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ABSTRACT 
A layout-level multi-domain statistical diagnosis methodology 
and yield optimization technique for multilayer RF passive 
circuits is presented. The circuits are composed of quasi-lumped 
embedded inductors and capacitors in Liquid Crystalline Polymer 
(LCP) substrate. The statistical diagnosis approach is based on 
layout segmentation, lumped element modeling, sensitivity 
analysis and extraction of probability density function using 
convolution methods. The statistical analysis takes into account 
the effect of thermo-mechanical stress effects and process 
variations that are incurred in batch fabrication. Appropriate 
transformation techniques for analysis with non-Gaussian 
distributed parameters have also been discussed. Yield 
enhancement methods based on constraint-based convex 
optimization have also been presented. The results show good 
correlation with measurement/electromagnetic (EM) data.  

Keywords 
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1. INTRODUCTION 
The design of wireless circuits for RF frequencies require precise 
values of passive components which is partially satisfied due to 
manufacturing variations, resulting in yield loss. In addition, the 
integration of passives in multilayer RF circuits requires reliability 
estimation in order to maximize yield in batch fabrication. 
However fault detection and diagnosis for RF circuits after 
manufacturing is a time-consuming step in the design cycle. The 
focus of this paper is the application of statistical methods and 
mechanical models that enable diagnosis and yield enhancement 
of batch fabricated RF circuit layouts for new technologies, which 
significantly reduces the design cycle time.  

In RF designs, the physical effects of layout, such as 
electromagnetic coupling and parasitics affect circuit 
performance. Therefore statistical analyses of RF circuits that are 
based on circuit simulators are fast but do not provide accurate 
results. The conventional method to study the effect of component 
variations on system performance is to perform Monte Carlo 
analysis. However, Monte Carlo technique for EM simulations 
can be time and memory-intensive. In addition, Monte Carlo 
analysis does not provide diagnosis capability. Clearly there is a 
need for time-efficient multi-domain diagnosis of RF circuits in 
prototype designs as well as in volume production based on batch 
fabrication. This paper includes the effect of thermo-mechanical 

stresses and dielectric variations incurred in large panel 
fabrication by implementing warpage models of LCP boards in 
sensitivity analysis. The analysis is “multi-domain” since it 
considers the effects of process variations at the circuit and board 
level that is critical to reliable yield estimation in a batch process. 

In statistical analysis of sensitivity data, many of the parameters 
are statistically related, thus requiring the use of the parameters’ 
correlation coefficient matrix. Since the methods for generating 
arbitrary sets of statistical parameter data is based on multivariate 
analysis, transformation of non-Gaussian data to the 
Gaussian/normal distribution domain is critical. Also, use of 
Monte Carlo simulations becomes computationally expensive due 
to the large number of SPICE simulations that needs to be 
performed at each stage. This paper demonstrates the use of 
surface response methods to extract statistical distributions of 
performance measures.  

Extensive literature exists on circuit-level design centering and 
yield optimization for IC fabrication. Statistical design centering 
approach to minimax circuit design has been shown in [1]. The 
method focused on yield optimization based on circuit level 
parameters rather than layout. Earlier work on circuit-level design 
centering led to the development of algorithms based on convex 
optimization and radial exploration methods [2], [3]. Parasitic-
aware post-optimization design centering for RF Integrated 
Circuits based on simulated annealing [4] reduces iterations in 
design optimization but the work does not focus on diagnosis. 
Network-level design centering based on piecewise ellipsoidal 
approximation has been shown in [5]. Clearly, the focus of most 
of the prior work has been design centering using circuit 
parameters and not layout-level diagnosis of RF designs for 
large-panel fabrication. 

Fig.1   Photograph of batch-fabricated bandpass filters on a single 
panel; each block represents a filter  



2. PROPOSED METHODOLOGY 
Fig.2 shows the flow diagram of the proposed statistical analysis, 
diagnosis, and yield enhancement methodology. The process 
begins by identifying key performance measures and significant 
design parameters based on sensitivity analysis through 
circuit/EM simulations (using layout segmentation). To account 
for thermo-mechanical stress effects incurred in large panels, 
warpage model of the board is included in the sensitivity analysis. 

Regression analysis is used to map multiple performance 
measures to physical and process parameters. Although, this 
method is not suitable for broadband mapping, it can be used for 
fast characterization in small (<5%) statistical variation ‘space’, 
which is the case for statistical diagnosis. Yield analysis is 
performed by computing the joint probability distribution function 
(JPDF) of the performance measures. Parametric causes of the 
unacceptable performance of an individual system can then be 
searched by using the information acquired from the statistical 
analysis thereby performing layout-level diagnosis.  

