gives the last bit of
the phrase. Decoding the coded sequence is straight-
forward and we can recover the source sequence with-
out error.
3. A ‘1’ is transmitted with a transition and a ‘0’ with
no transition.
The algorithm can be modified so that it requires only one
pass over the string without affecting the asymptotic ef-
ficiency of the algorithm [1,24]. The proof of asymptotic
optimality of the MLZ algorithm is presented in Appendix
D. There are two differences between the MLZ algorithm
and the original Lempel-Ziv algorithm,

nk

e(n)
in the MLZ algorithm versus log, ¢(n) in the original
Lempel-Ziv algorithm, and

2. the number representation employed in the pointers is
increasing number of 1’s in the MLZ algorithm versus
unsigned number representation in the original algo-
rithm.

1. the number of bits allocated to the pointers is

IV. APPLICATIONS OF BOUNDS ON TRANSITION
ACTIVITY

Theorem 1 is useful in designing coding schemes because
knowledge of the lower bound will tell the designer how
close to the optimum a given coding scheme is, and whether
it is worthwhile to search for a better coding scheme. In ad-
dition, the proofs of asymptotic achievability provide ideas
on how good practical coding schemes may be designed.
We have used these ideas to come up with practical coding
schemes. These coding schemes are not described in this
paper due to space constraints, but are described in [14].

In this section, we employ Theorem 1 and the value of
R specified by a coding algorithm to derive bounds for
that algorithm. We also apply Theorem 1 to determine
the lower bound on the power-delay product. In addition,
we present two examples to illustrate Theorem 1.

A. FPully compressed data

In fully compressed data, the expected number of bits
per symbol is equal to the entropy rate of the process.
. _H
Corollary 1: For fully compressed data, T'= 5.
Proof:

NIRRT < (1= I ()R [(33)]

-
= HYO)H<T<(1-H'))H
[ Since R = H for fully compressed data ]

H

H . ..
= T= o [Since H-1(1)=11]. ¢
Therefore, as shown in Figure 2, the lower and upper

bounds on T are identical for fully compressed data.

B. Transition Signaling

Consider a source with alphabet comprising of two sym-
bols, ‘0’ and ‘1’. We will redefine transition signaling
slightly in this sub-section: we will signal the less probable
symbol (‘0’ or ‘1’) with a transition and the other symbol
with no transition.

Corollary 2: Transition signaling achieves the lower
bound on the transition activity for an i.1.d. source with

alphabet X = {0,1} when R =1 bit/symbol.

Proof:
HOCORST < (1= HT ()R [(33)]
= H Y H)<T<1-H*MH)[Since R=1]

Since the source is i.i.d. with alphabet {0,1}, H~1(H)
is also the probability of a ‘0" or the probability of a ‘1’
whichever is less. Hence we can achieve the lower bound on
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the transition activity by signaling the less probable sym-
bol (‘0’ or ‘1’) with a transition and the other symbol with
a no transition. q

The upper bound on transition activity of 1 — H~1(H)
is greater than or equal to the upper bound of % in [10].
This is because, in the proof of the upper bound in [10], the
implicit assumption is made that the symbol ‘0’ is signaled
with the bit ‘0" and the symbol ‘1’ is signaled with the bit
‘1’, i.e., level signaling is employed. It is possible to achieve
the higher transition activity of 1 — H~!(H) for the same
entropy rate if the more probable symbol is signaling with
a transition.

C. Bounds For 1-bit Redundant Codes

In algorithms such as Bus-Invert coding [7,20], the tran-
sition activity on the bus is reduced by employing an addi-
tional bit. We now calculate the lower bound for any coding
algorithm that uses 1 bit of redundancy. Thus R ="H + 1
and hence, from Theorem 1, the expected transition activ-
ity is bounded by,

H

(+ DH H+1

H+1)ST§(H+1)(1—H_1(

). (4.1)

The extra bit may be either an extra line on the bus, or
an extra clock to transfer the data [19]. If H = 8 then the
lower bound from (4.1) is 2.7569 transitions/symbol. For
uniformly distributed, temporally independent data, Bus-
Invert coding achieves a transition activity of 3.273 transi-
tions/symbol which is 18.72% above the lower bound. The
lower bound in (4.1) can be approached by coding larger
and larger blocks of bits. Now, assume the entropy rate,
‘H, of the process is increased and R = H + 1. The ratio
HL-H in (4.1) approaches 1 and T" approaches % Thus, as
the entropy rate increases, the benefit of Bus-Invert coding
or any 1-bit redundant code is reduced. The above analysis
can also be extended for a k-bit redundant code.

