
Through Via Generation and Placement for 3D Stacked ICs

ABSTRACT
Through-via is the key enabling technology that allows stacking
and interconnecting multiple die together in 3D stacked ICs. This
paper formulates and provides effective solutions to the two new
problems related to the through-via management during the phys-
ical design phase of 3D stacked ICs: constrained min/max parti-
tioning and 3D Steiner routing. In case the given design needs to
be partitioned for multiple-die implementation, all inter-partition
connections require through-vias. Our constrained min/max parti-
tioning is formulated in such a way that various die bonding styles
available in 3D stacked IC are exploited. Once the gates placed, we
construct performance-oriented 3D Steiner tree for each net while
determining the optimal location for the related through-vias. Our
related experiments show the effectiveness of our proposed solu-
tions.

1. INTRODUCTION
Technology scaling has resulted in fabrication of smaller and

faster devices. The smaller device size has resulted in higher device
density and greater number of interconnects. In addition, technol-
ogy scaling caused interconnect delay to play a dominating fac-
tor in today’s designs. Various optimization techniques like wire
sizing/spacing, buffer insertion, and wire shielding have been de-
veloped to overcome the interconnect problem. However, these
techniques increase silicon area and power consumption. To solve
the issues related to interconnect, new design processes need to be
looked into. 3-dimensional integration is an effective design para-
digm for interconnect-centric circuits. The ability to route signals
in the vertical dimension enables distant blocks to be placed on top
of each other. This results in a decrease in the overall wire length,
which translates into less wire delay, less power, and greater per-
formance. Although the extra degree of freedom is an attractive
option, the physical design problems pose interesting challenges.

The wafer-bonding approach in [1] joins discrete wafers using
a copper interconnect interface, and permits multiple wafers and
multiple 3D interconnects. Different bonding styles can be used
for the fabrication of 3-D stacked ICs, which can be broadly classi-
fied into face-to-face (F2F), face-to-back (F2B), and back-to-back

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC’06,July 24–28, 2006, San Francisco, California, USA.
Copyright 2006 ACM ??? ...$5.00.

die 1

die 2

die 3

through
via

devices

face-to-face

face-to-back

Figure 1: Bonding Styles in 3D stacked ICs

(B2B) bonding styles, as illustrated in Figure 1. The “face” refers
to the metal layer side of a die, whereas the substrate side is called
“back”. Through-viasrefer to the vias connecting die in these
bonding styles and thus are the key enabling technology for 3D
die stacking. This paper focuses on the effective management of
the through vias during the physical design for 3D stacked ICs.
We note that two major steps in physical design have high impact
on through via management: partitioning and routing. In case the
given design needs to be partitioned for multiple-die implementa-
tion, all inter-partition connections require through-vias. There-
fore, we view the die-partitioning step as the one thatgenerates
through vias. In addition, it is during the routing step that these
through vias are actuallyplaced.

F2F through-vias (≈ 0.5µ × 0.5µ) have a smaller pitch than
F2B and B2B through-vias (≈ 5µ × 5µ) [2]. In addition, too
many F2B/B2B through-vias fabricated on a single thinned wafer
may adversely affect reliability [3] since these vias actually pen-
etrate the substrate. Thus, it is desirable todecreasethe number
of inter-die connections in these bonding styles. In the case of F2F
bonding, however, it is desirable toincreasethe number of inter-die
connections since the via density is much higher and enables a sig-
nificantly higher bandwidth for inter-layer communication. On the
other hand, the location of through vias in a Steiner tree has high
impact on the overall topology as well as the delay at the sink nodes
of the tree since it determines the amount of wiring done at all in-
termediate die that the tree spans. To the best of our knowledge,
none of these problems have been addressed in the past.1 Thus, the
contributions of this paper are as follows:

1Some analytical results on the location of through vias were re-
cently presented in [4]. However, this work focused on two-pin
nets and did not perform Steiner tree construction.

• We formulate and solve the newConstrained Min/max Parti-
tioning problem for bonding style-aware through-via gener-
ation in 3D stacked ICs. Our performance-driven multi-level
partitioning approach recursively partitions the netlist while
alternating the objectives between mincut and maxcut under
cutsize constraints.