Convolution methods are used to compute statistical distributions 
of performance measures for Gaussian data. Response surface 
analysis/transformation methods are used to apply similar 
statistical analysis with non-Gaussian data. The estimates are 
realistic as the statistical analyses are multi-domain, taking into 
account the electrical parametric variations at the circuit level and 
mechanical variations at the board level. Convex optimization has 
been employed to optimize a limited but critical set of design 
parameters to improve yield.  

3. EMBEDDED PASSIVES IN LCP 

SUBSTRATE 
LCP is a low loss material (tanδ=0.002) with a relative 
permittivity (εr) of 2.95. The material properties are practically 
invariant upto 20 GHz with negligible moisture absorption 
(0.04%). As a result, the embedded passives provide high Q and 
stable component values across a large frequency range [6]. The 
process is low cost due to the use of large area manufacturing, as 
shown in Fig. 1. Furthermore, the process is low temperature 
(200oC) and large area boards (12”X18”) can be batch-fabricated, 
making it compatible with printed wiring board (PWB) 
infrastructure. High performance and miniaturized filters, low 
noise amplifiers and voltage-controlled oscillators functional from 
500 MHz to 10 GHz using embedded inductors and capacitors in 
LCP dielectric material have been shown in [6],[7]. The 3-D 
layout of a dualband filter is shown in Fig.3.The design cross-
section (c.s.) has 2 inner metal layers for passives embedded in 
LCP (1 mil thick) in the middle of the c.s. In addition, top and 
bottom ground planes are 73 mils from each other and provide 
electromagnetic shielding. 

4.  STATISTICAL ANALYSIS 
To map process variations to performance, EM simulations are 
planned using Design Of Experiment (DOE) principles with the 
following steps a) for each experiment, the filter component 
values are applied to the complete lumped-element model in the 
circuit simulator namely Agilent’s Advanced Design System (HP-
ADS) to obtain filter performance; b) filter performance is related 
to manufacturing variations and; c) parametric yield is computed 
using JPDFs of the filter performance. In this paper, design 
parameters are varied only within their statistical variation ranges. 

Therefore, third and higher order effects were ignored. Eqn.1 
shows the quadratic model for n design parameters: 
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where y is the approximated response, x ’s are design 

parameters, βo is the intercept term, βi’s are coefficients of first-
order effects, βij are coefficients of second-order effects and ε is 
the approximation error. A fractional factorial plan has been 
implemented in this paper. Model parameters of the components 
are extracted from SONNET (a commercial method of moments 
based EM solver) data. Each performance measure is 
approximated by linear and piecewise linear terms forming a 
regression equation. For e.g., the following performance 
measures for the 2.3 GHz filter (Fig.4) are shown in Eqn.2-3: 

BW_1dB=0.2231 - 0.0426(CC) + 0.0043(C_resn1) + 0.0030(L)U(L) -
0.014(εr)      (R2=0.997)            (2) 

Fig.2 Flowchart for the proposed methodology  

Fig.3 3-D layout of the dualband filter stackup 



f1=2.2525 - 0.0395(resn_C)+ 0.0037(C_match) – 0.0341(resn_L) -
0.0044(εr)             (R2=0.985)                                                          (3)  

CC, C_resn1, L and C_m1 are the component dimensions (as also 
shown in Fig.4.The performance variables stands for 1 dB 
bandwidth and lower cutoff frequency of 1 dB bandwidth. Here 
R2 represents regression coefficients and U is the unit step 
function. R2 values close to 1 indicates good predictive capability 
of approximation equations. The lumped-modeling approach 
works well with designs with less than 5 layers. Since the 
variations of the layout parameters are independent of each other, 
the pdf of the performance measures are computed by convolution 
of the pdfs of the layout parameters. The pdf of the 1 dB 
bandwidth (BW_1dB) of 2.3 GHz filter is computed as Eqn.4: 

f(BW_1dB)=δ(BW_1dB-0.2231)*(-0.0426(CC))* 
f(0.0043(C_resn1))*f(0.0030(L)U(L))*f(-0.014(εr))                            (4)                                                     

where * is the convolution operator, δ is the impulse function and 
f stands for the pdf of its argument. The pdf of the piecewise 
linear (pwl) terms is given by Eqn.5: 

f(y)=N(y,0,|β1|)U(y/(- β1)) + N(y,0, | β1+ β2|)U(y/( β1+ β2)) ; where y= β1x 
+ β2xU(x)                                                                                      (5) 

where β1, β2 are regression coefficients of the pwl function y, 
N(r,µ,σ) is the normal pdf function of random variable r, with 
mean µ and standard deviation σ. The results correlates well with 
full-scale Monte Carlo simulations. 

