
Efficient Escape Routing for Hexagonal Array
with High Density of I/Os

ABSTRACT
The chip/package I/Os count has continuously been growing

as the systems become more complicated. High density I/Os
interconnection and efficient escape routing with high
performance and low cost will greatly benefit the whole electronic
system. We analyze the properties of the hexagonal array, which
can hold about 15% more I/Os compared with the traditional
square grid array. We propose three escape routing strategies for
the hexagonal array: column-by-column horizontal escape routing,
two-sided horizontal/vertical escape routing, and multi-direction
hybrid channel escape routing. We can escape I/Os in the
hexagonal array in the same or less number of routing layers
compared with square grid array. The practical examples show
the efficiency of our strategies. Using hexagonal array, we can
reduce the number of escape routing layers as well as increase the
density of I/Os.

Keywords
Escape routing, flip chip, BGA, hexagonal array.

1. INTRODUCTION
As the feature size of microelectronic technology becomes

smaller, the complexity of electronic systems grows
proportionally. According to Rent’s rule [1], the number of I/O
signals of a module is a function of the number of gates in it:

β
gpp NKN = (1.1)

where, Np is the number of external signal connections, Ng is the
number of logic gates, Kp is a constant, and β is the Rent’s rule
constant which depends significantly on the kind of module
considered. Today's high-performance ICs exhibit upwards of
2,000 I/O pins and require packages that sometimes exceed 100
layers and will go onto boards with more than 50 layers. New
technologies, such as flip chip, CSP, BGA, etc., are developed for
chip-level (first-level) and package-to-board (second-level)
interconnections to accommodate the increasing demand of high
I/O signals count. Area array interconnection is widely used in
those advanced technologies. In order to connect the I/O signals
in the array to the next level assembly, wires are routed to break
I/O signals out which is referred as “escape routing” [2][3].

The high I/O signals count and density require an increase in
the number of escape routing layers and make the signal integrity
issue more serious. An efficient and effective escape routing
strategy which achieves high performance with low cost will
greatly benefit the electronic product.

Traditionally, the area array is a square grid and I/O signals
are escaped row-by-row (column-by-column) from outside.
Intuitively some dimensional changes will reduce the number of
escape routing layers, such as decreasing wire width and spacing,
while these changes expose the system to cost, yield and
reliability issues. Gasparini et al. [4] suggested a specific

placement of bumps for C4 packages to minimize the package
layers count with change in footprint. They sacrificed I/O density
to increase wire density and this strategy was not good for the
escape routing with multiple layers. Horiuchi et al. [5] proposed a
preferential routing strategy, which created specific pad geometry
resulting in a high wiring efficiency. This strategy was very
practical for assembly of high I/O count flip chip, CSPs, and
BGAs. But it was only suitable for the traditional square grid
array. Titus et al. [6] presented a “balls shifted as needed” method,
which adjusted and optimized I/Os placement in the array to
accomplish the escape routing in one layer. They utilized the
advantage of hexagonal array but their placement optimization
and escape routing strategy were not suitable for multiple layers.
In [8], we have discussed the importance of escape sequence for
escape routing and proposed two strategies, central parallel and
two-sided, which can reduce the number of escape routing layers
effectively for square grid array.

In this paper, we analyze the properties of hexagonal array,
which increases the density of I/Os in the array remarkably. We
propose three escape routing strategies for the hexagonal array:
column-by-column horizontal escape routing, two-sided
horizontal/vertical escape routing, and multi-direction hybrid
channel escape routing. The examples using practical parameters
show that our strategies can escape the hexagonal array very
efficiently. Thus we can reduce the number of escape routing
layers as well as increase the density I/Os.

The rest of the paper is organized as follows. Section 2
describes the escape routing problem and defines related
parameters. The properties of hexagonal array are analyzed in
section 3 and detailed comparison between square grid array and
hexagonal array is also given. Section 4 explains three escape
routing strategies for the hexagonal array. We compare those
strategies in section 5 and discuss the conclusions in section 6.