• We formulate and solve the new3D Steiner Routingproblem
for multi-pin net routing in 3D stacked ICs. Our algorithm
considers all die and their bonding styles simultaneously and
constructs performance-oriented Steiner trees while deter-
mining the optimal location for the related through-vias.

The remainder of the paper is organized as follows. Section 2
presents the problem formulation. Section 3 and 4 respectively
presents our 3D partitioning and 3D routing algorithms. Experi-
mental results are presented in Section 5, and we conclude in Sec-
tion 6.

2. PROBLEM FORMULATION

2.1 Constrained Min/Max Partitioning
We assume the following is given: (i) a netlist represented by

a directed graphG = (V, E), where the area and delay of each
gatev ∈ V are given, (ii) an ordered set ofK die {D0, D1, · · · ,
DK−1}, (iii) bonding style for each pair of adjacent die, denoted
bond(Di, Di+1)→{F2F, F2B, B2B}, (iv) cutsize upper bound
for each pair of adjacent diecut(Di, Di+1) < Ci, and (v) area
constraint for each partitionAlow < |Di| < Aup. The goal of the
Constrained Min/Max Partitioningproblem is to partitionG into
K die so that the cutsize and area constraints are satisfied. The
objective is to minimize the critical path delay, where the delay of
interconnecte ∈ E is based on its length. In general,CF2F À
CF2B andCF2B ' CB2B , i.e., the cutsize constraint for F2F is
much higher than F2B and B2B.

2.2 3D Steiner Routing
We assume the following is given: (i) a set ofm nets {n0,

n1, · · · , nm−1}, where each net is represented by a list of pins
ni = {p0, p1, · · · , pk−1} with p0 as the driver, (iii) aX × Y × Z
3D routing gridR that represents the routing resource in a given 3D
stacked IC, where each grid node represents a routing region and
each edge denotes the adjacency among the regions, (iv) eachx/y
grid edge is associated with horizontal/vertical wire capacity andz
with via capacity, and (v) the location of each pinp(x, y, z). A 3D
Steiner Treeis defined to be a set of 2D (= planar) Steiner trees con-
nected by through vias. The goal of the3D Steiner Routingproblem
is to generate a 3D Steiner tree for each net while satisfying the ca-
pacity constraints specified in the underlyingR. The objective is to
minimize the maximum Elmore delay among all pins in each tree.

2.3 Design Flow
Our physical design flow for 3D stacked ICs is as follows:

1. 3D Partitioning: we partition the netlist into multiple die.
Our constrained min/max partitioning is used for this step.

2. 3D Placement: the gates in each die are placed. We extended
the existing simulated annealing-based detailed placement
[5] to 3D for this step.

3. 3D Routing: we construct Seiner tree for each net. Our 3D
Steiner routing is used for this step.

3D floorplanning [6] and placement [7] are well studied. Thus, the
focus of this paper is the first and the third step.

Constrained Min/Max Partitioning Algorithm
input: netlistNL, area/cutsize constraints,K (= # of die)
output: ordered set ofK partitions ofNL
1. while (# of partition 6= K)
2. P = next partition in BFS order;
3. if (bond(P0, P1) → F2F)
4. CP = max-cut multi-level clustering ofP ;
5. else
6. CP = min-cut multi-level clustering ofP ;
7. hgt = height ofCP ;
8. B(hgt) = random bipartitioning ofP at top level;
9. for (h = hgt downto 0)
10. refineB(h) based onbond(P0, P1);
11. projectB(h) to B(h− 1);

Figure 2: Pseudocode of our recursive multi-level layer parti-
tioning algorithm. The clustering and partitioning objectives
are alternated between maxcut and mincut depending on the
bonding style.