5. DUALBAND FILTER 
The methodology has been implemented on a dualband filter. The 
design consists of 2 single-band filters synthesized from 2.45 GHz 
and 5.5 GHz reference layouts. It consists of two band pass 
responses centered at 2.3 GHz and 4.25 GHz with bandwidths of 
225 MHz and 300 MHz respectively. The layout has a lateral 
dimension of 6.8 mm X 3.3mm with a cross section of 73 mils. 
The EM simulation results (using SONNET) are shown in Fig.5.  

6. BOARD WARPAGE MODELING 
Inclusion of warpage effects in large panels (24”X18”) is critical 
to yield estimates in batch-fabrication. The most straight-forward 
model for thermo-mechanical stress analysis for the stack-up 
shown in Fig.3 is a two-layer analytical plate model [9]. The top 
layer is assumed to be LCP and the bottom layer as prepreg. The 

thickness of the LCP layer (h1) in the model is the combined 
thickness of all the individual LCP layers (in this case, 1) and 
similarly for the prepreg layers (h2). The assumptions is that the 
two layers have in-plane isotropy with Young’s moduli, E1 and 
E2, Poisson’s ratios, ν1 and ν2, and CTEs, α1 and α2.  The plate 
bends with a curvature of κR, which is the inverse of the radius of 
bending (denoted as “R”) is given by Eqn. 1: 
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where h1,h2 denotes the combined thicknesses of the LCP layers, 
and prepreg layers respectively.  
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The coefficient C4 in Eqn. 1 can be obtained by combining the 
expressions for C1, C2, C3 in Eqn. 2 as shown:                        
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where ∆T is the temperature loading for the process stage whose 
corresponding curvature is computed. Here the single layer of 
LCP is 1 mil in thickness which is much smaller compared to the 
combined thickness of the supporting dielectric layers (73 mils). 

Here, in Eqn. 6, D1 is given by Eqn. 9: 
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Fig.4   Layout of 2.3 GHz and 4.25 GHz dualband filter 
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By using thin-film approximation [9], the curvature is given by: 
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The maximum warpage displacement (WL) is given by Eqn. 11 
where the curvature K is obtained from previous equation: 

WL=L^2K/8                                   (11) 

where L is the diagonal length from the center of the board. As 
shown in Fig.7, the warpage of the board grows as the square of 
the distance from the point where it is held during curing, which 
in this case, is the center of the board. For warpage levels beyond 
the dotted line, the statistical trend of circuits is functional failures 
instead of parametric variations. Accurate finite-element modeling 
of test structures of just embedded passives using ANSYSTM in 
similar stack-up has been shown in [10]. In this paper, the filters 
consist of planar inductors that do not undergo a significant 
change after deformation, since it does not have any turns in the z 
direction. In addition, the effect of deformation on inductance is 
negligible in the frequency range of interest (< 6GHz). Therefore 
the effect of capacitance variations is included in the sensitivity 
analysis.  

The mechanical parameter variations are included in the 
regression equation for the components. For e.g. the regression 
equation for the resonator capacitor is given by Eqn.12: 

)(0231.0)(0982.0)(07611.02125.01 rr wtC −−+= ε        (12) 
where εr, t and wr stands for dielectric constant, line width and 
warpage level respectively. The regression equation is used to find 
the mean and variance of the capacitance as shown in Eqn 13,14: 
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These multi-domain statistical parameters of the components are 
used to extract the pdfs of performance measures. The capacitance 
and Insertion loss of the 2.3 GHz filter (taking into account the 
mechanical and process variations) have been shown in Fig.6. 