2. PROBLEM DESCRIPTION
In the escape routing problem, I/Os inside the area array are

the objects; the corresponding pads are the obstacles and the
spaces scattering among the pads in the area array are the routing
resources. Fundamentally there are three basic guidelines which
are described blow.

(i) Spacing between two traces and the width of the trace. As
shown in Figure 1, the trace width is W and the pitch is (W+Sw),
where Sw is the spacing between the two consecutive edges of the
traces.

(ii) Minimum distance Sp between the edge of the pad and
the edge of any metal, as shown in Figure 1.

(iii) Diameter of the pad, D, and pitch, P, between two
consecutive pads, as shown in Figure 1.

Usually the spacing between two traces Sw and between pad
and trace Sp are identical, we can use S to represent the spacing.

Escape routing breaks out I/Os in the array to the outside and
the objective is to minimize the number of routing layers and to
break out I/Os as many as possible.

3. HEXAGONAL ARRAY
The typical I/Os array is a square grid matrix and I/Os are

located at the crossing points of the horizontal and vertical mesh.
The neighboring four I/Os form a square grid unit. For an n×n
square grid array, there are n I/Os in each row and column, n2
I/Os in the array totally and the area of the array is (nP+D)2. I/Os
in the typical square grid array can be shifted and packed further
to form a hexagonal pattern. The neighboring six I/Os form a
hexagonal unit and one more I/O locates at the center. In a
hexagonal array, the angle between the lines joining any adjacent
two I/Os is always a multiple of 60°. Figure 2 and Figure 3 show
the square grid array and the hexagonal array respectively. We
observe that the square grid array is symmetric in horizontal and
vertical directions, i.e. if the square grid array is rotated 90°
clockwise; it is superposed on the original array. However the
hexagonal array doesn’t have this properties, it is symmetric in 0°,
60°, and 120° directions, i.e. if the hexagonal array is rotated 60°
or 120° clockwise; it is superposed on the original array.

3.1 Increasing the Number of I/Os
The hexagonal array can hold more I/Os under the same area

usage constraint, compared with the square grid array. The area of
an n×n square grid array is (nP+D)2. Using the same area, the
hexagonal array will have n and n-1 I/Os in each row alternately.
The number of rows in the hexagonal array is

1)1(
3

2
+⎥⎦

⎥
⎢⎣
⎢ −= nm (3.1)

The number of I/Os in the hexagonal array is

⎪
⎩

⎪
⎨

⎧

=
−

−

=−
=

oddmmmn

evenmmmn
hexagonTotalNum

2
1

2)(
 (3.2)

Plug the formula (3.1) into (3.2), we can prove that the number of
I/Os in the hexagonal array is larger than the number of I/Os in
the square grid array using same area for any n>=1. The number
of I/Os increased can be approximated as

2

2

2

22

2

2

3
13%5.15

3
13

3
32

3
13

3
2

2/
)(

)()(

nn

nn

n

nnn

n
nmmn

squareTotalNum
squareTotalNumhexagonTotalNum

−−≥

−−
−

=

−−−
≥

−−
≥

−

For array with large size, the hexagonal array has more
advantage. Table 1 shows their comparison for different size of
arrays.

3.2 Increasing the Spacing between I/Os
The hexagonal array can increase the average I/Os pitch

under the similar number of I/Os and same area constraint,
compared with square grid array. In an n×n square grid array, the
pitch of the adjacent horizontal or vertical I/Os is the minimum
pitch P. Holding the same number of I/Os in same area, i.e. n2
I/Os in area (nP+D)2, the corresponding hexagonal array can
separate the I/Os loosely.