D. Lower Bound On Power-Delay Product

If the capacitance Cp, the supply voltage Vy4, and the
frequency of operation, f, are given, then the minimum av-
erage power dissipation is proportional to the lower bound
on the transition activity. If the number of wires employed
to transmit the data is fixed, the transmission delay is pro-
portional to R. For instance, if R is doubled and the bus
width is unchanged, then twice as many clock cycles are
needed to transmit the same number of symbols. Hence the
lower bound on the power-delay product, Power Delay,y,
given ‘H and R, is given by,

PowerDelaymin = I(H_l(%)R‘?, (4.2)
where K is a constant of proportionality. The graph of
PowerDelay,,;, versus R for a given value of ‘H is shown
in Figure 4. For given H, we can find the R that mini-
mizes PowerDelaym;, by equating the derivative of (4.2)
with respect to R, to 0. The value of R that minimizes
PowerDelay,,;, is found to be,

1.25392 H. (4.3)

Rmin,power—delay =

0.56
0.54
0.52

0.5
0.48
0.46
0.44
0.42

0.4
0.38

0.36 1 1 1 1 1 1 1 1 1
1 12 14 16 24 26 28 3

Bound on power-delay (frac. of KH"2)

18 2 22
R (in multiples of H)

Fig. 4. Lower bound on power-delay versus R for given H

Thus, (4.3) indicates that a process with entropy rate,
‘H, requires approximately an average of 1.25H bits per
symbol to encode for minimum power-delay product. If
R > 1.25H, then the delay component will increase re-
sulting in a non-optimal power-delay product. Similarly, if
R < 1.25H then the power component increases because
less redundancy is being added.

In order to illustrate Theorem 1, we now calculate
bounds for two different types of sources and the transition
activity for coding algorithms that approach the bounds.

E. Bounds On Transition Activity For An 1.i.d. Source

Consider an i.i.d. source with a 5 symbol alphabet
X ={A, B,C, D, E} with probabilities %, %, %, 11—6, and %
respectively. Since the source is i.i.d., the entropy rate is
equal to the entropy and is given by, H = %—5 bits. Assume
an average of R = 3 bits are employed to code a symbol.
Thus % = g, H_l(%) = 0.156142, and from Theorem 1,
the bounds on transition activity are,

0.468426 < T < 2.531574. (4.4)

We now calculate the actual transition activity that is
achieved by various coding algorithms and compare them
with the bounds in (4.4). To simplify the calculation of
transition activity, we assume transition signaling is em-
ployed to transmit the bits, i.e., a ‘1’ is transmitted with
a transition and a ‘0’ is transmitted with no transition.
Thus, the number of transitions is equal to the number of
1’s. We can make the assumption of transition signaling
in the examples because the purpose of the examples is to
show the existence of coding algorithms that approach the
lower bound.

E.1 Entropy Coding Followed By Spatial Redundancy
Coding

In this algorithm, we initially employ an entropy coder to
code the symbols employing the minimum expected num-
ber of bits per symbol. A code that achieves the entropy
isA=0,B=10,C=110,D = 1110, and E = 1111. The
output of the entropy coder consists of temporally indepen-
dent, uniformly distributed bits. These bits are placed in a
buffer and when there are 15 bits in a buffer, then the bits
are encoded employing 24 bits. Since 'H = g, the 15 bits
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Fig. 5. Transition Activity versus Block Size for i.i.d. source

TABLE 1
TRANSITION MATRIX

| Previous state || S | Ss | S3 |
S1 % Y I
S |37
Ss HIEAE:

correspond to an average of 8 symbols and hence employ-
ing 24 bits results in an expected number of 3 bits/symbol.
Since we are encoding 15 bits employing 24 bits, we can
employ the redundancy to reduce the number of transi-
tions [19]. This is an extension of Bus-Invert coding and
results in a 5-limited weight code [21,22] in which we em-
ploy the all-zero (or no transitions) code, 24 codes with
a single one, 276 codes (= (224)) with two ones, etc., up
to 19817 of the codes with 5 ones. The expected num-

ber of transitions (or 1’s) in each transmission of 24 bits is

4 . 24 15 4 24
given by [14], 2= "GP0 By 59383 tran-
sitions. Since 24 bits correspond to an average of 8 symbols,
the expected number of transitions per symbol is given by,
% x4.52383 = 0.565478 transitions/symbol, which is 20.7%
above the lower bound in (4.4).