 

7. STATISTICAL ANALYSIS WITH NON-

GAUSSIAN DATA 
The statistical analysis and the convolution methods employed for 
extraction of the distribution of performance measures requires 
the data to be in the Gaussian/normal domain. Typical 
MonteCarlo simulations in circuit analysis consist of applying 
random variations in the design parameters and performing 

SPICE simulations to extract the circuit response. In Section 4, it 
was shown how convolution methods are used to extract 
distributions of performance measures from sensitivity data. In 
this part, response surfaces are extracted from sensitivity data. For 
random variation of the design/process variables, the 
corresponding perturbed value of the performance measure can be 
obtained by using least-square methods to approximate the 
response surface. Fig.8 shows the response surface for Insertion 
Loss. Fig. 9a shows the unnormalized pdf of the Insertion Loss of 
the 2.3 GHz filter in the dualband design by using the response 
surface while Fig.9b represents the same distribution obtained 

from full-scale Monte Carlo analysis using lognormal design 
parameters. It can be seen that the response surface based method 
is in good agreement with Monte Carlo estimation. However, 
extraction of response surfaces with a large set (n>4) of dominant 
variation parameters becomes mathematically involved [12]. A 
simple but powerful alternative is to transform the non-Gaussian 
raw data into the Gaussian domain. By transformation, it is 
possible to view normal probability plots, run standard tests for 
normality, skewness and kurtosis. The square-root (n=1/2), 
lognormal (n=0), and reciprocal (n= -1) transform from literature 
[12] are generally sufficient to transform the “skewed” data into 
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the Gaussian domain. Let x be the original variable, and y its 
transformed value; then the following transform can be applied: 

             nbxcay )( ++=  ,       where n≠0                 
             )log( bxcay ++= ,    where n=0 
 If y is the transformed value of x by the function g, i.e. y=g(x) 
then, as shown by [12],  
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where f  denotes a density function. With this new non-Gaussian 
density function )(xf x  the first and second moments can be 
expressed as shown in Equation (16),(17): 

∫
∞

∞−

= dxxxf xx )(µ     (16);             dxxfx xx )(22 ∫
∞

∞−

=σ          (17) 

An important set of transformations are those associated with 
lognormal distribution. With x lognormal distributed, so that 
y=logx is distributed Gaussian, the conversion of log-normal to 
Gaussian is shown in Eqns. (18), (19) [12]: 
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 The conversion from Gaussian to lognormal is (20), (21) [12]: 
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Fig.8 shows the transformation of a lognormal technology 
variable to Gaussian data form and applying to the 
aforementioned statistical framework.  

8. DIAGNOSIS BASED ON STATISTICAL 

ANALYSIS 
As a result of the statistical variations in design and operational 
parameters in batch fabrication, some circuits display 
unacceptable variations in performance measures. For a functional 
design in this condition, the information extracted from the 
aforementioned statistical analysis can be utilized as a diagnosis 
tool. Using the diagnosis methodology, the most probable layout 
parameters causing the unacceptable variations in performance 
measures can be systematically searched. For e.g. the linear 
systems formed by (2), (3) can be used to estimate the variation in 
the design and operational parameters for the measured variations 
in system performance. For explaining the diagnosis approach, let 

][X and ][Y be the random vectors for m layout parameters and n 

performance measures, respectively. If n is less than m, then a 
unique solution of ][X does not exist for a measured set of 
unacceptable performance ][Y . Hence, the real parameter(s) 
causing the failure cannot be decided. However since all design 
parameters are associated with pdfs, the most probable solution 
can be searched. The conditional pdf of the parameter vector 

][X for measured performance y is defined as [8]: 
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where ),( YXf is the joint pdf of the random vector of the design 
parameters and performance measures TTTYX ][ . In (22), 

)(Yf is the joint pdf of the performance measures. Then, the 
expected value of )|( yYXf = is the most probable parameter 
set causing the failure. Let TnPPPY ]....[

~ 21= be the set of 
unacceptable performance measures. Equations for the 
performance measures can be rewritten by subtracting the 
intercept term 0302010 ,....,,, nββββ from Y

~
resulting in  

εβ += XY                                   (23)                                                                     

where X is the parameter vector, and β,Y are defined as the 
performance vector, n X m sensitivity coefficient matrix without 
intercept terms 0iβ .The error column ε is a Gaussian random 
vector with a zero mean computed from the approximation errors 
in error equation. Since X and Y are Gaussian random vectors, a 
new random vector Z can be defined as TTT

m YXZ ][1 =× . 
Then, the pdf of Z is equivalent to the joint pdf of X and Y, which 
can be computed as shown in (24) [8]: 
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where TT
Y

T
XZE ][][ µµ= , and nnZCov ×)( is a matrix composed 

of covariance matrices as shown in [8].                                              
Note that for independent design parameters, ),( XXCov is the 
diagonal matrix of parameter variances. The expected value of the 
conditional pdf in (22) can be computed as [8]: 
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8.1   Diagnosis of Dualband Filter 