We assume the hexagonal array has k and k-1 I/Os in each
row alternately, and then according to (3.1) the number of rows in
this hexagonal array is

1)1(
3

2
+⎥⎦

⎥
⎢⎣
⎢ −= kl (3.3)

The number of I/Os in the corresponding hexagonal array is

Figure 1. Fundamental parameters

Pads

W

P

D

Sw
Sp

Figure 2. Square grid array Figure 3. Hexagonal array

Square grid array Hexagonal array
Size n

rows # I/Os # rows # I/Os
Increase

10 10 100 11 105 5%

15 15 225 17 247 9.78%

20 20 400 23 449 12.25%

25 25 625 28 686 9.76%

30 30 900 34 1003 11.44%

35 35 1225 40 1380 12.65%

40 40 1600 46 1817 13.56%

Table 1. Square grid array vs. Hexagonal array
using same area, minimum pitch

⎪
⎩

⎪
⎨

⎧

=
−

−

=−
=

oddlllk

evenlllk
hexagonTotalNum

2
1

2)(
 (3.4)

Therefore the I/Os pitch P′ in the hexagonal array can be solved
from the following equations

⎩
⎨
⎧

=′
=

nPPk
nhexagonTotalNum 2)((3.5)

Plug the formula (3.3) and (3.4) into (3.5), we can prove that the
pitch P′ in the hexagonal array is larger than the minimum pitch P
for large n. Table 2 shows their comparison for different size of
arrays.

4. ESCAPE ROUTING FOR HEXAGONAL
ARRAY
4.1 Column-by-Column Horizontal Escape Routing

The traditional escape routing strategy for the square grid
array is to break out the I/Os row-by-row/column-by-column
from outside to inside as shown in Figure 4. The spacing between
two consecutive I/Os constrains the number of wires going
through and limit the number of I/Os escaped for one layer.

The hexagonal array is not symmetric in horizontal and

vertical directions. In the compact hexagonal array, in which the
pitch of adjacent I/Os is the minimum pitch, the vertical routing
channel, as shown in Figure 5, is the edge of the hexagonal unit
and the number of wires that can be escaped through is

⎥⎦
⎥

⎢⎣
⎢

+
−−

=
WS

SDPannelverticalChwiresNum _)((4.1)

However the horizontal routing channel, as shown in Figure 5, is
a diagonal of the hexagonal unit and has larger capacity:

⎥
⎦

⎥
⎢
⎣

⎢
+

−−
=

WS
SDPChannelhorizontalwiresNum 3_)(

 (4.2)

Therefore the horizontal escape routing can be more efficient than
the vertical escape routing. Similar as the traditional escape
routing method for the square grid array, the hexagonal array can
be treated as zigzag column array and I/Os can be escaped
column-by-column through the horizontal routing channels as
shown in Figure 6 and Figure 7.

Using this column-by-column horizontal escape routing

method, under some conditions, we can accomplish the escape
routing for the hexagonal array with the same number of routing
layers as the square grid array although the hexagonal array holds
more I/Os.

We assume the number of wires that can go through the
vertical routing channel, i.e. the channel between adjacent I/Os
with minimum pitch, is A. Thus for the square grid array, A+1
rows and columns can be escaped in one routing layer and the
number of routing layers for breaking out an n×n square grid
array using the tradition method is

⎥
⎥

⎤
⎢
⎢

⎡
+

=
)1(2

_)(
A
nsquarelayersNum

 (4.3)

vertical channel

horizontal
channel

Figure 5. Vertical/horizontal channels

Square grid array Hexagonal array

n # I/Os Pitch k # I/Os Pitch
Increase

25 625 P 24 635 1.04P 4.17%

30 900 P 29 941 1.03P 3.45%

35 1225 P 33 1235 1.06P 6.06%

40 1600 P 38 1613 1.05P 5.26%

45 2025 P 43 2083 1.05P 4.65%

50 2500 P 47 2511 1.06P 6.38%

Table 2. Square grid array vs. Hexagonal array
using same area, holding similar number of I/Os

Figure 4. Traditional escape routing for square grid array

Figure 6. Zigzag columns in hexagonal array

Figure 7. Column-by-Column horizontal escape routing
for hexagonal array

The hexagonal array with same area also has n zigzag rows.
If we assume to use the same number of routing layers as the
square grid array, the number of wires that can go through one
horizontal routing channel should satisfy

