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Abstract
Self-calibrating designs are gaining momentum in both the
computation and communication worlds. Instead of rely-
ing on the worst-case characterisation of design parame-
ters, self-calibrating systems determine autonomously the
boundary of correct behaviour, and set design parameters
accordingly. In this paper, we focus on the communication
task. We model errors due to over-aggressive operation and
derive a channel model. We show that self-synchronising
codes achieve completely reliable communication over this
channel model, and study a known example, LEDR (Level
Encoded 2-Phase Dual-Rail), which is an improvement of
the well-known Dual-Rail code. Then, we introduce a fam-
ily of coding schemes which are a generalisation of LEDR,
and study their performance over our channel model. We
observe that the wiring overhead can be significantly re-
duced at the expense of a limited loss in reliability. Finally,
we extend our channel model to include additive noise, and
show that in this more general situation a specific instance
of our coding scheme has similar or better performance than
LEDR, at a smaller wiring overhead.

INTRODUCTION
Self-calibrating designs rely on two key hypothesis, namely
the possibility to (i) detect that the system is not operat-
ing correctly, and (ii) improve the system reliability at some
cost—e.g., energy.
In this paper, we focus on the former issue, in the context
of communication. As far as communication tasks are con-
cerned, correct operation is assessed if it is possible to deter-
mine whether a sequence of data has been received correctly.
The voltage and frequency of the link can then be varied to
ensure reliability. In practice, we are looking for an encoding
scheme that determines, independently of the speed at which
the link is operated, (a) if the received data is correct and (b)
if it is the next piece of data to be received in sequence. The
encoding has to be speed-independent since no assumption
is made on signal propagation time.
As a motivational example illustrating a situation where such
an encoding scheme is required, consider a communication
link where the voltage and frequency are set adaptively by a
self-calibrating controller [11], as depicted in Figure 1. The
encoding scheme has to detect errors originated by over-
aggressive operation. The difficulty does not come from
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Figure 1. The controller determines link parameters, v ch

and Fch, based on transfer errors. In case the parameters
have been set too aggressively, or if an error corrupts the
data, the decoder has to raise an error flag.

the fact that the frequency is variable, but is caused by the
“blind” setting of voltage at a given frequency. It may re-
sult in situations with (close to) unity bit error rate, which
renders the problem quite unique.
The contribution of this paper is twofold:
• We develop a channel model for self-calibrating com-

munication, and show that self-synchronising codes,
such as Dual-Rail and LEDR, achieve completely reli-
able communication over this channel.

• We introduce a new family of codes, soft self-synchro-
nising codes, obtained by generalising the LEDR code.
We compare one instance of soft self-synchronising
code with LEDR, and recommend our coding scheme
for self-calibrating communication due to (a) its lower
wiring overhead and (b) its better tolerance to additive
errors.

The next section gives a short survey over different pieces
of work related to self-calibrating designs, and briefly intro-
duces self-synchronising codes. Then, we define the type of
errors occurring on a data link operated too aggressively and
give a formal model of the relevant communication chan-
nel. The following section defines self-synchronising codes
in the framework of the introduced model; in the same sec-
tion, we recall the LEDR self-synchronising code, which is
systematic and does not require a spacer. The successive
section describes the novel family of encoding scheme we
propose, the alternating phase encoding, and explains how
it is obtained by a generalisation of LEDR. We conclude
by extending the channel model discussed earlier in the pa-
per to include additive errors; we compare the LEDR code



with a specific embodiment of alternating phase encoding
in terms of reliability and wiring overhead. A short section
summarises our achievements.

RELATED WORK

Self-Calibrating Designs
The use of adaptive design techniques in extremely aggres-
sive designs is not new. For example, in [6] the regional
clock skew is adaptively tuned at power-up using relatively
complex controllers to compensate for local process varia-
tions across a single die. In a recent paper [4], the possi-
bility of exploiting devices in subcritical regions for Digital
Signal Processing (DSP) was presented; in that case, errors
arising from the subcritical voltages are compensated by the
DSP algorithms. The work published in [1] has given more
momentum to self-calibration by showing that the design of
a whole processor without noise margin is indeed possible.
The work presented in [9, 10] is similar in the intents, but ap-
plies to a different domain (communication instead of com-
putation).

