SPECIAL ISSUE FOR SYSTEM LEVEL INTERCONNECT PREDICTION (SLIP) - GUEST EDITORS: DENNIS SYLVESTER AND ANDREW KAHNG 1

Error-Correction and Crosstalk Avoidance in DSM Busses

Ketan N. Patel and Igor L. Markov

Abstract— Aggressive process scaling and increasing clock rates have
made crosstalk noise an important issue in VLSI design. Switching on
long, adjacent bus wires can lead to timing and logic faults. At the same
time system-level interconnects have also become more susceptible to
other less predictable forms of interference such as noise induced by
power grid fluctuations, electromagnetic interference, and alpha-particle
radiation. Previous work has treated these systematic and non-systematic
forms of noise separately.

We propose to make system level interconnects more robust using
encoding that simultaneously addresses error-correction requirements
and crosstalk noise avoidance. This is more efficient than satisfying
these requirements separately. We give algorithms for obtaining optimal
encodings, and present a practical class of codes called boundary-shift
codes. We evaluate the overhead of our method, and make comparisons
to using error-correction with simple shielding.

Index Terms— bus-encoding, error-correction, crosstalk, DSM busses

I. INTRODUCTION

As device densities and clock rates continue to increase in VLSI
circuits, bus crosstalk is becoming an increasingly important factor
in performance optimization, and correlates with particular switching
patterns on the bus. For example, simultaneous rising transitions on
adjacent wires are sped up by noise, possibly leading to a hold
violation. A rising transition on one wire can cause a neighboring
wire to falsely transition, and lead to a logic fault. However, the
most detrimental switching pattern on two neighboring wires is
opposite transitions because both transitions slow down, potentially
leading to a setup violation. Crosstalk can be mitigated by specialized
routing strategies [4], intentionally skewing signal transition timings
on adjacent wires [6], both active and passive shielding [7], [9], and
signal encoding to minimize conflicts [13], [2].

Busses can also suffer from interference due to power-grid fluc-
tuations, electromagnetic noise, or alpha-particle radiation. Many
such effects, e.g., those caused by the simultaneous switching of
many gates, are difficult to predict or prevent. They aggravate as the
number of gates supplied by the same power grid increases, and may
not correlate with particular switching patterns on the bus. Another
source of faults is manufacturing defects. In the nanotechnology
context, where circuits are manufactured with a significant proportion
of faults, occasional errors may be unavoidable. Hence, preventive
techniques may be insufficient, and active error-correction may be
required.

Researchers previously studied error-correction for busses to com-
bat crosstalk [3] and non-systematic interference [11], [1]. However,
those methods only correct errors after errors occur rather than
attempting to prevent the interference. Conversely, other bus-encoding
techniques have been used to prevent crosstalk, but do not correct
errors [13], [2]. For example, Victor and Keutzer [13] have proposed
encoding the bus to prohibit opposite transitions on adjacent wires.
They call such codes self-shielding as they are an alternative to
shielding wires.

We combine the goals of providing self-shielding and error-
correction in designing the bus-encoding. This is more effective
than the conventional approach of treating these separately. Since

An earlier version of this work was presented at the International Workshop
on System-Level Interconnect Prediction, SLIP 2003.

K. N. Patel is with Qualcomm Corp. and I. L. Markov is with the Elec-
trical Engineering and Computer Science Department, University of Michi-
gan, Ann Arbor, MI 48109-2122 USA (e-mail: knpatel@eecs.umich.edu;
imarkov@eecs.umich.edu).

@)

Fig. 1. Graphical representation of optimal 3-bit self-shielding codes: (a)
single-error-detecting, (b) no error control.

our method not only reduces the interference due to crosstalk, but
also corrects errors, it can be useful in a variety of applications in-
cluding nanotechnology, low-swing signaling, and radiation-hardened
circuits. We provide algorithms for generating optimal bus-encodings,
and present a general construction method for a practical class of
codes. Encoding and decoding circuits are given for specific codes.

I1. NOTATION AND TERMINOLOGY

Our goal is to design a bus-encoding scheme that avoids crosstalk
while simultaneously providing error-correction. Victor et al. [13]
consider a related problem, and we follow much of their terminology.
We also use some basic background in error-correction [10], [12] and
self-checking [14], [8] techniques.