12_)(+≥ AChannelhorizontalwiresNum (4.4)

Combine (4.1) (4.2) with the assumptions, we can derive the
condition is

⎪
⎪
⎩

⎪
⎪
⎨

⎧

+≥⎥
⎦

⎥
⎢
⎣

⎢

+
−−

=

=⎥⎦
⎥

⎢⎣
⎢

+
−−

=

123_)(

_)(

A
WS

SDPChannelhorizontalwiresNum

A
WS

SDPannelverticalChwiresNum

WPD +−≥⇒)32((4.5)

As long as the array’s parameters satisfy the condition (4.5),
I/Os in the hexagonal array can be escaped within the same
number of routing layers as square grid array and the hexagonal
array has the same area as the square grid array but holds more
I/Os. Table 3 shows the practical parameters for flip chip
interconnect and fine pitch BGA/CSP, which is provided by ITRS
(International Technology Roadmap for Semiconductors) [7]. The
condition is usually satisfied.

We take an 8×8 square grid array as a simple example, as

shown in Figure 2. The pitch of every two adjacent
horizontal/vertical I/Os is the minimum pitch. This square grid
array has 64 I/Os totally. The hexagonal array, which uses same
area, can have 68 I/Os as shown in Figure 3 and the pitch of any
two adjacent I/Os is also the minimum pitch.

The following values for feature sizes are used in this
example and they satisfy the condition (4.5).

1) Minimum pitch (Pmin) = 240µm
2) Diameter of I/O (D) = 110µm
3) Wire width (W) = 43µm
4) Wire spacing (S) = 43µm

The vertical routing channel can route 1 wire and the
horizontal routing channel can route 3 wires. Therefore we can
use two layers to break out I/Os in that square grid array as shown
in Figure 4. We can also use two layers to escape I/Os in the
hexagonal array as shown in Figure 7. The number of routing
layers for the square grid array and the hexagonal array is same
although the hexagonal array has more I/Os.

4.2 Two-sided Horizontal/Vertical Escape Routing
We have proposed the two-sided escape routing approach for

square grid array in [8]. This approach breaks out I/Os in the
outside and inside rows/columns simultaneously. It can maintain
the outline of the array in a good shape and I/Os are escaped on
different routing layers equably.

In the column-by-column horizontal escape routing strategy
for the hexagonal array, the number of zigzag columns in the
array constrains the number of routing layers. The two-sided idea
can also be used in hexagonal array to reduce the number of
routing layers. I/Os in the middle zigzag columns can be escaped
through vertical routing channels at the same time as I/Os in the
outside zigzag columns are escaped through horizontal routing
channels.

We take a 10×11 hexagonal array as an example, which has
the same area as a 10×10 square grid array. The pitch of any two
adjacent I/Os is the minimum pitch and there are 105 I/Os totally.
The values for feature sizes are same as the example in section4.2.

Using the column-by-column horizontal escape routing
method, we need three layers as shown in Figure 8. However we
only use two layers in two-sided horizontal/vertical escape
routing approach as shown in Figure 9.

The two-sided approach utilizes the routing channels

sufficiently and increases the number of I/Os escaped in every
routing layer because it breaks out I/Os inside and outside
simultaneously. Compared with the column-by-column horizontal
escape routing, it can decrease the number of routing layers
efficiently.

4.3 Multi-direction Hybrid Channel Escape Routing

4.3.1 Array Partition and Hybrid Channel

The hexagonal array is symmetric in 0°, 60°, and 120°
directions. It can be treated as many nested hexagons as shown in
Figure 9. The array can be divided into six partitions and I/Os can
be escaped to the outside following six directions. Figure 10
shows this escape routing style.