E.2 Probability Based Coding

An alternative algorithm to reduce the number of tran-
sitions is to code the most probable symbol A as 000 or
no transitions, B as 001, C as 010, D as 100, and E as
011. The expected number of transitions per symbol is,
T = 0.5625 transitions/symbol, which is 20.1% above the
lower bound in (4.4). We can further reduce the number of
transitions by applying probability based coding to a block
of two symbols. and can be reduced further by coding
with block sizes larger than two. The transition activity
per symbol for different block sizes is shown in Figure 5.
Thus, we can achieve a transition activity within 4% of the
lower bound by employing a block size of 8.

F. Bounds On Transition Activity For A Markov Process

Consider the 3-state stationary Markov process Uy, Us,
... having the transition matrix P;; in Table I [5]. Thus
the probability that S; follows Ss is equal to zero. An
algorithm to encode the process will consist of 3 codes C',

TABLE I1
ENTROPY CODE FOR MARKOV PROCESS

| [ S1 ]S [Ss]
1 0] 10 ] 11
C, [ 10 0] 11
Cs — 0 1

052 T T T T T T
05 ¢----+----- SRR +-ee- R et - e B b et +----
Blocked Probability Based Coding —~<—
0.48 - Lower bound ----- b
0.46 - Entropy coding followed by redundancy coding -+-- |
0.44 |

0.42
04
0.38 |
0.36 - B

034 1 1 1 1 1 1
2 4 6 8 10 12
Number of symbols per block

Transition Activity per symbol

Fig. 6. Transition Activity versus Block Size for Markov Process

C, and C3 (one for each state Si, Sz, and Ss), where C;
is a code mapping from elements of the set {Si, S2, Ss}
into a codeword in C; (see Table II for an example). The
following algorithm will be employed to encode this Markov
chain,

1. Note the present symbol S;.

2. Select code Cj.

3. Note the next symbol S; and send the codeword in

C; corresponding to S;.
4. Repeat for the next symbol.

The stationary distribution of this Markov chain is g =

[%, %, %]T The entropy rate of the stationary Markov pro-

cess is given by [5],

4 .
H(X) = —Z,uiPij 10g2 Pz'j = g bits.

ij

(4.5)

A code that achieves the entropy rate is shown in Table
II. If the symbols are coded with an average of R = 2
bits/symbol, then % = %, H‘l(%) = 0.173952, and from
Theorem 1,

0.347904 < T < 1.652096 transitions/symbol.  (4.6)

The transitions/symbol for entropy coding followed by re-
dundancy coding and probability based coding is shown in
Figure 6 for different block sizes. We can achieve a tran-
sition activity within 9% of the lower bound with a block
size of 13 symbols.
To summarize, the above examples demonstrate that for
the specific source and source distribution,
o We can achieve transition activities within 4% and 9%
of the lower bound with block sizes of 8 symbols and
13 symbols, respectively (see Figure 5 and Figure 6).
o Transition activity can be reduced by coding larger
and larger blocks of symbols (see Figure 5 and Figure
6).
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o Entropy coding followed by redundancy coding does
not always result in the minimum transition activity
for a given block size.

V. CONCLUSIONS

In this paper, we have presented a new, non-empirical
relation between the transition activity per symbol, T, and
the entropy rate, H, of a process by deriving lower and
upper bounds on the expected transition activity per sym-
bol and the expected number of 1’s per symbol given the
entropy rate H of a process and the expected number of
bits R employed to code a symbol. The bounds are asymp-
totically achievable if the process is stationary and ergodic.
We also presented a coding algorithm based on the Lempel-
Ziv compression algorithm to achieve the bounds. We em-
ployed the theoretical results to, 1.) derive lower and upper
bounds on T for different coding algorithms, and 2.) de-
termine the lower bound on the power-delay product given
‘H and R.

In future, we plan to apply Theorem 1 to bound the
error in estimating switching activity for circuits employing
entropy rate.

