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ABSTRACT 
The interconnect delay in 3-D circuits can be minimized by 
optimally placing the through-silicon vias. Due to obstacles that 
limit the placement of the through-silicon vias, the task of 
determining the via locations for minimum interconnect delay is 
described as a constrained optimization problem under the 
distributed Elmore delay model. Two different approaches are 
applied. First, a geometric programming solver is utilized to 
determine the optimum via locations. Second, a heuristic based on 
simple analytic expressions and the electrical properties of the 
interconnect is introduced and an efficient algorithm that provides 
optimum or near-optimum solutions is developed. The algorithm 
performs computationally faster as compared to the geometric 
programming solver, reducing the runtime by about two orders of 
magnitude. Simulation results indicate delay improvements for 
relatively short interconnects of up to 16% where the through-
silicon vias are optimally placed as compared to the case where 
the through-silicon vias are placed in the middle of the allowed 
regions and up to 32% as compared to a random through-silicon 
via placement. The proposed algorithm can be integrated into a 
design flow for 3-D circuits to enhance placement and routing 
where timing is the primary design objective. 

I.  INTRODUCTION 

With the increase in die size due to the demand for greater 
functionality and increase in interconnect resistance due to 
technology scaling, interconnect delay has become the primary 
bottleneck in modern ICs. These performance challenges call for 
novel design paradigms that expand the boundaries of the IC 
design space. 

Three-dimensional (3-D) integration is a promising 
alternative that can mitigate the next generation performance and 
integration challenges. By vertically stacking the die rather than 
horizontally expanding the integrated circuit, a considerable 
reduction in interconnect length is possible. Furthermore, 
components from dissimilar technologies and fabrication 
processes can be integrated onto a single multiplane system, 
offering high yield for each individual component. 3-D 
integration affects various design abstraction levels. At the 
package level, bare die are stacked on top of each other and 
communication among the die is achieved with wires bonded at 

the die periphery. Alternatively, the die can be separately 
imbedded into packages that are adhered onto a stack with layers 
of bumps sandwiched between subsequent packages dedicated to 
provide interconnection among the individual planes of the stack 
[1]. The greatest reduction in wirelength that the third dimension 
however, offers comes from those 3-D technologies, where the 
interconnections among the planes of the stack are implemented 
with through-silicon vias that are not constrained to the periphery 
of the circuit (the interplane interconnects) [2]-[4]. In this paper, 
the terms, through-silicon vias and simply vias, are used 
interchangeably. A schematic of a 3-D circuit based on these 
technologies, which are assumed to be the target technologies in 
this paper, is shown in Figure 1. As illustrated in Figure 1, each 
physical plane of the stack is similar to a conventional 2-D circuit 
in that a plane includes a device layer and multiple metal layers to 
connect individual circuits located on the same physical plane 
(the intraplane interconnects).  

 
Figure 1.  Schematic of a three-dimensional circuit. 

Several a priori interconnect prediction models have been 
described in the literature to evaluate the performance benefits of 
three-dimensional circuits resulting from the reduction in 
interconnect length [5]-[8]. All of these models are based on the 
well known Rent’s rule [9] and predict significant reductions in 
interconnection lengths, particularly global interconnects. To fully 
exploit the potential of 3-D circuits, sophisticated placement and 
routing algorithms tailored to the 3-D structures are necessary 
[10]-[13]. The delay savings that can be achieved by the optimum 
placement of the vias in 3-D ICs have not been thoroughly 
explored. In [14], analytic expressions for the optimum via 
location, where non-uniform interconnect impedance 
characteristics are considered, however, the presence of obstacles 
that limit the valid via locations are not considered. In addition, 
the interplane interconnect consists of only one via. 

The contribution of this paper is twofold. First, an algorithm for 
via placement for two-terminal interplane interconnects consisting 
of any number of through-silicon vias is presented. Second, a 
heuristic that provides optimum or near-optimum solutions for 
timing-driven via placement under physical constraints is 
introduced. The proposed heuristic is used to implement an 
algorithm with considerably smaller computational times as 
compared to general optimization solvers. 