 Flip Chip FBGA/CSP

Year 2005 2018 2005 2018

Pitch 130 75 400 100

Pad Diameter 65 35 120 40

Line Width 27.8 15 36 12

Line Spacing 27.9 15 36 12

Condition (4.5)

Table 3. Practical Parameters for condition, unit: µm

Figure 8. Column-by-column horizontal escape routing

Figure 9. Two-sided horizontal/vertical escape routing

For each partition, the adjacent I/Os in the same row have

the minimum pitch. Instead of breaking out I/Os row by row, we
can escaped the I/Os selectively to form indented outline and
hybrid routing channels as shown in Figure 11.

Because the hybrid routing channel has larger capacity, i.e. it

can allow more wires going through, this escape strategy can
increase the number of I/Os escaped for one routing layer and
potentially reduce the number of routing layers. The number of
wires going through the hybrid routing channel, which consists of
k vertical channels, is

⎥⎦
⎥

⎢⎣
⎢

+
−−

=
WS

SDkPnelhybridChanwiresNum _)((4.6)

4.3.2 Escape Routing through Hybrid Channel

Using this multi-direction hybrid channel escape routing
strategy, the hexagonal array can be treated as consisting of many
indented rows as shown in Figure 12.

For an n×m hexagonal array, the number of indented rows is

⎥⎥
⎤

⎢⎢
⎡ +

=
4

1mI (4.7)

We assume the number of wires that can go through the vertical
routing channel is A. Thus

)(

_)(

WsASDP

A
WS

SDPannelverticalChwiresNum

+≥−−⇒

=⎥⎦
⎥

⎢⎣
⎢

+
−−

= (4.8)

The condition for routing I/Os in A indented rows through the
hybrid routing channel, which consists of k vertical channels, is

))(12(

)12(_)(

WskASDkP

kA
WS

SDkPnelhybridChanwiresNum

+−≥−−⇒

−=⎥⎦
⎥

⎢⎣
⎢

+
−−

= (4.9)

Plug (4.8) into (4.9), the condition can be simplified as

)(WsASD +≥+ (4.10)

The condition is generally satisfied for small A. Under this

condition, we can maintain the indented outline of the array and
escape at least A indented rows on every routing layer. I/Os in
large array can be escaped very efficiently though the hybrid
channel.

4.3.3 Automatic Escape Routing Procedure
The hybrid escape routing approach organizes I/Os in the

array regularly. The escape routing rules for each partition are
identical and the routing for every partition is independent of each
other. Furthermore the wires breaking out I/Os go through the
hybrid channel orderly. Thus escape routing program can be
implemented straightforwardly to accomplish this kind of escape
routing for any given hexagonal array automatically.

The automatic procedure of the multi-direction hybrid
channel escape routing is illustrated as follows:

Partition:
Divide the hexagonal array into six partitions.

Labeling:
Identify the indented rows in each partition.
Label I/Os using partition ID and indented rows ID.

Assignment:
For each partition {

Determine the number of indented rows that can be escaped
in the first routing layer according to the vertical channel capacity.

Determine the number of indented rows that can be escaped
in each following layer according to the hybrid channel capacity.
 }

 Flip Chip FBGA/CSP

Year 2005 2018 2005 2018

Pitch 130 75 400 100

Pad Diameter 65 35 120 40

Line Width 27.8 15 36 12

Line Spacing 27.9 15 36 12

A 0 0 3 2

Condition (4.10) ×

Table 4. Practical Parameters for condition, unit: µm

Figure 9. Nested hexagons Figure 10. partition

Hybrid channel Hybrid channel
Figure 11. Indented outline and hybrid channel

row1
row2

row3
Figure 12. Indented rows in hexagonal array

Routing:
For each partition {

Escape I/Os on the first layer symmetrically through vertical
channel.

Escape I/Os on each following layer directly through the
hybrid channel.

}
Post processing refinement:

Refine the escape routing for I/Os located at special positions,
e.g. center, corner, partition boundary, etc., to further reduce the
number of routing layers.

4.3.4 Test cases
For the 10×11 hexagonal array example in section4.2, we

only need two layers using this multi-direction hybrid channel
escape routing strategy as shown in Figure 13.