We model the bus as an m-bit communication channel. During
each signaling interval the encoding scheme is used to select and
transmit an n-bit word, called a codeword, from a possibly dynamic
set called a codebook. The codebook is dynamic in the sense that it
can be a function of previously transmitted codewords. We call the
overall encoding scheme a code. A code is memoryless if it uses a
fixed codebook. A code’s rate is log, |Cimin|, Where |Crir| is the
number of codewords in the smallest codebook. This is the minimum
number of bits that can be encoded during every signaling interval.

We say a pair of codewords contains an invalid transition if
transitioning from one codeword to the other causes adjacent bits to
switch in opposite directions. For example, the following codewords
contain an invalid transition by bits 3 and 4:

01100011
11011010

Such transitions are undesirable because they increase crosstalk noise.
A code is self-shielding if it does not allow invalid transitions;
this terminology comes from the conventional technique of using
shielding wires to prevent crosstalk. Following Victor et al. [13], we
assume that neighboring wires are routed in parallel. Therefore, the
encoded bus is effectively self-shielding.

In addition to avoiding invalid transitions, we want to be able
to differentiate codewords reliably even in the presence of errors
(bit flips). This is possible if the codewords in the codebook have
a large enough Hamming distance between them, that is, if they
differ in enough bit positions. For example, if the codewords have
a minimum Hamming distance of three between them, any single
error is correctable since the “noisy” codeword must be closer to
the original codeword than to any other. In general, if the minimum
Hamming distance between any two codewords is d, then we can
either correct up to [d‘le errors, or detect up to d — 1 errors [10].

A binary code is linear if the bitwise sum (mod 2) of any two
codewords is also a codeword. A linear code can be represented by an

c1 —
c2 —

Without Memory With Memory
Wires single-error-correcting single-error-correcting | single-error-correcting
self-shielding self-shielding self-shielding self-shielding boundary-shift
3 2.32 1.00 2.32 1.00 1.00
4 3.00 1.00 3.17 1.00 -
5 3.70 1.59 3.91 2.00 2.00
6 4.39 2.32 4.75 2.32 -
7 5.09 2.58 5.52 3.17 3.00
8 5.78 3.17 6.34 3.59 -
9 6.48 3.81 7.14 4.25 4.00
TABLE |

MAXIMUM RATE FOR SELF-SHIELDED CODES. THE FIRST COLUMN GIVES THE NUMBER OF WIRES USED FOR THE ENCODING. THE REMAINING
COLUMNS GIVE THE MAXIMUM NUMBER OF BITS THAT CAN BE ENCODED BY THE SELF-SHIELDING CODES SPECIFIED BY THE COLUMN HEADINGS.

independent set of codewords [12]. All other codewords can then be
formed by a linear combination of these. A standard representation of
a linear code is the generator matrix, whose rows are an independent
set of codewords. For example, a generator matrix for the code
{0000, 0011, 0101, 0110, 1001, 1010, 1100, 1111} is

1 1 0 0
0 1 1 o

The generator matrix maps information bits to codewords: multiply
the generator matrix by a row-vector of information bits. For example,
G maps [1 1 1] to the codeword [1 0 0 1]. An n-bit linear code that
encodes k bits and has minimum Hamming distance d between all
codewords is called an [n, k, d] code.

I11. MEMORYLESS CODES

In a memoryless self-shielding code, there is a fixed codebook,
and any codeword may be transmitted after another. Therefore, all
transitions between codewords must be valid. This can be captured by
a graphical model [13], with each n-bit word represented by a vertex
in the graph, and each valid transition between words by an edge
between the corresponding vertices (see Figure 1b). A memoryless
self-shielding code then consists of a set of vertices forming a clique,
that is, a set of vertices with edges between every pair in the set. The
maximum-rate code is the largest clique in the graph. One such clique
is highlighted for the graph in Figure 1b. A closed-form for the size
of the largest clique for general n can be derived [13].

This graphical model can accommodate additional constraints. In
our case the Hamming distance between any two codewords must be
at least d. This can be incorporated into the model by only placing
edges between vertices if the corresponding words satisfy both the
Hamming distance and valid transition constraints. Figure 1a shows
such a graph for a single-error-detecting (d = 2), self-shielding code
on three wires with a maximum-size clique highlighted.