Self-Synchronising Codes
When transferring a sequence of data, the notion of time is
essential in order to determine the correct ordering of data.
For example, assume that the sequence {dk}, with k denot-
ing the time index, has to be transferred. How to account
for the fact that dk+1 is preceded by the data piece dk? The
so-called synchronous approach relies on a global time refer-
ence, namely a clock. In the considered example, the clock
contains the information that, if dk is the sampled data at
time index k, dk+1 will be sampled at the next rising edge.
Self-synchronisation [7] constitutes an alternative approach
that samples time by the events taking place in the system or
environment. Self-synchronising codes are embodiments of
this concept and enable to transfer a sequence of data with-
out the need of a clock. Such codes have been developed and
used extensively by the asynchronous community. Notice
that self-synchronising codes are of direct interest for self-
calibrating communication. For example, a signal sampled
too aggressively does not have time to transition. As a re-
sult, the missing transition event prevents time from advanc-
ing. A very natural way of preserving data ordering consists
in separating explicitly two consecutive data pieces with a
spacing symbol. This is in fact the idea of Dual-Rail, a well
known self-synchronising code, that dedicates a codeword
to data separation [7]. Dual-Rail encodes binary data into 2-
bit codewords: logic-0 as (0, 1), logic-1 as (1, 0), while the
codeword (0, 0) is reserved as a spacer (see Table 1).
The minimum wiring overhead required by a self-synchro-
nising code is given in [7] as a function of K , the num-
ber of information bits. For example, at least 3 redundant
bits are required for a self-synchronising code encoding 16
information bits. However, such self-synchronising codes
are not systematic, which increases significantly the encoder

Data Encoding Meaning
0 (0, 1) logic-1
1 (1, 0) logic-0

N.A. (0, 0) spacer
N.A. (1, 1) not used

Table 1. The three logic states used by Dual-Rail. Be-
cause the spacer is the all-zero vector and valid code-
words have weight 1, completion of bit transitions is un-
ambiguously detected.
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Figure 2. Due to propagation delay of the signal “RX
early”, the sampling times are correct. However, if the
clock is too aggressive with respect to the signal prop-
agation delay, as in the case of “RX late”, the sampled
data is wrong.

complexity, or require a spacer, which is bandwidth ineffi-
cient. (Codes are said systematic when the information bits
are transmitted as such.) LEDR [3] is a systematic code de-
rived by an optimisation of Dual-Rail and it avoids the inser-
tion of an explicit spacer token in the dataflow. We discuss
LEDR more in depth in a later section: our encoding scheme
borrows some ideas from it.

MODELLING TIMING ERRORS
We would like to capture the following phenomenon: as-
sume a binary signal is sampled synchronously, but with a
clock whose period is not set in function of a worst-case
characterisation of the signal propagation delay. That is,
there is a risk that the signal is sampled while the data has
not yet transitioned correctly: the receiver samples either the
previous data or has metastability problems. Figure 2 illus-
trates such a situation.
Throughout the paper, we use the following notations and
definitions: k denotes the time index, xk designates the chan-
nel input, and yk the channel output. Def. 1 defines a sig-
nal transition. As for any channel, an error occurs when
yk �= xk .
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Figure 3. Timing-error channel. The dot operator de-
notes bitwise and of input values.

Definition 1 (Transition) Let zk ∈ {0, 1} be a binary sig-
nal. We define a transition on the signal z at time index k if
and only if zk �= zk−1 or, equivalently, zk = zk−1 ⊕ 1, with
⊕ denoting exclusive or.
We denote by ek ∈ {0, 1} the incorrect data sampling at
time index k—i.e., ek = 1 means that the sampling has been
too early, while ek = 0 indicates a correct sampling. Notice
that ek = 1 does not necessarily mean that an error occurs;
an error occurs only if, in addition, a transition occurs. An
error occurs if and only if yk �= xk , which is the case if and
only if (i) a transition occurs—i.e., xk �= xk−1—and (ii) the
sampling has been too early—i.e., ek = 1.
We denote by timing error such an error process, and model
the success of sampling with a Bernouilli random variable.
Namely, ek is described by a sequence of independent and
identically distributed (i.i.d.) Bernouilli random variables:

ek =

{
1 with probability ε

0 with probability 1 − ε,
(1)

We have: P (yk �= xk | xk �= xk−1) = ε. For an N -bit wide
channel with timing errors, we write �ek = (ek,1, . . . , ek,N ),
where the terms ek,i (for i = 1, . . . , N ) are N i.i.d. random
variables defined by Eq. (1).
The relation between the channel output �ykand the channel
input �xkis given by