The rest of the paper is organized as follows. In the next 
section, the problem of determining the optimum via location for 
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minimum interconnect delay under the distributed Elmore delay 
model is analyzed. In Section 3, a heuristic for the timing-driven 
placement of interplane vias is described considering the 
particular characteristics of the circuits and technology. An 
algorithm based on this heuristic producing significantly smaller 
runtimes is also presented. Both SPICE measurements and 
optimization results are provided in Section 4 along with a 
comparison of the proposed algorithm with optimization solvers, 
both in terms of accuracy and efficiency. Finally, in Section 5, 
some conclusions are offered. 

II. PROBLEM FORMULATION 

The primary problem considered in this work is introduced in this 
section. Consider the interplane interconnect shown in Figure 2 
that connects two circuits located m physical planes apart from 
each other. Each of the horizontal segments of the line 
corresponds to a metal layer of some physical plane of the stack. 
The horizontal segments of the line are connected through the 
vias which can traverse more than one plane. Consequently, the 
number of horizontal segments of the line is smaller than or at 
most equal to the number of physical planes between the two 
circuits, i.e. m ≥  n, where the equality only applies when each of 
the vias connects metal layers from two adjacent physical planes. 
In conventional two-dimensional (2-D) circuits, a two terminal 
net such as the structure shown in Figure 2 is typically modeled as 
a uniform line where the vias are either ignored or considered as 
lumped capacitive loads. The heterogeneity of 3-D circuits, 
however, does not support a uniform line model. The interplane 
interconnects are therefore modeled as wire segments with non-
uniform impedance characteristics. The via locations or, 
alternatively, the length of each horizontal wire segment therefore 
affects the delay of the line. Thus, the objective is to place the 
vias such that the interconnect delay is minimum.  

Each horizontal segment i of the line is located on a different 
physical plane with length li. The vias are denoted by the index of 
the first of the two connected segments. For example, if a via 
connects segment i and i+1, the via is denoted as vi with length lvi. 
The total length of the line L is equal to the summation of the 
length of the horizontal segments and vias, 

nviiv lllllL ++++++= ......11 . (1) 

The length of each horizontal segment of the line is bounded, 

iiii xlll ∆+≤≤ minmin , (2) 

or, equivalently, with a simple variable change 

ii xx ∆≤≤0 , (3) 

where limin is the minimum length of the interconnect segment on 
plane i, and ∆xi is the length of the region in which the via that 
connects planes i and i+1 can be placed, and called “allowed 
regions” here for clarity. xi is the distance of the via location from 
the edge of the allowed region. limin is the length of an 
interconnect segment connecting two allowed regions or an 
allowed region and a placed cell. These lengths are considered 
fixed. Alternatively, the routing path of a net is not altered except 
for the via locations in the allowed regions, where these regions 
are generated by a placement tool for 3-D circuits.  

The corresponding electrical model of the line is shown in 
Figure 3. The total resistance and capacitance of a horizontal 
(vertical) segment i(vi) is Ri(vi) = ri(vi)li(vi) and Ci(vi) = ci(vi)li(vi), where 
ri(vi) and ci(vi) denote the resistance and capacitance, respectively, 
per unit length. The driver is modeled as a step input voltage and 
a linear resistance RS, and the following stage as a capacitive load 
CL. The distributed Elmore delay of the line in matrix form is 

DT ++= blAlll T5.0)( , (4) 

[ ]Tl nn llll 121 −= L , (5) 
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Figure 2.  Interplane interconnect consisting of n segments connecting two circuits located m planes apart. 
 



Since (8) is a constant quantity, the optimization problem can be 
described as follows, 

(P) min. blAlll T += 5.0)(T , 

subject to (1) and (2). 

 

Figure 3.  Interplane interconnect model composed of a set of 
non-uniformly distributed RC segments. 

As described by the following theorem, the primal problem (P) is 
not typically convex and therefore convex quadratic 
programming optimization techniques are not directly applicable. 
Theorem 1: The primal optimization problem (P) is a convex one 
iff 

11 ++ − iiii crcr > 0. (9) 

Proof:  A is a positive definite matrix if all subdeterminants are 
positive. By elementary row operations, the subdeterminants of A 
are positive iff (9) applies. If (9) applies A is positive definite and 
(P) is a convex optimization problem.  