While the max-clique problem is NP-complete [5, pp. 53-56], it
can be solved for small graphs in practice. We used a simple pruning
algorithm (see Algorithm 1), coded in MATLAB, that determines if
a k-clique exists in the graph. For the n = 9 case, the algorithm
required approximately 45 minutes on a Sun-Sparc. The results
are shown in Table I. Results for memoryless codes without error-
correction (column two) match those given by Victor et al. [13].

IV. CODESWITH MEMORY

In a code with memory, the codebook may be a function of the
previously transmitted codeword. We represent such codes with two
graphs. The first graph G has a vertex for each n-bit word, and an
edge between two vertices if they form a valid transition. The second
graph G- contains the same vertices as G1, but has edges between
vertices if the Hamming distance between them is greater than d — 1.

function k-clique(G k)
V = {vert. of G sorted by 1 degree}
if (Gis conplete & |V| >k)
return 1
for (v € V)
renove vert. w degree < k fromG & V
if |V <k returnO
Gs = {subgraph w vert.
if (k-clique(Gs, k)==0)
renove v fromG & V
el se
return 1

incident to v}

Algorithm 1: Solving Max-Clique

Intuitively, G1 and G> represent the self-shielding and the Hamming
distance constraints, respectively.

In a self-shielding minimum-distance-d code with rate log, M,
each codeword can transition to a size-M subset of codewords
with a Hamming distance > d between them. In our graphical
representation, each vertex in graph G1 must have edges to at least
M vertices that form a clique in graph G». We can determine if such
a code exists by iteratively eliminating vertices that do not meet this
condition from both graphs. If a non-empty set of vertices remains,
then it forms a code with the desired properties, otherwise none exists.
The pseudo-code is shown as Algorithm 2.

function Exist_Code(Gl, &, k)
{ V= {vert. of G}
Vin = {}
while (V not enpty)
{ if (V==Vin)
return 1
v = vertex from{V-Vin} of |owest degree
Gs = {subgraph of G2 w vertices
incident to v in Gl}
if (k-dique(Gs, k)==0)
remove v fromGl, & & V

Vin = {}
el se
add v to Vin
return 0

Algorithm 2: Search for code with memory

This algorithm makes a series of calls to k-clique, and the runtime
for specific cases varies greatly for different implementations of k-
clique. We calculated the optimal codes for n < 8 using Algorithm
1, but for n = 9 we used an integer linear programming (ILP)
formulation for the max-clique problem. A binary variable was
assigned to each vertex in the graph with a one denoting membership
in the clique. For every pair of vertices not sharing an edge, we
imposed the constraint that both cannot be members of the clique.
The size of the max-clique was found by maximizing the sum of the

variables, i.e., the number of members in the clique. This optimization
was performed by the commercial CPLEX program in several hours
on a Sun-Sparc workstation. While the ILP-based computation was
more efficient than Algorithm 1 for n = 9, for cases in Section Il it
was 5 times slower. The overall results are shown in Table I. Those
in columns two and four, for codes without error-correction match
results from [13].

V. BOUNDARY-SHIFT CODES

The algorithm presented in the previous section finds maximum-
rate codes, but not encoders or decoders for them. Decoding may
require particularly significant resources. Further, the algorithm itself
becomes computationally infeasible for large busses. In this section,
we construct a class of practical codes with necessary circuits.

We define a dependent boundary in a word as a place where two
adjacent bits differ, and denote it by the position of the leftmost bit
of the boundary. Two words sharing no dependent boundaries, cannot
form an invalid transition. For example, consider the words:

cit— 01100111

c2— 11001110
Here ¢; and ¢» have dependent boundaries {1,3,5} and {2,4, 7},
respectively. Since there is no overlap, the transition must be valid.

If a codebook has codewords with only even dependent boundaries,
then performing a 1-bit circular right shift yields a new codebook
with no even dependent boundaries. Since the two codebooks share
no dependent boundaries, we can alternate between the two to obtain
a self-shielding code. We call this a boundary-shift code.