5. DISCUSSION
The hexagonal array can hold more I/Os than the traditional

square grid array using same area, i.e. the hexagonal array has
larger I/Os density. For complicate ICs and packages, the
hexagonal array can provide more external interconnection. The
approximate increase of I/Os count for large array is 15%.

The column-by-column horizontal escape routing strategy is
very straightforward for the hexagonal array. Using this strategy,
I/Os in hexagonal array can be escaped in the same number of
routing layers as the square grid array which has same area
although more I/Os are packed inside. However, the vertical
routing channels are wasted in this strategy.

The two-sided horizontal/vertical escape routing strategy
overcomes the shortcoming of that straightforward strategy. I/Os
in the outside zigzag columns are escaped through horizontal
channel and simultaneously the I/Os in the middle zigzag columns
are escaped through vertical routing channels. All the routing
channels are utilized sufficiently and the number of escape
routing layers is reduced. Nevertheless, there is no simple routing
rule for the wires breaking out I/Os in the middle zigzag columns,
so it’s hard to implement in automatic program and those wires
need to go through many other I/Os, thus crosstalk is an important
issue to be considered.

The multi-direction hybrid channel escape routing strategy
uses the symmetric property of hexagonal array to divide it into

six partitions and exploits hybrid channels to increase the escape
efficiency. The hybrid channels increase the number of escape
routing wires on every layer and consequentially decrease the
number of layers. I/Os in each partition are escaped independently
which makes the problem simpler and the wires routing through
hybrid channels are very ordered, so this strategy is easy to be
implemented in automatic program.

In summary, hexagonal array can be escaped very efficiently
as well as providing high density of I/Os.

6. CONCLUTIONS
In this paper, we discuss the advantages of the hexagonal

array and propose three escape routing strategies for it. Using
same area, hexagonal array holds about 15% more I/Os compared
with square grid array and our strategies can escape the I/Os in
the hexagonal array in the same or less number of routing layers.
The practical examples show the efficiency of our strategies.
Using hexagonal array, we can reduce the number of escape
routing layers as well as increase the density of I/Os. We will
continue working on the automatic escape routing program for the
hexagonal array and the related crosstalk issues will also be
investigated.

7. REFERENCES
[1] Bakoglu, H.B., Circuits, Interconnections, and Packaging

for VLSI, Addison-Wesley, Reading, MA, 1990.
[2] Winkler, E., Escape Routing from Chip Scale Packages, In

proceedings of 9th IEEE/CPMT International Electronics
Manufacturing Technology Symposium, 1996, 393-401.

[3] Guinn, K.V., Frye, R.C., Flip-Chip and Chip-Scale I/O
Density Requirements and Printed Wiring Board
Capabilities, In proceedings of 47th Electronic Components
and Technology Conference, 1997, 649-655.

[4] Gasparini, N.M., A Method of Designing a Group of Bumps
for C4 Packages to Maximize the Number of Bumps and
Minimize the Number of Package Layers, In proceedings of
44th Electronic Components and Technology Conference,
1994, 695-696.

[5] Horiuchi, M., Yoda, E., Takeuchi, Y., Escape Routing
Design to Reduce the Number of Layers in Area Array
Packaging, IEEE Transactions on Advanced Packaging,
vol.23, no.4, Nov. 2000, 686-691.

[6] Titus, A., Jaiswal, B., Dishongh, J., and Cartwright, A.N.,
Innovative Circuit Board Level Routing Designs for BGA
Packages, IEEE Transactions and Advanced Packaging,
vol.27, no.4, Nov. 2004, 630-639.

[7] International Technology Roadmap for Semiconductors,
2003 edition.

[8] Shi, R., Chen, H., Cheng, C.K., Layer Count Reduction for
Area Array Escape Routing, In proceedings of IMPS
International Conference and Exhibition on Device
Packaging, 2005.

Figure 13. Multi-direction hybrid channel
escape routing