Certain transformations can be applied to convert (P) to a 
convex optimization problem [15]; the objective function, 
however is no longer quadratic. Alternatively, (P) can be cast as a 
geometric programming problem. Geometric programs include 
optimization problems for functions and inequalities of the 
following form, 
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where the variables yj’s and coefficients sj’s must be positive and 
the exponents aij’s are real numbers. Although equality 
constraints are not allowed in standard geometric problems, (P) 
can be solved as a generalized geometric program as described in 
[16]. In the following section, a heuristic that provides optimum 
or near-optimum solutions for (P) is presented in addition to an 
algorithm that yields smaller runtimes as compared to a 
geometric programming solver. 

III. OPTIMUM VIA PLACEMENT HEURISTIC 

In this section, a heuristic for optimally placing the through-
silicon vias in 3-D circuits is described and an algorithm for the 
timing-driven interplane via placement for two-terminal 
interconnects is presented. The key step in the heuristic is that the 
optimum placement of a via primarily depends on the size of the 
allowed regions (that are estimated or known after an initial 
placement) rather than the exact optimum location of the vias. To 
better explain this step, consider the interplane interconnect line 
shown in Figure 2 where the optimum location for via i that 
connects the interconnect segments i and i+1 is to be determined. 

With respect to this via, the critical point (i.e., 0=
∂
∂

i

el

x
T ) of the 

Elmore delay is [14] 
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where Rui and Cdi are the upstream resistance and downstream 
capacitance of the allowed region for via i as shown in Figure 2. 
As described in [14], the critical point in (12) can be either a 
maximum or a minimum delay point. The analysis in the rest of 
this section applies to the case where the critical point provided 
by (12) is a minimum delay point, that is, *

ii xx = . A similar 
analysis can be followed where (12) corresponds to a maximum 
delay point.  

In (12), the optimum via location xi
* is a monotonic function of 

Rui and Cdi. The sign of monotonicity depends upon the 
interconnect impedance parameters of the segments i and i+1 that 
is connected by via i. As the size of the allowed regions for all of 
the vias is given by (3), the minimum and maximum value of Rui 
and Cdi can be readily determined and the respective values of xi

* 
for these extrema, namely *

minix  and *
maxix , are evaluated. Due to 

the monotonic dependence of xi on Rui and Cdi, the optimum point 
for via i, xi

*, lies within the range defined by *
minix  and *

maxix . 
The following cases are distinguished 

i) if  *
maxix  ≤  0, xi

*= 0, and the optimum via location coincides 
with the lower bound of the region defined by (3) or, 
equivalently, the optimum length of segment i is equal to the 
lower limit of (2), limin. 

ii) if  *
minix ≥  ∆xi,  xi

* =  ∆xi, and the optimum via location 
coincides with the upper bound of the region defined by (3) or, 
equivalently, the optimum length of segment i is equal to the 
upper limit of (2), limin + ∆xi. 

iii) if ∆xi  ≥ *
minix  ≥  0 and ∆xi  ≥  *

maxix  ≥  0, the bounded region 
as defined by (3) reduces to 

iiii xxxx ∆≤≤≤≤ *
max

*
min0 . (13) 

In this case, the optimum length of the segment cannot be directly 
determined. However, by successively decreasing the range of 
values for xi

*
 the optimum via location for segment i can be 

reached. The following example is used to demonstrate that the 
physical domain for xi

* successively decreases to a single point 
that is the optimum via location. Consider the segments j, i, and k 
in Figure 2, where segments j and k are located upstream and 
downstream of segment i, respectively. From (2), the minimum 
and maximum values of Ruj

0, Rui
0, Ruk

0, Cdj
0, Cdi

0, and Cdk
0 are 

determined, where the superscript declares the number of 
iterations. Assume that 0*

minx  and 0*
maxx  are obtained from (12) to 

satisfy (13) for all of the three segments i, j, and k. As the range 
of values for the optimum via location of segments j and k, 
decreases according to (13) the minimum (maximum) value of 
the upstream resistance and downstream capacitance of segment i 
increases (decreases), i.e., 1

min
0

min uiui RR < , 1
min

0
min didi CC < , 

0
max

1
max uiui RR < , and .0

max
1

max didi CC <  Due to the monotonicity 

of xi
* on Rui and Cdi 

1*
min

0*
min ii xx <  and 0*

max
1*
max ii xx < . 

Therefore the range of values for xi
* also decreases and after 

several iterations, the optimum location for the corresponding via 
is determined. 



iv) if *
minix  ≤  0 and *

maxix  ≥  ∆xi, the optimum via location 
cannot be directly determined. Additionally, the bounding region 
cannot be reduced. Consequently, some loss of optimality occurs. 
This departure from the optimal, however, is insignificant. The 
variation between the extrema of the upstream resistance and 
downstream capacitance due to the relatively small size of the 
allowed regions for via placement is such that a significant 
variation between the values *

minix  and *
maxix  does not occur for 

most interconnect instances. In addition, the aforementioned 
inequalities ( *

minix ≤ 0, *
maxix ≥ ∆xi) are usually satisfied where 

the size of the allowed region for a via is relatively small as 
compared to the size of the allowed regions for the remaining 
vias. A non-optimal placement for that interconnect segment does 
not considerably affect the overall delay of the line. Furthermore, 
there should be at least two vias for which an optimum location 
cannot be found. Indeed, if all of the vias but one are optimally 
placed, the exact values of the upstream (downstream) resistance 
(capacitance) for the non-optimized via have been obtained and, 
in turn, the optimum location for that via is determined by (12). 
Finally, the non-optimum placement of a via does not necessarily 
affect the optimum placement for the remaining vias. For 
example, any via placed according to the criteria described in (i) 
and (ii) is not affected by the placement of the remaining vias. 
Therefore, as it was pointed out in the beginning of this section 
the size of the allowed regions rather than the exact location of 
the vias is the key factor to determine the optimum via locations. 

The aforementioned heuristic has been used to implement an 
algorithm that exhibits optimum or near-optimum via placement 
for interplane interconnects in 3-D ICs, with significantly lower 
runtimes as compared to a geometric programming solver. The 
pseudocode of the algorithm is illustrated in Figure 4. The input 
to the algorithm is an interplane interconnect where the minimum 
length of the segments and the size of the allowed regions are 
provided. In the first step, the arrays of the maximum and 
minimum upstream (downstream) resistance (capacitance) for 
every allowed region are determined. In the following steps, for 
each unprocessed via, the range of values for the optimum via 
location as given by (12) is evaluated. In step five these values 
are compared to the inequalities described in (i)-(iv). If an 
optimal via location is determined in this step, the via is marked 
as processed and the capacitance and resistance arrays are 
updated. If, after a number of iterations, there are non-optimal 
vias, in step 14 the vias are placed in the middle of the 
corresponding allowed regions and the algorithm terminates. 
Other criteria such as routing congestion can, alternatively, be 
applied to the place the non-optimized vias rather than placing 
these vias in the middle of the corresponding allowed regions. 
Note that there must be at least two non-optimized vias after the 
specified maximum number of iterations is reached. Additionally, 
additional tradeoffs can be made to search for the optimum 
location of the non-optimized vias, considering runtime with 
accuracy. High accuracy has been demonstrated as described in 
Section IV. 

IV. SIMULATION RESULTS 

In this section, the improvement in delay achieved by optimally 
placing the vias is demonstrated and the proposed optimum via 
placement algorithm (OVPA) is compared with a geometric 
programming solver. Interplane interconnects for various 
numbers of physical planes are analyzed. The impedance 
characteristics of the horizontal segments and vias are extracted 
for several interconnect structures using a commercial impedance 

extraction tool [17]. Based on the extracted impedances, the 
resistance and capacitance of the horizontal segments range from 
5 Ω/mm to 25 Ω/mm and from 100 fF/mm to 300 fF/mm, 
respectively. Copper interconnect has been assumed. For all of 
the interconnect structures, the total length and minimum length 
of each horizontal segment, are randomly generated. For 
simplicity, all of the vias connect the segments of two adjacent 
physical planes and the size of the allowed regions is maintained 
the same for every via. 

 

Figure 4.  Pseudocode of the proposed optimum via placement 
algorithm (OVPA). 

SPICE 50% delay measurements are reported in Table 1. The 
delay of the line T1, where the vias are placed in the middle of the 
allowed regions is listed in column 2, and the delay T2 listed in 
column 3 corresponds to the line delay for random via placement. 
The minimum interconnect delay Tmin where the vias are 
optimally placed is depicted in column 4. The optimum via 
locations or, equivalently, the optimum length of the horizontal 
segments, is the output of the algorithm described in Section III. 
The improvement in delay as compared to the case where the vias 
are placed in the middle of the line is listed in column 5. The 
numbers in parentheses correspond to the delay improvement 
over the random placement. Note that the variation in delay 
improvement changes significantly for the listed instances even 
when the interconnect lengths are similar and the load 
capacitance and driver resistance are the same. This considerable 
variation shows the strong dependence of the line delay on the 
impedance characteristics of the segments of the line and 
supports the model of the interplane interconnect as a group of 
non-uniform segments. Additionally, depending upon the 
impedance characteristics of the line segments, placing the vias in 
the middle of the allowed regions is for some instances near-
optimum, explaining why the delay improvement is not 

Optimum Via Placement Algorithm: (lmin,∆x) 

1. Determine Cdmin, Cdmax, Rumin, Rumax  
2. while S ≠ Ø  
3  if iter < max_iter 
4.  si ← an unprocessed via 

5.  obtain *
minix  and *

maxix  from eq. (12) 

6.  check for the inequalities in (i) – (iv)  

7.  if si is optimized (cases i-ii) 

8.  store optimum via location 

9.  S ← S – {si} 
10.  update Cdmin, Cdmax, Rumin, Rumax 
  elseif ∆xi decreases (case iii) 

11.  update lmini 
12.  update Cdmin, Cdmax, Rumin, Rumax 
  else (case iv) 

13.  go to step 3 
  else  (the non-optimized vias) 

14.  place via in the middle of the allowed region 

15.  store via location 

16.  S ← S – {si} 

17. exit 



significant for these instances. The same characteristic applies for 
those instances where a random placement is close to the 
optimum placement. Nevertheless, as listed in Table 1, an 
improvement of up to 32% is observed for relatively short 
interconnects, demonstrating that an optimum via placement can 
significantly enhance the performance of 3-D circuits (in addition 
to the primary benefit that originates from reduction in 
wirelength). 

The algorithm presented in Section 4 is compared both in terms 
of accuracy and efficiency with two optimization solvers. The 
first solver YALMIP [18], is a generic optimization solver that 
supports geometric programming while GLOPTIPOLY [19] is an 
optimization solver for non-convex polynomial functions. Due to 
the excessive runtimes of GLOPTIPOLY (greater than three 
orders of magnitude as compared to YALMIP), however, only 
comparisons with YALMIP are reported. Optimization results are 
listed in Table 2. 

As listed in columns 9 and 10 of Table 2, OVPA exhibits a high 
accuracy as compared to YALMIP, independent of the number of 
planes that comprise the 3-D interconnect, demonstrating that the 
proposed algorithm yields optimum solutions for most 
interconnect instances. In addition, for those cases where some of 
the vias are not optimally placed, the loss of optimality is 
insignificant (as previously discussed in Section 4). In column 8, 
the runtime ratio of YALMIP and the OVPA is listed. OVPA 
performs approximately two orders of magnitude faster than 
YALMIP. 

As shown in Table 2 the delay savings from the optimum via 
placement strongly depend upon the size of the allowed regions. 
For example, doubling the size of the allowed regions for via 
placement the maximum delay improvement increases almost 
twofold. Consequently, efficient placement tools for 3-D circuits 
that generate sufficiently large allowed regions are required to 
achieve the highest delay improvement. In addition, as more 
interplane interconnects are routed, the allowed regions for the 
subsequent wires are reduced. Net ordering algorithms that 
determine which nets should be routed initially are therefore 
necessary. 

A place and route methodology has recently been presented for 
3-D circuits [1] where the interplane vias are considered as 
standard cells during initial placement. The via placement 
approach proposed in this paper can seamlessly be integrated into 
such a methodology to exploit the added delay benefits resulting 
from the optimum via placement where timing is the primary 
objective being satisfied. 

V. CONCLUSIONS 

Improvements in performance that can be achieved by optimally 
placing interplane vias in 3-D circuits is explored. Employing the 
distributed Elmore delay model, the task of optimally placing the 
vias is presented as a geometric programming problem. 
Considering the physical constraints, a heuristic is also proposed 
that provides accurate solutions. Based on this heuristic, a via 
placement algorithm that exhibits significantly smaller runtimes 
as compared to geometric programming solvers with negligible or 
no loss of optimality has also been implemented. Delay 
improvements of up to 16% and 32% are demonstrated where the 
vias are optimally placed as compared to via placement in the 
middle of the allowed regions and random placement, 
respectively. The proposed algorithm can be embedded in 
sophisticated place and route methodologies for 3-D circuits as a 
refinement step towards achieving greater performance. 

TABLE I.  Simulation results demonstrating the delay savings 
achieved by optimum via placement. The resistance and 
capacitance per unit length of the vias is rvi = 6.7 Ω/mm and cvi = 
6 pF/mm, respectively. The length of the vias is lvi = 20 µm. The 
driver resistance is RS = 15 Ω and the load capacitance is CL = 
100 fF. The size of the allowed regions is ∆xi = 200 µm. 

Length 
[mm] 

T1 [ps] T2 [ps] Tmin
  [ps] Improvement 

[%] 
n 

1.017 12.35 12.64 11.42 8.14 (10.68) 4 

1.180 13.37 14.42 12.33 8.43 (16.95) 4 

0.849 11.00 11.71 10.27 7.11 (14.02) 4 

0.969 13.52 14.96 12.12 11.55 (23.43) 4 

0.967 12.38 12.59 11.72 5.63 (7.42) 4 

1.612 18.54 19.85 17.24 7.54 (15.14) 5 

1.537 20.80 19.47 19.37 7.38 (0.52) 5 

1.289 17.78 18.43 16.45 8.09 (12.04) 5 

1.443 18.77 19.54 18.07 3.87 (8.14) 5 

1.225 16.97 18.33 15.62 8.64 (17.35) 5 

2.118 30.52 34.81 26.44 15.43 (31.66) 7 

2.130 27.92 27.32 25.94 7.63 (5.32) 7 

1.961 28.49 30.67 26.16 8.91 (17.24) 7 

2.263 35.58 40.11 31.31 13.64 (28.11) 7 

2.174 32.31 30.34 29.16 10.80 (4.05) 7 

3.031 43.43 42.15 39.24 10.68 (7.42) 10 

2.883 42.62 48.36 36.48 16.83 (32.57) 10 

3.212 46.80 52.13 41.77 12.04 (24.80) 10 

2.807 44.14 46.67 38.77 13.85 (20.38) 10 

1.701 65.90 62.29 60.25 9.38 (3.39) 10 
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TABLE II.  Optimization results for various two-terminal interplane interconnects and number of physical planes, n. 

 

Delay Improvement [%] 
Deviation of OVPA 

from optimum 
solution [%] 

Vias placed in the 
middle 

Random Via 
Placement 

n 

Average 
Interconnect 

Length 
[mm] 

∆xi’s 
[µm] 

avg max avg max 

YALMIP/OVPA 
Runtime ratio 

× times avg max 

Instances 

4 0.996 100 3.45 9.87 5.37 20.05 95.5 0.0001 0.008 5000 

4 1.302 200 6.31 22.76 9.87 46.91 241.6 0.0002 0.021 5000 

4 1.600 300 8.73 26.85 12.58 55.91 111.4 0.0001 0.025 5000 

5 1.277 100 3.91 10.84 5.57 22.04 93.1 0 0.003 5000 

5 1.684 200 7.06 19.65 10.09 41.28 226.4 0.0001 0.009 5000 

5 2.076 300 9.77 26.74 14.27 55.45 90.1 0.0001 0.009 5000 

7 1.840 100 4.64 12.81 6.21 25.16 84.6 0 0.008 5000 

7 2.440 200 8.26 23.77 11.07 47.56 89.0 0 0.002 5000 

10 2.678 100 5.48 12.74 6.90 25.72 78.9 0 0.005 5000 