This construction requires an error-correcting code with no odd
dependent boundaries. Let C be an [n, k,d] code, and let C' be
formed by duplicating each bit position in C. Then C’ is a [2n, k, 2d)
code with no odd dependent boundaries, since every bit in an odd
bit position is followed by a copy. By alternating between C’ and a
shifted version of it, we obtain a [2n, k, 2d] self-shielding code. In
addition, puncturing C” in the last bit position, i.e., removing the last
bit in every codeword, yields a [2n — 1, k,2d — 1] code.

A single-parity-check code used in the above construction gives
an infinite class of single-error-correcting codes. First a [k + 1, k, 2]
single even parity-check code is formed by appending a parity bit to
k data bits. Then applying our construction, yields a [2k + 1, &, 3]
single-error-correcting self-shielding code.

Consider a “[9, 4, 3]” boundary-shift code with generator matrices:

x0 x1 X2 x3

Mux
ouT

Mux
ouT

<

0 yl y2 y3 y4 y5 y6 y7 y8

=

ol

2:1
Mux
OouT

=

sl

0 1
2:1

Mux
ouT

e e

SH St

2:1 21
Mux
ouT

gi‘f

2:1
Mux
ouT

2:1
Mux
ouT

2:1
Mux
ouT

0 1 0
2:1
Mux
ouT

S|

x0

x1

X2

x3

R N
AN BT
’ our

(b)

Fig. 2. Encoder (a) and decoder (b) for “[9, 4, 3]" boundary-shift code.

check. For example, in an even cycle three independent copies of
the first information bit are given by yo, y1 and (y2 + ya + ye +
ys) mod 2. Since a single error will affect at most one of the three
copies, it is correctable. The following example shows how noisy
versions of the codewords in the previous example would be decoded
after unshifting. The highlighted bits correspond to errors.

noisy output majority vote data
100011000 — (101) (000) (111) (0OOO) — 1010
001111110 — (001) (110) (110) (1200 — 0111
010000001 — (011) (001) (0O1) (0O1) — 1000
011100000 — (011) (110) (0O1) (0O1) — 1100

11 00 00 00 1 1 11 00 00 00
Go = 00 11 00 00 1 G, = 100 11 00 00
0= 00 00 11 00 1 1= 1 00 00 11 00
00000011 1 100 00 00 11

Generator matrices G1 and Go are used for encoding during odd
and even clock cycles respectively. Equivalently, Go can be used
for all cycles, with the output then right shifted for odd cycles. The
following example illustrates how this code would be used to encode
a 4-bit bus. The intermediate pre-shifted output is shown for clarity.

time input pre-shifted output output

0 1010 — 110011000 — 110011000
1 0111 —» 001111111 —» 100111111
2 1000 —» 110000001 — 110000001
3 0100 — 001100001 — 100110000

We duplicate each input bit, and append the parity check at the end,
yielding the pre-shifted output. If the clock cycle is odd, we perform
a 1-bit circular right shift before transmitting.

At the receive side, we first undo the right shift if the clock cycle is
odd. Decoding is then done by majority vote, where the two “copies”
of the desired bit are augmented by a third generated by the sum (mod
2) of one copy of each of the other information bits and the parity

The last codeword is decoded incorrectly as it contains two errors,
and is therefore beyond the code’s error-correcting capability.

Table | compares these codes to optimal ones. Their rates are better
than those of optimal memoryless codes, and comparable to those of
optimal codes, particularly when integer rates are of interest.

V1. PRACTICAL CONSIDERATIONS

The codes constructed in the previous section are based on very
simple error-correcting codes, and can be encoded and decoded effi-
ciently. Figures 2a and 2b show an encoder and decoder respectively
for the [9,4, 3] code. These circuits generalize in a straightforward
manner for larger single-error-correcting codes. Gate counts and
maximum circuit depths are given in Table Il for a range of bus
sizes along with closed form expressions for the general case.

For large bus sizes the increased circuit depth may lead to
significant delay. This problem can be solved by breaking the bus
into smaller sub-busses separated by shielding wires. While slightly
increasing the number of wires and gates needed, this limits the circuit
depth. It also increases the error-correction capability, since single
errors in each sub-bus can then be corrected independently.

Code Advantages Drawbacks

Optimal - encoding/decoding by - relatively low rate

memoryless combinational circuits - code construction difficult
- decoder may be complex

Optimal - maximum rate - code construction difficult

with memory - encoder/decoder may be

very complex
- possible error propagation
- achieve slightly lower rate
than optimal codes

Boundary-Shift
Codes

- achieve higher rate than
opt. memoryless codes

- scalable construction

- simple encoder/decoder

- integer rates; systematic

TABLE Il
COMPARISON OF BOUNDARY-SHIFT CODES AND OPTIMAL SELF
SHIELDING ERROR-CORRECTING CODES.

While the bus-encoding is designed to correct soft errors that occur
on the bus, it has the beneficial side-effect of also correcting most
single stuck-at faults in the encoding and decoding circuits. Specifi-
cally, with the exception of stuck-at faults on the flip-flops used for
synchronization, any single stuck-at fault in the encoding or decoding
circuit leads to at most a single error, which is then automatically
corrected because of the encoding. A fault in the synchronization flip-
flops can cause uncorrectable errors, and therefore should be more
carefully protected against. Particular care should be taken to ensure
the inverter between the flip-flop input and output has a large enough
delay to avoid hold time violations.

Self-shielding error-correcting codes do not necessarily remain
self-shielding in the presence of errors. A bus error may cause
an invalid transition, while such transitions are prevented in error-
free operation. However, even in this case, assuming that the error
occurs equiprobably anywhere on the bus line, the effective coupling
capacitance between the affected lines would be 50% lower on
average than for an unprotected bus, significantly mitigating the
resulting crosstalk.

A potentially useful feature of the proposed codes is that they are
systematic, i.e., the information bits are embedded in the encoded
codeword, and hence can be obtained without decoding logic. For
example, the information bits of the [9, 4, 3] code are given by bits y1,
ys, ys and y7. Of course, simply using these bits rather than decoding
the full codeword sacrifices the code’s error-correction capabilities.
However, error-correction may only be necessary for certain distant
bus pins, while remaining pins may use error-detection or simply the
embedded information bits.

In the proposed method, we assume that neighboring wires on the
bus are routed in parallel. Therefore, automatic routing of busses with
the proposed encoding must be used with care because of the wire
ordering requirement. If the wire ordering is not preserved in the
routing, the self-shielding properties of the encoding may be lost,
though the error-correction properties will be unaffected.

A possible concern in codes with memory is that since future
codebooks may depend on the current transmitted codeword, an
uncorrectable error may propagate and cause additional errors. A
clear advantage of boundary-shift codes is that they are not vulnerable
to error propagation, since the codebook only depends on the time

Bus Wires Encoder Decoder
Size Gates Circuit Depth Gates Circuit Depth

4 9 10 3 gates 15 4 gates

8 17 18 4 gates 27 5 gates

16 33 34 5 gates 51 6 gates

32 65 66 6 gates 99 7 gates

64 129 130 7 gates 195 8 gates

n 2n+1 | 2n+2 | [logon]|+1 | 3n+3 | [logo(n+1)]+1

TABLE 111

ENCODER/DECODER GATE COUNTS AND CIRCUIT DEPTHS FOR
SINGLE-ERROR-CORRECTING BOUNDARY-SHIFT CODES.

Method
Shielding Wires

Drawbacks
- no error-correction
- additional wires

Advantages

- crosstalk prevention
- simple construction
- no additional delay
- crosstalk prevention
- relatively high rate

- no error-correction

- encoding/decoding logic
- additional wires & delay
- no crosstalk prevention

- encoding/decoding logic
- additional wires & delay
- no error-correction

- high power consumption
- encoding/decoding logic
- additional wires & delay

Self-Shielding
Codes [2], [13]

Error-Correcting - error-correction

Codes [1], [3], [11]

Bus Precharging - crosstalk prevention

- no additional wires
- crosstalk prevention
- error-correction
TABLE IV
COMPARISON OF BOUNDARY-SHIFT CODES AND OTHER SHIELDING AND
ERROR CORRECTION METHODS.

Proposed Boundary-
Shift Codes

index. As long as the source and destination are synchronized, no
error propagation will occur.

Table Il summarizes advantages and drawbacks of several codes.
Boundary-shift codes have a higher rate (i.e., require fewer additional
wires) than optimal memoryless codes, and only a slightly lower rate
than optimal codes. Their primary advantages are a simple, scalable
construction as well as practical encoders and decoders.

In Table IV we contrast boundary-shift codes with other shield-
ing and error-correction methods. Compared to self-shielding codes
from [13], our codes are not only able to prevent crosstalk but
also tolerate errors; this additional protection comes at the cost of
rate reduction (see Table 1). Compared to shielding, our technique
provides error-correction in addition to self-shielding without ap-
preciably reducing the rate, though some encoding and decoding
logic is required. Our approach is more effective than treating error-
correction and shielding separately. For example, to protect a 4-bit
bus from single errors requires a total of at least 7 bits [10]. Adding
shielding wires to this encoded bus to prevent crosstalk then results
in a 13-bit bus. In comparison, the ““[9, 4, 3] single-error-correcting
boundary-shift code illustrated in Section V achieves the same error
protection for the 4-bit bus using only 9 bits. In general, for a bus of
size n the separate optimal coding and shielding approach requires
2log, n more wires than the proposed approach. Furthermore, since
the proposed boundary-shift codes are based on simpler codes, they
have lower encoding and decoding complexities than the separate
approach; the complexity gap between the two approaches grows with
increasing bus size. Precharging busses to prevent crosstalk is also an
alternative, however it can be costly in terms of power consumption,
and does not provide error-correction.

VII. CONCLUSIONS

We have considered the problem of designing bus-encoding
schemes that provide both crosstalk prevention and active error-
correction. The former reduces crosstalk interference, while the latter
corrects faults after they occur, regardless of their origin. This is
an important improvement over previous methods, which have been
designed to either reduce crosstalk interference or provide error-
correction but not both. Our joint approach is particularly applicable
to scenarios, such as nanotechnology and radiation hardened circuits
for satellite communications, where random errors are a concern in
addition to crosstalk interference. We give algorithms for finding
optimal codes for various constraints and code parameters. An
important contribution of this paper is a practical class of error-
correcting self-shielding codes called boundary-shift codes. These
codes are derived from conventional error-correcting codes, which
have been studied extensively in the literature. For the specific case
of single-error-correcting boundary-shift codes we give gate level
encoding and decoding circuits.

[1]

[2]

[3]

[4]
[5]
(6]
[71
(8]
[9]

[10]

[11]

[12]
[13]

[14]

REFERENCES

D. Bertozzi, L. Benini, and B. Ricco. Energy-efficient and reliable low-
swing signaling for on-chip buses based on redundant coding. Proc.
ISCAS pp. 93-96, 2002.

C. Duan, A. Tirumala, and S. P. Khatri. Analysis and avoidance of
cross-talk in on-chip buses. Hot Interconnects 9, pp. 133-138, Aug.
2001.

M. Favalli and C. Metra. Bus crosstalk fault-detection capabilities of
error-detecting codes for on-line testing. |EEE Trans. on VLS, pp. 392-
396, Sept. 1999.

T. Gao and C. L. Liu. Minimum crosstalk channel routing. Proc. ICCAD,
pp. 692-696, Nov. 1999.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman and Company, 1979.
K. Hirose and H. Yasuura. A bus delay reduction technique considering
crosstalk. Proc. DATE, pp. 441-445, 2000.

H. Kaul, D. Sylvester, and D. Blaauw. Active shields: A new approach
to shielding global wires. Proc. GLSVLS, pp. 112-117, Apr. 2002.

P. K. Lala. Saf-Checking and Fault-Tolerant Digital Design. Academic
Press, Inc., 2001.

K. M. Lepak, I. Luwandi, and L. He. Simultaneous shield insertion
and net ordering under explicit RLC noise constraint. Proc. DAC, pp.
199-202, June 2001.

F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting
Codes. North-Holland, 1996.

D. Rossi, V. van Dijk, R. Kleihorst, A. Nieuwland, and C. Metra. Coding
scheme for low energy consumption fault-tolerant bus. Proc. IEEE On-
line Testing Workshop, pp. 8-12, 2002.

S. A. Vanstone and P. C. van Oorschot. An Introduction to Error
Correcting Codes with Applications. Kluwer, 1989.

B. Victor and K. Keutzer. Bus encoding to prevent crosstalk delay. Proc.
ICCAD, pp. 57-69, Nov. 2001.

J. F. Wakerly. Error detecting codes, self-checking circuits and applica-
tions. Elsevier North-Holland, Inc., 1978.