�yk = �xk ⊕ �ek · (�xk ⊕ �xk−1) , (2)

with · denoting the bitwise and operation between binary
values and ⊕ denoting the bitwise exclusive or. Eq. (2)
simply models the fact that, for every component i of the
vectors �yk, �xk, and �ek, it is yk,i = xk,i if ek,i = 0 or
xk,i ⊕ xk−1,i = 0, and yk,i = xk−1,i otherwise. We call
a channel described with Eq. (2) a Timing-Error Channel,
which we denote TEC (ε). A graphical representation of the
timing-error channel is in Figure 3.
The next section introduces the LEDR code, and shows that,
as any self-synchronising code, it detects all timing errors.

LEDR CODE
We formulate the following definition of self-synchronising
codes, which is equivalent to the one of [7].

u φ r �x = (u | r)
0 0 0 (0, 0)
0 1 1 (0, 1)
1 1 0 (1, 0)
1 0 1 (1, 1)

Table 2. Possible codewords of the LEDR code. The en-
coder outputs a sequence of codewords with alternating
phase.

Definition 2 (Self-synchronising codes) A code is self-syn-
chronising if, and only if, it detects any possible error over a
timing-error channel TEC (ε) with 0 ≤ ε ≤ 1.
We focus on a specific self-synchronising code: the LEDR
code [3]. LEDR is a systematic code, henceforth enabling
low-complexity encoders, and, contrary to codes like Dual-
Rail, does not use any spacer token.
Dual-Rail, which we have described in the Related Work
section, has a high overhead in wiring (100%, as each in-
formation bit is encoded into a 2-bit codeword) as well as in
timing (100%, due to the explicit spacer). LEDR is an im-
provement of Dual-Rail that avoids using an explicit spacer
token. Before describing the code, we introduce the follow-
ing notations. We denote the information bits by �u. Through-
out the paper, we only consider systematic codes. We write
therefore �x = (�u | �r) to indicate that a codeword �x consists
of the information bits �u concatenated to the redundant bits
�r. We refer to a code that encodes K bits of information into
an N -bit codeword as a (N, K) code.
Dual-Rail and LEDR are both (N = 2, K = 1) codes—i.e.,
they encode one information bit into a 2-bit codeword. The
explicit spacer symbol of Dual-Rail is implicitly expressed
in the LEDR codeword sequencing. Namely, each codeword
is said to have a phase, which we define as follows.
Definition 3 (Phase of a data sequence) Let {�uk}, with k
denoting the time index, be a sequence of data. The phase,
φk, of the data �uk is a binary information obtained as the
parity of the sequence index k:

φk = k mod 2 ∈ {0, 1}.
By extension, the phase of a codeword is the phase of the
encoded information.
Notice that, by assumption, we restrict the phase to a binary
value. LEDR makes the spacer symbol implicit by exploit-
ing the opposite phase of two consecutive codewords and
encoding the phase in the codeword: The redundant bit r is
computed as the sum of the information bit u, and the phase
φ (i.e., r = u ⊕ φ). As a result, the phase of an LEDR
codeword can be obtained directly by checking whether the
information and redundant bit are equal (φ = 0) or different
(φ = 1). Table 2 summarises the encoding scheme of LEDR.
We verify, in the following example, that LEDR detects all
timing errors.

Example 1 (LEDR is self-synchronising) Consider a 2-bit
timing-error channel over which information is transmitted
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Figure 4. A possible implementation of a LEDR encoder.
The flip-flop generates the alternating phase bit.

with the LEDR code. Analysis of Table 2 shows that exactly
one bit transitions between any two consecutive codewords.
As a result, the only error that can occur is that a bit that
should transition does not. In this case, LEDR declares an
error, since the phase of the received data is unchanged.