APPENDIX A
Proor or LEMMA 1

Consider two cases for y, (0 < y < 1) and y =0:
Case 1: 0 < y < 1: Thus 0 < H™(y) < % There are 3
cases for z:
o & = 1lora = 0: This is not possible because H(z) =0
and y > 0 which would violate y < H ()
. % <z<l:

H(1-H™\(y)) < H(x)

[ Sincey = H(H~'(y)) = H(1 - H'(y)) and y < H(x) ]

= z<1-H Yy

[ Property 6: H(-) is monotonically decreasing in [%,1) ]

=> H'(y)<e<1-H'(y)
[Since 0 < H™'(y) < i and $ <2< 1]

e 0<a< i

H™'y) <z

[ Since y < H(z) & H(+) is increasing in (0,%] ]

= Hl'y<z<l-H 'y

[Since 0 < H7(y) <+ and 0 <z < 1]

Case 2: y = 0: Since H™}(y) =0 and 0 < z < 1, (3.1)

is satisfied
Hence the proof. q

APPENDIX B

PRrROOF oF LEMMA 2

From the definitions of entropy rate in (2.3) and H in
the statement of Lemma 2,

1
lim —H(Bl,Bz, ..

n—oco N

H S ':BH)J

R
< nli»nolo E ; H(BZ) [Independence bound on entropy]
1 n
= [lim ~ ; H(p;) [pi = Pr(Bi = 1)]
1 n
< 1 — i
< H(lm o3 p)
1=
[Property 3: Jensen’s inequality and concavity of H],
. . 1<
=H < H(py) [By definition, p = lim — Zpl]

n—00 1 4
=1

Thus, we can substitute H for y and p for z in Lemma 1

to obtain (3.2).

Proof Of Asymptotic Achievability Of Lemma 2:

We now present a coding algorithm, referred to as L2,
that asymptotically achieves the lower bound in Lemma 2
for stationary and ergodic processes.

1. We encode each sequence of n symbols employing n
code bits. We can do this because the source alphabet
consists of only 2 symbols. The Asymptotic Equiparti-
tion Property (AEP) [5] states that given a stationary
and ergodic process, for each €; > 0, there exists nj
such that for all n > n; the following properties hold,

(a) there is a set, called the typical set, AS, which is
a subset of the set of all possible sequences of n
symbols generated by the process,

(b) the number of elements in A5, |AS], is bounded

by,

(1—ep)2nM=a) < A9 < 2n(Fe) (BL1)

(c) the probability of AS' containing a sequence of n
symbols generated by the process is at least 1 — €,
and

(d) e =0 asn— oco.
In short, AEP states that as the length of the sequence
n increases, the probability that a generated sequence
belongs to Af! approaches unity, and the size of the
typical set, |ASt|, approaches 277,

2. We generate a set, C2, of codewords. Each codeword
in CF2 is formed by drawing n code bits in an indepen-
dent, identically distributed manner with probability
p of being a ‘1’. Again, from AEP, we know that the
set C<? will contain at least (1 — ep)27(H(P)=¢2) dis-
tinct codewords. We choose p such that the number
of codewords in C}? is at least the number of sequences
in A, e,

(1- 62)2"(H(p)—f2) — gn(H+e)

log,(1 — 62))
n
As n — oo, both ¢; and €3 — 0, and p — H~1(H).
3. We assign codewords to sequences in AS! from the set
Cr?
2.
4. After each sequence in A! has been assigned a code-
word from C)?, sequences not in Al are assigned

= p=H 'H+e+e—
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codewords in an arbitrary manner from the remain-
ing codewords (which may or may not be in C£2).
As n — oo, the probability of a ‘1" at the output of the L2
encoder is at most ﬁﬂw’ where,
1. the probability of a sequence being in A;! is at least
1 —¢; (AEP),
2. asn — oo, the number of 1’s in a codeword encoding a
sequence from A} is pn (strong law of large numbers),
3. the probability of a sequence not being in Ag! is at
most €; (AEP), and
4. the number of 1’s in a codeword encoding a sequence
not from Ag! is at most n (since length of codeword is
Hence as n — oo, the probability of a ‘1’ at the output
of the L2 encoder is p, or H~1(H), thereby achieving the
lower bound in Lemma 2. The L2 coding algorithm can
be modified to achieve the upper bound by exchanging 1’s
and 0’s.