3. LAYER PARTITIONING ALGORITHM

3.1 Overview of the Algorithm
Our bonding-aware layer partitioning algorithm is based on re-

cursive multi-level bipartitioning approach. A pseudocode is shown
in Figure 2. Given a netlist, the algorithm recursively bipartitions
the netlist until the desired number of partitions is obtained (line
1-2). Each cutline is optimized by iteratively improving the ran-
dom initial solution, where groups of gates (= clusters) are moved
across the cutline to improve the solution quality (line 10). Multi-
level paradigm is based on the fact that the size of the clusters being
moved is gradually reduced so that the finer and finer-grained op-
timization is carried out to effectively improve the solution (line 9-
11). Multi-level approach requires a multi-level cluster hierarchy,
which is obtained by recursively clustering the netlist. Once the re-
finement at a certain cluster-level is completed, i.e., no further im-
provement is possible, the next lower-level clusters are introduced
and refinement starts with the current solution (line 11).

Upon each bipartitioning, the clustering and partitioning objec-
tives are set according to the bonding style that it corresponds to
(line 3, 10). In case of F2F bonding, the cutsize constraint is usu-
ally set high due to the high density of F2F through vias available.
We first perform recursive clustering so that the amount of connec-
tion among the clusters ismaximized(line 4). Next, we generate
a random bipartitioning, which in most case has a lower cutsize
than the target cutsize (line 8). Then the subsequent multi-level
refinement attempts toincreasethe cutsize until it hits the cutsize
target. Then the subsequent refinement tries to maintain the cut-
size while improving the performance objective until all levels of
the cluster hierarchy are examined. In case of F2B/B2B bonding,
the cutsize constraint is usually set low due to the low density of
F2B/B2B through vias available. Our multi-level clustering tries
to minimizethe amount of connection among the clusters (line 6).
Then the multi-level partitioning refinement is performed tode-
creasethe initial cutsize until it hits the target. The complexity
of our partitioning algorithm isO(n log n) as the traditional multi-
level partitioning algorithm since the maxcut clustering or maxgain
computation do not increase the complexity.

3.2 Min/Max Clustering and Partitioning
We discuss the following three important issues regarding our

layer partitioning: min/max clustering, min/max gain computation,

and timing optimization under cutsize constraint. In case of F2F
bonding, our recursive clustering attempts to maximize the amount
of interconnect among the clusters. This is because it improves
the chance of finding a maxcut (cutline with high cutsize). Thus,
our greedy maxcut clustering heuristic tries to group clusters with
fewer connections among them. We first model the netlist with an
edge-weighted undirected graph, where each net of sizek forms a
k-clique with edge weight of1/(k−1). We then visit a nodex and
find another nodey so that there is no connection betweenx andy
or the weight ofe(x, y) is minimum. We then clusterx andy if the
resulting cluster size does not exceed the limit. This greedy heuris-
tic runs inO(n2) time in the worst due to the all-pair comparison.
However, the runtime in practice is much faster since searching for
a non-connected partner does not usually require scanning all other
nodes due to the sparseness of the graph. In case of F2B/B2B bond-
ing, any known clustering method for cutsize minimization can be
used such as edge coarsening (EC) [8].

In general, the cluster move in an iterative improvement-based
partitioning is guided by thegain concept. The traditional gain of
a cluster in mincut bipartitioning denotes the cutsize reduction if it
is moved to the other partition. In our layer partitioning algorithm,
the gain under maxcut objective is recomputed so that it represents
theincreasein cutsize if moved. Thus, the two opposite definitions
of the gain are used based on the partitioning objective. During a
singlepassof an iterative improvement-based partitioning scheme,
all clusters are given a chance to move. We note that it is often
possible to hit the high/low cutsize target while the current pass is
not completed. In this case, we use the remaining moves of the cur-
rent pass to optimize timing objective while maintaining the cutsize
close to the target. Before each pass starts, we perform static timing
analysis to compute the timing weight of each net. We then min-
imize/maximize the timing-weighted cutsize during the remaining
moves. In this case, we do not allow the move of any cluster that
causes the real cutsize to deviate too much from the target. In case
of F2F bonding, placing two gates on critical pathon top ofeach
other may help timing better then placing themnext toeach other.
This is the reason formaximizingthe weighted cutsize and thus
separating the gates into two dies for timing optimization in F2F
bonding.