When transmitting more than one information bit, each re-
dundant bit is computed independently as the sum of its in-
formation bit and the phase. Figure 4 depicts a possible im-
plementation of an LEDR encoder: the hardware cost is very
low. For asynchronous communication, the phase bit would
off course not be inverted with a flip-flop, but after receiving
an acknowledgement from the decoder. On the contrary, if
LEDR had to be used as an encoding scheme for the sys-
tem of Figure 1, the encoder and decoder would be provided
with a synchronous clock, so that any over-aggressive sam-
pling would be detected by the decoder.
Self-synchronisation is a crucial property for asynchronous
communication. Nonetheless, there are two reasons why
codes with lower overhead than 100% are of interest. First,
there are applications (e.g., self-calibrating communication)
that may not tolerate a 100% wiring overhead, while they
may accommodate a nonideal detection capability. Second-
ly, the timing-error model is ideal in the sense that it neglects
additive errors: In reality, there are noise sources other than
late bit transitions, and it is unclear whether LEDR performs
better or not than other encoding schemes, including those
with a lighter overhead. We defer this question to a later
section and continue, in the next section, with the derivation
of a low overhead encoding scheme.

ALTERNATING PHASE ENCODING
As shown in Figure 4, each information bit is involved, with
the alternating phase bit, in exactly one parity check rela-
tion. A very straightforward modification enabling to reduce
the overhead of redundant bits consists in including more
than one information bit into a parity check relation. For
example, consider the transfer of 32 information bits. In-
stead of computing 32 redundant bits with 32 independent
encoders, as LEDR would do, one could very well use, for
instance an 8-bit CRC, to generate only 8 redundant bits.
Each redundant bit is computed by only one encoder as a
sum of some information bits, and the alternating phase bit.
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Figure 5. Different options of alternating phase encod-
ing. On the bottom right, we have the LEDR code. All op-
tions with more than one independent encoder are par-
ticular cases of the top row.

This example underlines that two parameters can be varied,
namely: (i) the number of independent encoders, and (ii)
the amount of redundancy added per encoder. Since LEDR
is a (N = 2, K = 1) code, the number of independent en-
coders is necessarily equal to the number of information bits
to transfer.
Figure 5 shows different encoding options, including LEDR.
For the rest of the paper, we focus on the most general case:
the alternating phase encoding with only one independent
encoder. When giving numerical examples, the encoder as-
sumed consists of an 8-bit CRC generated by the polynomial
x8 +x2 +x+1. This choice is motivated by a piece of work
which studied the performance of 8-bit CRC over the bi-
nary symmetric channel and concluded that this polynomial
has the best overall performance [2]. We have observed on a
few examples that this property seems to be preserved for the
timing-error channel. We name the design option with only
one encoder computing the CRC generated by this polyno-
mial the CRC-8 alternating phase encoding.
Before describing more precisely the alternating phase en-
coding, we need some notations to describe the operation of
a single encoder. By encoding the information bits �u with
a CRC encoder, one gets the redundant bits �r; we write:
�r = CRC-Enc (�u). Decoding consists in computing, from
the received data �yk, the syndrome �s [5], which we write
�s = CRC-Dec (�yk). Eq. (3) shows how a codeword �xk is
obtained from the information bits �uk with the alternating
phase encoding:

�xk = (�uk | CRC-Enc (φk | �uk)) , (3)

where φk is the phase of the sequence �uk provided by the



encoder. Eq. (4) describes the decoding procedure:

�sk = CRC-Dec (φk | �yk) , (4)

where φk is the phase of the sequence �uk provided by the
decoder. The decoder declares an error if and only if the
syndrome is not the all-zero vector—i.e., if and only if the
received data does not belong to the code. To summarise,
the alternating phase bit, φk ,
• flips each time new data has to be encoded, or decoded,
• is not transmitted over the channel, but generated both

by the encoder and decoder, and
• is involved both in the computation of the redundant

bits and the syndrome.
Example 2 shows that the alternating phase encoding detects
all timing errors when the bit error rate ε is 1.
Example 2 (Timing-error channel TEC (ε = 1)) Con-
sider a timing-error channel, TEC (ε = 1), this time using
the alternating phase encoding scheme. Since any transition
fails, the received data is equal to the preceding one (�yk =
�yk−1), but the decoder appends the alternating phase bit that
has flipped. As a result, the decoder encounters a weight-1
error, which is deterministically detected.
The residual word error rate, a standard reliability metric,
is the probability that the decoder declares a word correct,
while it is actually corrupted. We indicate it as Pu.w.e.. We
derive in [8] an upper-bound and an approximation for alter-
nating phase encoding with 1 encoder, over a timing-error
channel. We obtain the following expressions:

Pu.w.e. ≤ 1
2K

N∑
i=1

Aiε
i
(
(1 − ε)d−1 +

(
(2 − ε)C(i) − 1

))
(5)

and

Pu.w.e.
∼= 1

2K

K∑
i=1

Aiε
i ·

{
(1 − ε)d−1 + (1 − ε)�N−K

2 � (
(2 − ε)K−i − 1

)}
,

(6)

with d the minimum distance of the code, Ai the number
of codewords of weight i, and C(i) a constant that depends
on the code and the weight i. (The weight of a codeword is
the number of 1s it contains.) The Ai and d are well-known
characteristics of a code which can be readily obtained [5].
The upper bound and approximation of Eqs. (5) and (6) are
plotted in Figure 6, for the CRC-8 alternating phase encod-
ing mentioned at the beginning of this section. The residual
word error rate decreases very rapidly with the raw bit error
rate: for example, a residual word error rate of 10−10 is al-
ready achieved for a raw bit error rate ε as high as 10−3. As
it can be seen from the equations and from Figure 6, both
the upper bound and approximation of the residual word er-
ror rate amount to 0 for a raw bit error rate ε = 1. We point
out that this feature is essential for a self-calibrating system
that may very well operate with values of ε as high as 1.
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Figure 6. Residual word error rate (Pu.w.e.) vs. raw bit error
rate (ε) for the CRC-8 alternating phase encoding over a
timing-error channel. The thick curve has been obtained
by simulation, while the others are plotted from Eqs. (5)
and (6).

Figure 6 shows that the maximum Pu.w.e. is nearly 10−2. This
maximum value can be decreased by exploiting a latency-
reliability trade-off. We observe that the residual word error
rate is maximum when the raw bit error rate is fairly high
(in the 0.1 to 0.9 range). As a result, although it is in this
bit error rate range that the maximum undetection probabil-
ity is found, the code still detects many of the errors that
occur. The idea consists in considering correctly received
a word only if also the following word has no detected er-
rors. Namely, �yk is marked correct only if also �yk+1 has no
detected errors. This rule brings the benefit of cancelling un-
detected errors affecting �yk when �yk+1 has detected errors.
The rule is easily implemented with a one-word pipeline ap-
pended to the decoder output.
We call Ppipe

u.e. the residual word error rate of this scheme, and
give its analytical expression in Property 1.
Property 1 (Residual word error rate) The residual word
error rate of the scheme with a single word pipeline is

Ppipe
u.e. = Pu.w.e. (1 − (1 − Pu.w.e.) (1 − Pn.w.e.)) ,

with Pn.w.e. the probability that no error occurs on a word,
and Pu.w.e. the residual word error rate of the encoding used.
The proof of this property is in appendix. Figure 7 com-
pares the residual word error rate of the one word pipeline
scheme with the one already plotted in Figure 6. Figure 7
reveals that the maximum residual word error rate has been
decreased by nearly two orders of magnitude. As expected,
the difference between the two schemes is only significant
for large bit error rates.

TIMING ERRORS AND ADDITIVE NOISE
We have seen in the last section that some low overhead
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Figure 8. Extension of the timing-error channel: not only
bit transitions may cause errors, but also additive white
noise.

versions of alternating phase encoding, although not ensur-
ing self-synchronisation in the sense of Def. 2, still offers
a reasonable residual word error rate over the whole range
of raw bit error rate. Moreover, they detect all errors oc-
curring with a unity raw bit error rate. The situation con-
sidered in the last section is in a sense ideal, as it assumes
that the only error source are delayed transitions. We extend
therefore the timing-error model with additive noise, as de-
picted in Figure 8. This more realistic channel model now
includes two independent white noise sources—modelled by
Bernouilli sources as in Eq. (1). We denote such a channel
a Timing-Error Additive-Noise Channel, and abbreviate it
TEANC (εt, εa), with εt and εa describing the respective pa-
rameters of the two independent and i.i.d. Bernouilli sources
of timing and additive noise. We compare now the reliabil-
ity of the CRC-8 alternating phase encoding with the one
of LEDR, under a TEANC (εt, εa). Notice that, over such
a channel, LEDR and other classic self-synchronising codes
do not guarantee anymore the detection of all errors.
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Figure 9. Residual bit error rate (εbit
res.) of LEDR as a func-

tion of εt and for several values of εa, when transferring
K = 20 information bits over a TEANC (ε t, εa) channel.
The residual bit error rate goes up to 0.5 as ε t becomes
1, for any εa > 0.