APPENDIX C
PRrROOF OF THEOREM 1

Outline of proof: We will first prove that the entropy
rate is not altered in the transition domain where a ‘1’
represents a transition and a ‘0’ represents no transition.
We will then employ Lemma 2 to bound the number of
1’s in the transition domain, which will in turn bound the
number of transitions.

Proof: Consider any uniquely decodable coding scheme
that codes the first N symbols, represented by the random
variables (X1, Xs, ..., Xn), generated by the process. The
symbols are coded, independently of any other symbols,
to the n = NR bits represented by the binary random
variables By, Bs, ..., B, and transmits these n bits in any
order. Clearly, as N (or n) — oo, we are considering all
possible uniquely decodable coding schemes that encode
the process employing an expected number of R bits to
code a symbol. Hence the bounds obtained as n — oo
will hold for all possible uniquely decodable coding schemes
that encode the process employing an expected number of
R bits to code a symbol.

For the bits to be uniquely decodable, the first N symbols
must be some function f of the n bits the symbols are coded
to, 1.e.,

(X1,X2,...,XN) = f(B1,Ba,...

,B,). (C.1)

The entropy rate of the process {B;} is given by,
. 1

lim —H(Bl, B2, e
n—oo N

> lim lH(f(Bthzw~~=Bn))

n—oo N

, Bn)

[Joint entropy of a collection of random variables > Joint

entropy of a function of the collection of random variables]
1
= lim —H(X,X,,..., X
Neso NR ( 1, 2y ; N)
H

R

Bi I Ci B;

Bpreu(i)
Bprev(i)
I\ PN
Fig. 7. Relation between B;, By,;.¢y(;), and C;
1 H
lim —H(By,Bs,...,B,) > —. C.2
= nl—{]go n ( 1, P2, 3 ) jl R ( )
Define a function g on (By, Ba, ..., By) as follows,
(01,02,...,Cn) = g(Bl,Bg,...,Bn), (03)
where,
C; = B @ Bprev(i); (04)

where the function prev(i) returns the index of the bit
that is transmitted on the same wire as B; and immedi-
ately precedes B;. If B; is the first bit transmitted on the
wire, then B¢, (;) 1s ‘0’. Hence we can recursively compute
(Bi1, Ba, ..., By) given (C1,Cq,...,Cy) as follows,

B, = (G @ Bprev(i)~

Figure 7 shows the relation between B;, Bp,c,(;), and Cj.
The two delays in Figure 7 are initialized to the same state
so that C; can be generated uniquely given B; and vice
versa making the function g bijective. Note that B; and
Bprey(i) are transmitted on the same wire. If Bj is trans-
mitted on a different wire from B;, then we have another
set of delays and exclusive-or gates for the generation of C}

(C.5)

from B; and By,cy(j). Since g is an invertible function,

1
lim —H(Cl, CQ, ..

n—oco N

1
lim —H(Bl,BQ, e

n—oco N

From (C.2) and (C.6) we get,

L Cn) =

 By). (C.6)

1
lim —H(Cl,CQ, .. ,Cn) Z E

n—co n R

(C.7)

Let p. = lim, %2?21 C;, where p, is the probability

of C; being a ‘1’. The limit exists because of assumption

(4) in the theorem. Since Cj is a binary random variable,

pen is the number of 1’s in (Cy, Ca, ..., Cp) for large n.

Substituting p. for p; and % for H in Lemma 2 we obtain,
H H

H_l(ﬁ) <p.<1 —H_l(ﬁ)-

Since there are on the average R bits per symbol and Cj is
‘17 iff there was a transition at B,

(C.8)

T = pR (C.9)
Multiplying (C.8) by R and employing (C.9) we have,
mor<r<a-myr )

which is the desired result. §
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Proof Of Asymptotic Achievability Of Theorem 1:

We now present a coding algorithm, T1, that asymp-
totically achieves the lower bound on transition activity in
Theorem 1 for stationary and ergodic processes. The T1
coding algorithm is similar to the L2 algorithm with the
differences being that the source is not binary and R is
now not restricted to being 1. We provide an outline of
the proof of asymptotic optimality of the T1 algorithm.
The detailed proof is similar to the proof of asymptotic
optimality of the L2 algorithm.

1. We first group blocks of & symbols from the source.
For large k there are 257 distinct blocks of symbols all
of which are equally likely (AEP).

2. We code each block of k£ symbols employing kR bits.
As in the L2 algorithm, each bit in a codeword encod-
ing a block of symbols is chosen in an i.i.d. manner
with probability H_l(%) of being a 1. Thus there

are 2FRH(H™'(£)) = 2kM ¢odewords (AEP). Hence we
have a codeword for each block of symbols. Since each
bit in each codeword has probability H_l(%) of being
a 1, the bit-level probability at the output of the T1
encoder is also H“l(%).

3. In the last step we map a ‘1’ to a transition waveform
and a ‘0’ to a transitionless waveform. Thus the bit-
level transition activity is H_l(%) which is then scaled
by R to achieve the lower bound on transitions per

symbol. q

APPENDIX D

PrRooF oF AsymMpTOTIC OPTIMALITY OF THE MLZ
ALGORITHM

Outline of proof: We first prove the asymptotic opti-
mality of another algorithm MMLZ. The asymptotic opti-
mality of the MLZ algorithm is obtained by showing that
MLZ will be better than or equal to the MMLZ algorithm.

Proof: The modified MLZ algorithm (MMLZ) is identi-
cal to the MLZ algorithm except for pass 2 in sub-section
ITTI(A) where the bits in the prefix are chosen, not in order
of increasing number of 1’s, but in an i.i.d. manner with
probability p of being a ‘1’

nR

Since there are 2y 1 bits in each prefix, from AEP we

know that there are at least (1— 6)2(%_1)(}[(1))_6) distinct
prefixes. We choose p such that the number of prefixes is
at least equal to the number of phrases, ¢(n), i.e.,

e(n) = (1_5)2(%—1)(5’(17)—5)

- mlom cn) _ cmloms(1—0)

= =
! nR(1— 1) " aR(1— <)

As n — o0, € — 0, and, from the proof of optimality of the
original Lempel-Ziv algorithm [5], we know that,

HIL%M = X, (D.11)
im < = g, (D.12)

n—oo N

Hence,

H‘l(%).

lim p =
n—00

(D.13)

As n — oo, the probability of a 1 at the output of the
MMLZ encoder (which includes the prefixes and the addi-
tional bits), pmmiz, is upper bounded by,

() (2 — )p+ 1)
nk ’

Pmmiz S (D14)
We can obtain (D.14) as follows,

¢ as n — 0o, the number of 1’s in the prefix is (% —1)p
(strong law of large numbers),

. (c”(—f) —1)p+1 is the maximum number of 1’s including
the prefix and the additional bit,

o c(n)(( C’Ef) — 1)p+1) is the maximum number of 1’s in
the coded sequence which is then divided by the total
number of bits, n R, to give the upper bound on pymi; -

Simplifying (D.14), we obtain,

c(n)
nk

¢(n)
nRk’

p+ (D.15)

Pmmlz S (1 -
which approaches p or H=*(%) as n — oo (see (D.12)).
Thus by selecting the bits in the prefix in an i.i.d. man-
ner with probability H_l(%) we arrive at an asymptoti-
cally optimal algorithm. The MLZ algorithm in sub-section
ITTI(A), which selects the prefixes in order of increasing
number of 1’s, will always be better than or equal to the
MMLZ algorithm, in which all bits in the prefix have prob-
ability H=1(Z) of being a 1. The reason for this is as
follows,

1. Since the bits in the prefix are chosen in order of in-
creasing number of 1’s in the MLZ algorithm, the pre-
fixes in the MLZ algorithm will have 0, 1, 2, ... upto
H_l(%)n 1’s.

2. Since the bits in the prefixes in the MMLZ algo-
rithm are chosen in an i.i.d. manner with probabil-
ity H‘l(%) of being a ‘1’ the prefixes in the MMLZ
algorithm all will have H~1(%)n ones.

3. Thus a prefix in the MLZ algorithm will have equal
or lesser number of 1’s than the MMLZ algorithm due
to which the output of the MLZ algorithm will have
equal or lesser number of 1’s (or transitions) compared
to the MMLZ algorithm.

Since the MLZ algorithm will have equal or lesser num-
ber of 1’s (or transitions) than the MMLZ algorithm and
the MMLZ algorithm is asymptotically optimal, the MLZ
algorithm is also asymptotically optimal. §
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