4. 3D STEINER ROUTING ALGORITHM

4.1 Overview of the Algorithm
The basic approach of our 3D Steiner tree construction algorithm

is similar to SERT [9], where we incrementally grow the existing
tree by connecting a new pin to it. The goal is to minimize the
maximum Elmore delay among all sink pins of the tree. Here the
biggest challenge is to compute the point on the tree where the new
pin connects to. The major difference between SERT and our work
is that all the pins in SERT are located in the same die, whereas
our 3D algorithm handles the pins located in different die. This 3D
case requires the usage of through vias, and the location of these
vias has huge impact on the topology of the tree as well as the sink
pin delay. In addition, the delay optimization in SERT is based
on single variable, whereas our algorithm deals with two-variable
function optimization.

A pseudocode of our algorithm is shown in Figure 3. Our rout-
ing algorithm consists of two phases: construction (line 1-13) and
refinement (14-15). We construct 3D Steiner trees during the con-
struction phase while ignoring congestion and then alleviate con-
gestion by rip-up-and-reroute during the refinement phase. Given
a netn, our 3D Steiner treeTn initially contains the driver pin
(line 2). We store the remaining pins ofn in Qn (line 3). We

3D Steiner Routing Algorithm
input: placed netlistNL, routing resource graphR
output: 3D Steiner tree for each net
1. for (each netn ∈ NL)
2. Tn = p0(n);
3. Qn = set of pins ofn exceptp0;
4. while (Qn 6= ∅)
5. for (each pina ∈ Qn)
6. for (each edgee ∈ Tn)
7. x = optimal connection point fora → e;
8. y = optimal through via location one(x, a);
9. updated(p) for all p ∈ Tn usingTn ∪ e(x, a);
10. X(a, e) = max{d(p)|p ∈ Tn ∪ a};
11. (amin, emin) = pin+edge pair with minX;
12. Tn = Tn ∪ emin;
13. removeamin from Qn;
14. for (each non-timing criticalTn that violates capacity)
15. rip-up-and-rerouteTn;

Figure 3: Pseudocode of performance-driven 3D Steiner rout-
ing algorithm. In case e and a are located in different planes,
e(r, a) will contain a through via.

then examine all pin-edge pair (line 5-6) and compute the impact
of connecting the pin to the edge on Elmore delay, where the pin is
from Qn and the edge is fromTn. Specifically, the delay impact is
calculated based on the increase in maximum Elmore delay among
all pins currently inTn (line 9-10). This requires the computation
of connection pointx and the through via locationy (line 7-8) (to
be discussed in Section 4.3). Next, we select the pin-edge pair that
results in the minimum max-delay increase (line 11) and add the
pin to Tn (line 12-13). Our rip-up-and-reroute is done only on the
less timing critical nets, i.e., the nets with smaller max-delay values
(line 14-15). The complexity of our algorithm isO(nm4), where
n is the total number of nets andm is the maximum number of
pins in any net. TheO(m4) term is based on the while-loop, two
for-loops, and Elmore delay computation for all sinks (line 9).

4.2 Elmore Routing for 3D Steiner Trees
In this section we discuss how we can efficiently construct 3D

Steiner trees. Our discussion is based on two-die case for the sim-
plicity of the discussion, but our algorithm is applicable to multi-
ple die without any modification. Letr1 and c1 denote the unit
length resistance and capacitance values for die 1.r2 andc2 are
similarly defined for die 2. The capacitance and resistance of a
through via connecting the two die are denotedCv andRv. Let
p0, p1, p2......pm be the pins of a net, withp0 being the driver pin.
The Elmore delay at a sink pinp is defined as

d(p) =
X

k∈p0→p

rkCk

whererk is the resistance along thep0 → k path, andCk is the
downstream capacitance as seen from nodek. Given a pinp and
an edgee ∈ T , theconnection pointis defined as the point one to
which p is connected. To determine the location of the connection
point, we need to consider the following two cases:

• Case 1:T consists only of the driver pinp0. In this case,
if p lies on the same die asp0, d(p) is computed based on
the shortest rectilinear route betweenp0 andp. If p lies on a
different die,d(p) depends on the location of the through via
as well as the amount of interconnect assigned in both die.

p c

b

a

q

connection

point

x

y
through via

z

d

p
0

g

Figure 4: Illustration of how pin a connects toe(p, c) ∈ T that
lies in a different die. x is the location of connection point on
e(p, c). y is the location of the through via inserted one(x, a).
e(q, b) is another branch in T . g is another sink that is not a
part of the subtree rooted atp. d is the shortest distance point
on e(p, c) from a, and z is the distance between the through via
and a. The Elmore delay ofT ∪ a is a function of both x and
y. e(y, a) is routed in the bottom die, whereall as all othe edges
are routed in the top die.

• Case 2:p connects to an edgee ∈ T . In this case, ifp ande
lie on the same die, it was shown in [9] thatp will connect to
either (i) the source node ofe or (ii) the point one that is of
the shortest distance top. If p ande lie on different die, the
delay ofall nodes inT includingp depend on the location of
connection point as well as the through via.

The following Section 4.3 provides details on how to compute the
location of connection points and through vias in 3D case.

4.3 Connection Point and Via Location
The connection point computation for 2D case has been pre-

sented in [9], where the Elmore delay change on an entire tree
caused by adding a new pin to the tree is a function of a single
variablex, the location of connection point. We extend this work
by introducing a second variabley that represents the location of
through via. We then optimize the two-variable delay function
and determine the optimal location of connection point (= x) and
through via (= y) for 3D case. Refereing to Figure 4,e(p, c) and
e(q, b) are edges onT . p is the parent node ofe(p, c), andq is the
parent node ofe(q, b). a is the new pin that needs to connect to
e(p, c). Edgee(p, c) lies on die 1 with interconnect parasiticsr1

andc1, whereasa lies on die 2 with interconnect parasiticsr2 and
c2. d is the point one(p, c) that is of the shortest distance toa. x is
the connection point, andy is the location of through via.

Our first goal is to derive Elmore delay equations that are the
functions ofx andy. In what follows, we letx denote the distance
between nodep and nodex for the simplicity of the discussion.q,
a, b, c, andd are used similarly.y is the distance betweenx andy,
andz is the distance betweeny anda. Let Tb denote the subtree
rooted at nodeb. In order to compute the Elmore delay change
on all sink pins inT caused by addinga to T , we consider the
following four cases: (i) delay at the node to be added (= nodea),
(ii) delay at the subtree located after the connection point (= node
c), (iii) delay at the subtree that could be located either before or
after the connection point (= nodeb), (iv) delay the nodes not in
Tp.

• Case 1: delay at nodea. In this case,d(a) is a sum of four
functions.f1 is the delay fromp0 to p. f2 is the delay fromp
to x without consideringe(q, b) andTb. f3 is the delay from
p to x when consideringe(q, b) andTb. f4 is the delay from

x to a. Thus we have:

d(a) = f1 + f2 + f3 + f4

where

f1 = K0 + K1{c1y + Cv + c2z + c1c + Cc + Cb+

c1(b− q)}
f2 = r1x

n
c1

x

2
+ c1y + Cv + c2z + c1(c− x) + Cc

o
f3 =

n
r1x(b− q + Cb), if x ≤ q
r1q(b− q + Cb), if x ≥ q

f4 = r1y
�
c1

y

2
+ Cv + c2z

�
+ Rv

�
Cv

2
+ c2z

�
+ r2c2

z2

2

wherez = a−(x+y), K0 is the sum of resitance/cpacitance
products alongp0 → p path,K1 is the sum of resistance
alongp0 → p path, andCi is the capacitance of the sub-tree
rooted atith node.

• Case 2: new delay at nodec. The delay is given by

d(c) = f1 + f2 + f ′3 + f ′4

where

f ′3 = r1q(b− q + Cb)

f ′4 = r1(c− x)

�
c1(c− x)

2
+ Cc

�
• Case 3: new delay at nodeb. The delay is given by

d(b) = f1 + f ′′2 + f ′′3

where

f ′′2 =
n

r1x(c1y + Cv + c2z), if x ≤ q
r1q(c1y + Cv + c2z), if x ≥ q

f ′′3 = r1q
n

c1
q

2
+ c1(b− q) + Cb + Cc

o
• Case 4: For all other nodes not inTp (nodeg in Figure 4),

the added delay is a function of the added capacitance, which
is linear in terms ofx andy and given by

∆C = c1(x + y) + Cv + c2z

4.4 Optimization of Delay Equations
In general, for a quadratic function of two variablesf(x, y), the

maximum or the minimum of the function depends upon the values
of ∂2F

∂x2 and the determinant of the Hessian matrixH1:����� ∂2F
∂x2

∂2F
∂x∂y

∂2F
∂x∂y

∂2F
∂y2

�����
whereF is the delay function under consideration. The above val-
ues for a quadratic function of two variables are always constant.
For our case we have0 ≤ x ≤ d and0 ≤ y ≤ a and thus consider
the following cases:

• Case 1: If∂
2F

∂x2 ≤ 0 andH1 ≥ 0, the minimum can be found
at the boundary points, i.e.,x = 0 or x = d andy = 0 or
y = a. Thus we have four points to look for the minimum.

• Case 2: If∂2F
∂x2 ≤ 0 ∂2F

∂y2 ≤ 0 andH1 = 0, we have a con-
cave function, and the minimum lies on the boundary points.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5: Illustration of 3D Steiner tree construction.

• Case 3: If ∂2F
∂x2 = 0 ∂2F

∂y2 = 0 andH1 = 0, thenf(x, y)

is a linear function ofx andy, and the minimum lies at the
boundary points.

• Case 4: IfH1 < 0, the critical point found is a saddle point.
and the minimum lies at the boundary, although a different
set of boundary points may need to be chosen. The set of
boundary points may be found by settingx = 0 or x = d
and minimizingf(x, y) as a function ofy or settingy = 0
or y = a and minimizingf(x, y) as a function ofx.

We show that the Elmore delay at each sink node inT can be
optimized by considering any of the 4 cases shown above. Thus,
there is a fixed number of points(x, y) for which the Elmore delay
can be minimized. Assuminga0 = r2/r1 andb0 = c1/c2, the
optimization of two-variable delay functions allow the computation
of x (= connection point) andy (= through via location) as follows:

• Ford(a) we have∂2F
∂x2 = r1c2(a0−b0−2), ∂2F

∂y2 = r1c2(a0+

b0 − 2), andH1 = −(r1c2)
2{(a0 + b0 − 2)2b0}. Thus, we

see that whenH1 = 0, ∂2F
∂x2 ≤ 0 and ∂2F

∂y2 = 0, the optimal
delay is found at points according to the Case 2. IfH1 < 0,
optimal delay is found at points in according to the Case 4.
If H1 > 0, we have∂2F

∂x2 ≤ 0, so the optimal delay is found
at points according to the Case 1.

• For d(b) we need to evaluate two cases: (i) whenx ≥ b, we

have ∂2F
∂x2 = 0, ∂2F

∂y2 = 0, andH1 = 0. Thus, the optimal
delay is found at points according to the Case 3. (ii) when
x ≤ b, we have∂2F

∂x2 = −2r1c2, ∂2F
∂y2 = 0, andH1 =

−(r1c2)
2(b0 − 1)2. Thus, ifH1 = 0, the optimal delay is

found at points according to the Case 2. Otherwise, they are
found at points according to the Case 4.

• For d(c) we have∂2F
∂x2 = −2r1c2, ∂2F

∂y2 = 0, andH1 =

−(r1c2)
2(b0− 1)2. If H1 = 0, the optimal delay is found at

points according to the Case 2. Otherwise, they are found at
points according to the Case 4.

• For all other nodes not inTp, we have∂2F
∂x2 = 0, ∂2F

∂y2 = 0,
andH1 = 0 since delay is a linear function ofx andy. Thus,
the optimal delay is found at points according to the Case 3.

Sincea0 andb0 values are dependent on the interconnect parame-
ters at each die, we can see that the number of points(x, y) to which
a pin can connect to an edge in 3D case is a fixed constant. At each
stage of the 3D Steiner tree generation, out goal is to choose one
of these points which gives us the minimum max-delay among all
sink nodes of the existing tree. Figure 5 shows an ilustration of 3D
Steiner tree construction using our algorithm.

5. EXPERIMENTAL RESULTS
We implemented our algorithms in C++/STL and ran our exper-

iments on Linux PC running at 2GHz. We tested our algorithms
with two sets of benchmark: ISCAS89 and ITC99. We do not use
ISPD98 circuits due to the absence of signal direction information.
Our experiment is based on 4-die stacked IC, where the top two and
bottom two dies are bonded in face-to-face and the middle two in
back-to-back. We assume all 4 dies have the same unit-length re-
sistance and capacitance values, but our algorithm is applicable for
heterogeneous cases. We use the interconnect parameters from [4]:
ru = 86Ω/mm andcu = 396fF/mm for unit-length intercon-
nect for all four dies.Rv = 53Ω/mm andCv = 280fF/mm for
F2F through vias, andRv = 100Ω/mm andCv = 650fF/mm
for B2B through vias.

Table 1 shows our layer partitioning results. The first cutline is
B2B (constrained mincut) while the subsequent two cutlines are
F2F (constrained maxcut). The F2F and B2B via constraints are
calculated based on the size of each circuit. We first report the
cutsize of the 1st, 2nd, and 3rd bipartitioning. From the compar-
ison between (i) B2B via limit vs 1st cut, and (ii) F2F via limit
vs 2nd/3rd cuts, we observe that our cutsizes indeed satisfied the
cutsize constraints. Next, we report the timing-weighted cutsize
improvement from the point we hit the cutsize target until the cur-
rent bipartitioning process is completed. Our partitioning change
its target from “pure” cutsize to “timing-weighted” cutsize when
the cutsize first hits the target. Then the weighted cutsize is either
maximized or minimized depending on the bonding style. The pure
cutsize should stay within a limited range from the target during

Table 1: Layer partitioning results.

via limit cutsize timing imp (%)
ckt B2B F2F 1st 2nd 3rd 1st 2nd 3rd

b14 opt 520 2400 515 2403 2335 9.8 4.6 3.5
b15 opt 750 3400 742 3375 3101 11.2 4.6 4.3
s9234 530 2500 526 2502 2249 13.4 2.5 4.5
s15850 980 4400 936 4391 4001 16 3.3 3.2
s13207 820 3700 785 3679 3313 12 3.1 3.7
b20 opt 1150 5600 1125 5593 4497 15 3.9 4.1
b17 opt 2400 11000 2339 10983 987511.1 4.0 3.9
s38417 2200 11000 2166 10223 980010.1 2.8 2.8

Table 2: 3D Steiner tree construction results for 3D maze router
and our 3D Elmore router. Congestion is not considered.

3D Maze Routing 3D Elmore Routing
ckt wire delay via wire delay via

b14 opt 5035 18.2 8331 6723 2.5 9221
b15 opt 6508 24.9 12027 7577 3.1 12153
s9234 4091 6.8 6832 4706 2.2 6896
s15850 7719 17.8 12151 8792 3.4 12231
s13207 6523 8.3 10119 7445 2.2 10215
b20 opt 11273 22.4 1942914728 3.3 19493
RATIO 1.00 1.00 1.00 1.20 0.17 1.01
TIME 515 sec 216 sec

this process. We observe from the Table 1 that this scheme indeed
improves the weighted cutsize further. Thus, we conclude that we
should not terminate the partitioning process once the target cut-
size is achieved since the subsequent cell moves can optimize other
objectives such as timing.

For our 3D Steiner tree generation algorithm, we compare our re-
sults with a wirelength-driven 3D maze router. Our 3D maze router
each time finds the shortest path from the source node to the nearest
sink. Then all nodes along the path become new source nodes. We
report the total wirelength, number of vias, and the maximum delay
among all sinks for each circuit. Table 2 shows a comparison when
congestion is not considered, i.e., the net/via capacity constraints
are not imposed. We observe that our 3D Elmore router achieves
a significant delay improvement over 3D maze router. The total
via used is about the same in both cases. The wirelength, however,
has increased noticeably. This is expected since the maze router
tends to form chain-like routes, whereas the Elmore router prefers
star-shaped topologies. An illustration is show in Figure 6. Total
runtime for all circuits are reported as well. We note that 3D maze
router is slightly slower than 3D Elmore router.

We consider the congestion issue in Table 3, where we compare
(i) congestion-driven 3D maze router and (ii) a hybrid 3D Elmore
routing plus 3D maze rip-up-and-reroute. The rationale behind the
hybrid approach is to first perform 3D Elmore routing for timing
critical nets and then reroute non-timing critical nets for conges-
tion reduction. We observe that the maze-based rerouting degrades
the delay as well as via results. However, all the net/via capacity
constraints are satisfied. The final delay result is still better for the
hybrid approach.

6. CONCLUSIONS
This paper studied two new problems that are important to the

through via management for 3D stacked IC technology: bonding-
aware layer partitioning and 3D Steiner tree construction. We for-

3D Maze Routing 3D Elmore Routing

Figure 6: Comparison between 3D maze vs 3D Elmore routing
results. The wirelength of 3D

Table 3: Congestion-aware 3D Steiner tree construction results
for 3D maze router and our 3D Elmore router.

Cg-aware 3D Maze 3D Elmore + Maze
ckt wire delay via wire delay via

b14 opt 5035 18.7 8331 6349 7.8 9552
b15 opt 7486 25.3 11462 8394 6.1 11462
s9234 4094 6.9 6832 4686 3.2 6910
s15850 7719 17.8 12154 8685 3.4 12423
s13207 6523 8.1 10201 7148 2.7 10231
b20 opt 11387 22.4 1943915001 10.9 21620
RATIO 1.00 1.00 1.00 1.17 0.34 1.06
TIME 518 sec 447 sec

mulated the constrained min/max partitioning problem to handle
netlist partitioning into multiple die while considering various types
of bonding styles available in 3D ICs. We for the first time formu-
lated and solved the 3D Steiner routing problem. Our algorithm is
based on a constructive method, where the Steiner tree is grown by
connecting a new pin to the existing tree. We derived two-variable
delay equations and optimized them to compute the Elmore delay
optimal location of the through vias. Our future work will address
process, thermal, and voltage variation issues during the Steiner
tree construction.

7. REFERENCES
[1] A. Fan, A. Rahman, and R. Reif. Copper wafer bonding.Electrochemical

Solid-State Letter, 1999.
[2] S. B. Horn. Vertically Integrated Sensor Arrays VISA. InDefense and Security

Symposium, 2004.
[3] M. Umemoto, K. Tanida, Y. Nemoto, M. Hoshino, K. Kojima, Y. Shirai, and

Kenji Takahashi. High-Performance Vertical Interconnection for high-density 3D
Chip Stacking Package. InIEEE Electronic Components and Technology Conf.,
2004.

[4] V.F. Pavlidis and E.G. Friedman. Interconnect Delay Minimization through
Interlayer Via Placement in 3-D ICs. InProc. Great Lakes Symposum on VLSI,
2005.

[5] C. Sechen and A. Sangiovanni-Vincentelli. The TimberWolf Placement and
Routing Packag. InIEEE Journal of Solid-State Circuits. vol 20, 1985.

[6] J. Cong, J. Wei, and Y. Zhang. A Thermal-Driven Floorplanning Algorithm for
3D ICs. InProc. IEEE Int. Conf. on Computer-Aided Design, 2004.

[7] Brent Goplen and Sachin Sapatnekar. Efficient Thermal Placement of Standard
Cells in 3D ICs using a Force Directed Approach. InProc. IEEE Int. Conf. on
Computer-Aided Design, 2003.

[8] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. Multilevel Hypergraph
Partitioning : Application in VLSI Domain. InProc. ACM Design Automation
Conf., pages 526–529, 1997.

[9] K. Boese, A. Kahng, B. McCoyy, and G. Robins. Near-Optimal Critical Sink
Routing Tree Constructions.IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, 1995.