As a reliability metric, we use the residual bit error rate, εbit
res.,

because the two codes have different overhead. The residual
bit error is the probability that, at the decoder output, a bit
is erroneous. It is actually difficult to obtain analytically the
residual bit error rate of an alternating phase encoding over a
timing-error channel with additive noise. Therefore, we ob-
tain this quantity by simulation. On the contrary, the residual
bit error is easily obtained in the special case of LEDR, as
shown in the next property, whose proof is in appendix.
Property 2 (Residual bit error rate of LEDR) Consider
the transfer of K information bits using the LEDR code
over a timing-error additive-noise channel TEANC (ε t, εa).
Then, the probability of an undetected bit error is indepen-
dent of K , and is given by

εbit
res. =

Pu.b.e.

Pn.b.e. + Pu.b.e.
,

with Pu.b.e. = εtεa (1 − εa) + (1 − εt) ε2
a and Pn.b.e. = εtεa·

(1 − εa) + (1 − εt) (1 − εa)
2.

We have plotted in Figure 9 the expression of εbit
res. as a func-

tion of εt, for different values of εa, and assuming that K =
20 information bits are transferred. As expected, we observe
a plateau as εt goes to zero. On the contrary, we see that
the residual bit error rate becomes as high as 0.5, when ε t

goes to 1. Due to additive noise, LEDR has lost the self-
synchronising property. We compare now the residual bit
error rate of LEDR with the one of the CRC-8 alternating
phase encoding. Again, we do so by fixing the additive bit
error rate εa to some relatively small values, as expected
in reality. We perform the comparison at equal wiring re-
sources, that is considering an LEDR code with K = 20
information bits (i.e., a total of 2K = 40 bits) and an alter-
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Figure 10. Comparison of the residual bit error rate of
LEDR and the CRC-8 alternating phase encoding, as a
function of εt and for several values of εa. The dotted
horizontal line is an upper bound on the residual bit error
rate of the CRC-8 alternating phase encoding, for ε a =

10−4 and εt close to 0.

nating phase encoding that adds 8 redundant bits to K = 32
information bits.
Figure 10 reveals that, over most of the timing bit error rate
range, the CRC-8 alternating phase encoding outperforms
LEDR. In particular, the CRC-8 alternating phase encoding
performs significantly better than LEDR for the two cases
(i) εt small (< 10−4), and (ii) εt large (> 0.5). These two
cases are especially relevant for self-calibrating systems: the
system controller will mostly operate on the low bit error rate
range, and, sporadically, will push the system to the high bit
error rate range. Indeed, for most silicon-based systems, the
transition from correct to wrong behaviour is pretty steep.
In conclusion, for self-calibrating communication, the CRC-
8 alternating phase encoding looks like a promising choice
since (a) it has a similar or better reliability than LEDR and
(b) it costs less energy due to both lower wiring overhead
and switching activity.

CONCLUSION
In this paper, we study communication over a self-calibrated
link. We formally model errors due to over-aggressive set-
ting of the link parameters (voltage and frequency). We
show that self-synchronising codes detect all such errors.
Then, we contrast two different coding schemes, one used in
asynchronous communication (LEDR) and an original one
based on well-known linear codes (CRC-8 alternating phase
encoding). Compared to LEDR, we show that the CRC-8 al-
ternating phase encoding offers a tolerable degradation of
reliability, while the wiring overhead is reduced by a fac-
tor four (25% vs. 100%). We call these codes soft self-
synchronising codes. In addition, we describe both schemes

under a common coding framework and we extend our chan-
nel model to account for additive noise. We show that, with
this model, the CRC-8 alternating phase encoding, a low
wiring overhead embodiment of alternating phase encoding,
offers better or similar reliability than LEDR, while being
more energy efficient due to the lower wiring overhead and
switching activity. As a result, we suggest that soft self-
synchronising codes are promising encoding schemes for
self-calibrating communication: they offer a better trade-off
between various types of overhead and reliability, compared
to traditional hard self-synchronising codes (such as Dual-
Rail and LEDR).
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APPENDICES

Proof of Property 1

A word at the channel output has either (i) no error, with
probability Pn.w.e., (ii) an undetected error, with probability
(1 − Pn.w.e.) Pu.w.e., or (iii) a detected error, with probability
(1 − Pn.w.e.) (1 − Pu.w.e.). We denote by wk the word at the
pipeline output, at time k, by Iw.e.

k the indicator function of an
error on wk, and by Id.w.e.

k the indicator function of a detected
error on wk. We have that

Ppipe
u.e. = P

(
Id.w.e.
k = 0, Id.w.e.

k+1 = 0 | Iw.e.
k = 1

)
=

P
(
Id.w.e.
k = 0, Id.w.e.

k+1 = 0, Iw.e.
k = 1

)
P (Iw.e.

k = 1)
.