The dualband filter design shown in Fig.4 has been used for 
multi-domain statistical analysis and diagnosis. A vector of layout 
parameters with random values was chosen according to their 
statistical distribution and was modeled and simulated. The 
resulting performance measures were min_attn=1.9933 dB, 
ripple=0.6513 dB and f2 (higher side of 1 dB frequency) =2.5342 
GHz. For this filter, the center frequency was shifted.  Table I 
shows the simulated and estimated manufacturing variations. It is 
clear that the diagnosis technique do not give the exact statistical 
variation of layout parameters in batch fabrication, but it captures 
the dominant variations. The results of statistical distributions 
show good correlation with results using Monte Carlo methods. 
However, with the extensive EM simulations on layouts and 
having statistical distributions on all the layout parameters, Monte 
Carlo simulations took 36 hours on a DELL PC with 2.6 GHz 
processor and 1 GB RAM.   
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9. YIELD OPTIMIZATION 
The probability density functions that represent the variations in 
design parameters are Gaussian in nature. The design yield, which 
is computed as an integral of the joint probability density, can 
therefore be posed as a convex programming problem. The joint 
Gaussian pdf of n random independent variables y= (y1,…,yn) 
where yi has mean xi and variance σi, is given by  
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where x=(x1,…,xn). The above joint distribution is known to be a 
log-concave function of x and y. Further, arbitrary covariance 
matrices can be handled, since a symmetric matrix can be 
converted to the diagonal form by use of orthogonal 
transformation. The optimization problem is formulated as  

                   maximize Y(x)=∫P Φx(y)dy  such that x ε P     

where P is the approximation to the feasible region. Since the 
integral of a log-concave function is also a log-concave function, 
the problem reduces to maximization of a log-concave function 
over a convex set. In this problem, the local minimum is the 
global minimum. The algorithm proposed in [13] provides an 
efficient technique for solving a convex programming problem. 
The algorithm consists of iteratively finding centers of 
approximated “polytopes” which constitute the feasible region. 
Since the yield function is not available in an explicit form, the 
gradient is estimated using yield gradient approximation methods. 
This is computationally much cheaper than repeated circuit/EM 
simulations with new sets of parameter values. An approximate 
estimate (based on a sample of N points) for yield, based on the 
gradient function as [13]: 
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where g(z)=0 where z ∉P and g(z)=1 when z ∈P. The results of 
optimization have been shown in Table II. The table shows the 
change in the mean of the performance measures as a result of the 
optimization of the design parameters. A yield improvement of 
~14% has been observed based on the aforementioned analysis. 

10. CONCLUSION 
The recent trend for high-performance multilayer RF circuits 
demands for improved design/diagnosis methods to reduce 
design-cycle time. A multi-domain statistical analysis and 
diagnosis methodology for LCP based RF circuits has been 
presented. The methods have been confirmed by limited 
measurement and extensive EM data. Multiple runs of 
fabrications are being carried out for extensive validation. Further, 
the effect of the properties of copper with thermal cycling and 
humidity will also be investigated. The lumped-element modeling 
approach shows limitations beyond 4-5 layers. Further, the time 
for generation and accuracy of sensitivity analysis data becomes 
the bottleneck to fast design cycle of compact layouts with large 
number of passives (>20). Misalignment between layers is critical 
to performance of stacked inductors which is being currently 
investigated. Development of physics-based reliability models to 
relate component variation/failure mechanisms to system-level 
performance require tremendous resources and time. Simplified, 
multi-domain, semi-analytical models are shown to be necessary 
to ease the computational complexity and achieve acceptable 
results, thereby leading to reduced design effort.  
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Layout parameter Random Input 
parameters 

Estimated 
parameters 

Least 
squares 

Resn_L µ+2.29σ µ +2.26σ µ +1.52σ 

C_resn µ -1.34σ µ -1.66σ µ -3.95σ 

C_mid µ -0.71σ µ -0.35σ µ -6.64σ 

C_match µ +1.92σ µ +2.27σ µ +2.76σ 

Perf. Metric Mean Initial estimate Optimized Estimate 

µ  IL (dB) 2.03 2.18 

µ  BW (GHz) 0.225 0.242 

µattn(dB) @3.5 GHz 35 30 

µ  fc2 (GHz) 0.252 0.267 

TABLE I 

TABLE II 