(7)

We obtain directly that

P (Iw.e.
k = 1) = 1 − Pn.w.e.. (8)

Also, the event
(
Id.w.e.
k = 0, Id.w.e.

k+1 = 0, Iw.e.
k = 1

)
is equiva-

lent to requiring that (i) wk has an undetected error and (ii)
wk+1 has no detected error. The two events are independent
because the timing-error channel introduces independent er-
rors. We can therefore write that

P
(
Id.w.e.
k = 0, Id.w.e.

k+1 = 0, Iw.e.
k = 1

)
=

(1 − Pn.w.e.) Pu.w.e. · (1 − (1 − Pu.w.e.) (1 − Pn.w.e.)) . (9)

The result is obtained by combining Eqs. (7), (8), and (9).
Lastly, remark that, when using a (N, K) linear code over a
timing-error channel of bit error rate ε, the probability of no
error, Pn.w.e., is given by

Pn.w.e. =
1

2K

N∑
i=0

Ai (1 − ε)i
,

with Ai the number of codewords of weight i in the code. �

Proof of Property 2

We denote by word the 2K bits resulting of the encoding
of K information bits, and use the same notations of Prop-
erty 1. We say that an undetected word error has a weight-i
when i information bits are affected by the undetected er-
ror. We compute εbit

res. by a weighted (with the probability of
occurrence) sum of fraction of erroneous bits at the decoder
output:

εbit
res. =

K∑
i=1

i

K
P

(
weight-i u.w.e. | Id.w.e. = 0

)
. (10)

Through standard probability manipulations, we have that

P
(
weight-i u.w.e. | Id.w.e. = 0

)
=

P
(
weight-i u.w.e., Id.w.e. = 0

)
P (Id.w.e. = 0)

=

P (weight-i u.w.e.)
P (Id.w.e. = 0)

. (11)

Let �xk and �yk be the input and the output, respectively, of
a 2-bits TEANC (εt, εa) channel. We denote by Pn.b.e. the
probability that no error occurs, i.e., Pn.b.e. = P (�xk = �yk).
Moreover, we denote by Pu.b.e. the probability that an unde-
tected bit error occurs, i.e., Pu.b.e. = P

(
�xk �= �yk, Id.w.e. = 0

)
.

Notice that an undetected error implies that the bit output
by the decoder is corrupted since no weight-1 error is unde-
tected with LEDR.
We remark that

P (weight-i u.w.e.) =
(

K
i

)
(Pu.b.e.)

i (Pn.b.e.)
(K−i) (12)

and

P
(
Id.w.e. = 0

)
= (Pn.b.e. + Pu.b.e.)

K
. (13)

Combining Eqs. (10), (11), (12), and (13), we obtain that

εbit
res. =

K∑
i=1

i

K
P

(
weight-i u.w.e. | Id.w.e. = 0

)

=

∑K
i=1

i
K

(
K
i

)
(Pu.b.e.)

i (Pn.b.e.)
K−i

(Pn.b.e. + Pu.b.e.)
K

=

∑K
i=1

(
K − 1
i − 1

)
(Pu.b.e.)

i (Pn.b.e.)
((K−1)−(i−1))

(Pn.b.e. + Pu.b.e.)
K

=
Pu.b.e. (Pn.b.e. + Pu.b.e.)

K−1

(Pn.b.e. + Pu.b.e.)
K

=
Pu.b.e.

Pn.b.e. + Pu.b.e.
.

(14)

Expressions for Pu.b.e. and Pn.b.e. are easily obtained by re-
calling that an error is undetected with LEDR if and only if
both bits are corrupted. Therefore,

Pu.b.e. = εtεa (1 − εa) + (1 − εt) ε2
a . (15)

The first term is the probability that, on the transitioning line,
a timing error and no additive error occur, while, on the other
line, an additive error occurs. The second term is the prob-
ability that, on the transitioning line, no timing error, but an
additive error occurs, while, on the other line, an additive
error occurs. By a similar reasoning, one gets that

Pn.b.e. = εtεa (1 − εa) + (1 − εt) (1 − εa)
2 . (16)

�


