
Functional SI Simulation using IBIS 4.1 and HDL models

John Doe 1, Acme Widgets, jd@acme.com
John Doe 2, Acme Widgets, jd@acme.com
John Doe 3, Acme Widgets, jd@acme.com
John Doe 4, Acme Widgets, jd@acme.com

ABSTRACT
The Multi-Lingual AMS extensions of IBIS 4.1 provide
significant new capabilities that can be used to
implement many novel enhancements to SI verification
techniques and applications. This paper will describe
one such application that combines HDL functional
models and IBIS I/O models of a CPU chipset and DDR-
SDRAM memory to perform a thorough Signal Integrity
verification of a complete Chipset to Memory interface in
a single simulation.

Introduction
Just at the time it is becoming critical to perform a
thorough SI analysis on a dynamic memory interface
design, it is becoming increasingly difficult to perform
such an analysis. High signal edge-rates, advanced
techniques such as dynamic termination, complex
requirements such as slew-derated timing, and critical
pattern-dependant crosstalk issues are presenting
significant challenges to today’s designer of DDR2 and
DDR3 memory interfaces. This paper will demonstrate
an analysis technique using the latest SI standards that
has the capability to provide a thorough automated
DDR2 analysis in one simulation.

This technique utilizes the new multi-lingual capability of
IBIS 4.1. It combines the functional HDL test code and
IBIS I/O models, as provided by the manufacturers, to
build IBIS 4.1 models that can be used in a complete
functional SI analysis. Once the models are assembled,
importing and assigning models is straight forward, and
running the simulation involves very few steps.

The functional HDL code includes timing checks and the
IBIS models contain basic electrical checks. Using the
AMS extensions to augment the HDL and IBIS features,
a functional SI simulation can automatically deal with the
following:

• electrical violations such as
overshoot/undershoot

• timing violations such as setup and hold time
• inclusion of crosstalk effects between address,

data, command and control signals
• potential pattern-dependant crosstalk between

multiple victim and aggressor traces
• slew-dependant timing considerations
• dynamic termination considerations
• automatic eye measurements

Current DRAM SI Verification Technique
Currently, SI and Timing of DDR memory interfaces are
verified with a time-consuming, mostly manual
procedure. Individual simulations are run on each net,
and waveforms are analyzed using a mixture of hand
measurements, tool-generated measurements, and
visual inspection. Eye diagrams are typically the most
dynamic technique for evaluating signal integrity and
timing characteristics of an individual net.
Measurements on the eye-diagrams reveal eye aperture
widths, slew rates, and overshoot/undershoot
characteristics. These parameters indicate waveform
quality and can be used in a margin analysis to
determine whether the system is timed appropriately.

All conditions under which the timing of the memory is
determined are absolute worst-case conditions. If the
memory still passes with timing margin (however small),
it may be reasonably assumed that the module will
perform to specifications in the real world. However, this
method does not give an accurate representation of how
the memory interface is actually performing. This worst-
case prediction does not verify every net and is subject
to simulation setup errors. Owing to the worst-case
prediction of all parameters applied to a single net, the
margin analysis method described above may predict a
failure, when in fact the actual design is sound.
Currently, there are very few tools that can analyze the
timing for each individual net. This is a severe limitation
as clock frequencies increase. Using a methodology
that estimates an overall worst-case scenario can lead to
a functional design being rejected due to the limitations
of the tools available.

IBIS 4.1 and AMS hold great promise to significantly
automate this process and to provide more direct and
accurate indication of the performance of the memory
interface.

IBIS 4.1 Enabling Technology
Through the late 1990s and early 2000s, it became
increasingly clear to the IBIS committee that continuing
to add features to the traditional IBIS template was not
the best way to serve the SI community. It was
becoming more difficult to add features for the latest
technology, and the cycle of committee-ratification EDA-
vendor-adoption was becoming intolerably long. For
those reasons, the IBIS committee decided to make a
fundamental change in the IBIS standard by adopting

support for standard AMS modeling languages. Unlike
the fixed template of the traditional IBIS model, an AMS
modeling language provides much greater flexibility. If a
new feature is required to accommodate the latest
technology, the modeler simply adds the new feature to
the model. This eliminates the need to propose an
enhancement to the template model, wait for the
committee to ratify the changes and then wait for the
EDA vendors to adopt the change. By simply coding the
new feature into the AMS model, it immediately
becomes a supported feature of any IBIS 4.1 compliant
SI simulator.

IBIS 4.1 and AMS have opened the door to many novel
applications such as the functional SI simulation
described in this paper. Other applications include
automated measurements such as jitter and eye opening
for SERDES interfaces, fast configurable AMS
alternatives to traditional transistor-level SPICE models,
DFE and Clock/Data recover PLL models.

Figure 1 shows how IBIS 4.1 compares to traditional
IBIS. While at first glance, the IBIS 4.1 multi-lingual
wrapper may seem like an unnecessary step, it is
actually a very useful complement to the AMS model.
While the model provides the traditional electrical
simulation information, the IBIS wrapper provides all the
physical information not available to the user of the raw
model. This physical information greatly simplifies
integration of the device into the overall simulation. It
also provides measurement criteria for automated
testing and other information that makes the model
easier to use..
 g

SPICE or
Behavioral

Model

IBIS 4.1

Parser

Multi-Lingual

IB
IS

Wrapper

M
ixed Signal

Sim
ulator

IBIS

Parser

Sim
ulator

Traditional
IBIS

Model

[Pin]

1 dcp NC
2 dcm NC
3 bpn NC
4 bpp NC
|
|**********************
|
[Diff Pin]

1 2
4 3

|
[Series Pin Mapping]
2 3 R_1G_ohm
|

[circuit call] component
port_map inp 1
port_map inm 2
port_map outp 3
port_map outm 4
[end circuit call]

[external circuit] component
language SPICE
corner typ comp.sp comp
ports inp inm outp outm
[end external circuit]

*

.subckt comp

+ inp inm outp outm

*S-parameter model

*RLC SPICE model,

*Transistor model,

*VHDL-AMS Model

.ends

comp.sp

Figure 1. Traditional IBIS 3.x and IBIS 4.1

Figure 2 is an actual excerpt from one of the two IBIS
files created for this functional SI simulation. The top
section (down to the **EXTERNAL MODEL** divider)
shows the traditional IBIS component, package
parasitics and component pinout information. The next
section (between the **EXTERNAL MODEL** and
TABLE MODEL dividers) shows the new IBIS 4.1
syntax. The [Node Declarations] section declares all of
the nodes used as connections internal to the IBIS
model. The [Circuit Call] section connects some of
these nodes and [Component] pins to external HDL

models. The HDL models themselves are declared
through the [External Circuit] section. The [External
Circuit] keyword indicates that this is an external multi-
lingual model. The “Language VHDL-AMS” statement
indicates that the underlying model is in IEEE 1076.1
VHDL-AMS syntax. Since VHDL-AMS is a pure
superset of VHDL, the VHDL code for the chipset and
memory modules can be simulated in a VHDL-AMS
simulator. The IBIS “corner” statement has been
enhanced to include the names of the files where the
VHDL source code resides and the names of the entity-
architecture pair to use. The last section (below the
TABLE MODEL divider) is a traditional IBIS [Model]
statement that defines the I/O table model for the dq_full
buffer.

Figure 2. Excerpt of an IBIS 4.1 model used in this
Functional SI example

Functional SI Analysis
Figure 3 shows a block diagram of a functional SI test
system. This illustrates the connectivity of the HDL and
IBIS models to the physical board layout using the IBIS
4.1 constructs.

Chipset
HDL

Chipset
IBIS

PCB Traces,
Vias, Passives,
Connectors, etc

Memory
IBIS

Memory
HDL

Chipset IBIS 4.1 Model Memory IBIS 4.1 Model

PCB SI Tool

43 signals/traces

(43) (43)

Layout Database

Figure 3. Block Diagram of Functional SI Simulation

As mentioned earlier, once the model is in IBIS 4.1
format, using it in an IBIS 4.1 SI simulator becomes
routine. Figure 4 shows the layout of a memory module
analyzed with this functional SI technique. The traces
that are part of the simulation are shown highlighted in
white. Once the simulation is initiated, the SI tool
automatically assembles the following items into a netlist
and invokes a mixed signal simulation.

• Chipset HDL Model
• Chipset IBIS Models
• Chipset Package Models
• PCB Stub and VIA Models
• PCB Trace Models
• PCB Resistor Pack Models
• PCB Capacitor Models
• PCB Connector Models
• Memory Package Models
• Memory IBIS Models
• Memory HDL Model

Figure 4. Section of PCB Memory Module layout with
simulated traces highlighted in white

Functional SI Verification Results

Since functional SI analysis uses the digital code from
the chipset testbench, the system stimulus is
automatically generated. Likewise, since the memory
responds to commands from the chipset as it would in a
real system, the data patterns originating from the
memory are completely automated as well. Also, the
chipset and memory both use digital HDL that contains
timing checks, so any timing violation caused by PCB
effects will be flagged. Figure 5 shows an example of
this (created when some traces were extended past their
critical length).

Figure 5. Output screen showing timing error
messages

Figure 6 shows the analog address, clock and data
signals at the memory die during a burst write from the
chipset. Notice that all the traces are evaluated
simultaneously, using pseudo-random address and data
patterns. Alternatively, incrementing address and data,
or walking ones patterns could also be easily
accommodated. These results were obtained after
roughly 3 minutes of simulation.

Figure 6. Analog Simulation Results of Address, Clock,
and Data

Figure 7 shows the digital address and clock signals at
the memory die during a burst write from the chipset.

Figure 7. Digital Simulation Results of Address and Clock

Figure 8 shows the combined analog and digital address
signals at the memory die during a burst write from the
chipset. Combination of the analog and digital
waveforms provides a useful visualization of the logical
analog equivalent.

Figure 8. Analog and Digital Simulation Results of
Address

Improvements and Future Development
Setting up this verification technique required
instantiating a [Model] in a [Circuit Call] statement. This
is specifically not allowed by the IBIS 4.1 specification
(but was fortunately allowed by our test simulator).
Removal of this exclusion from the IBIS specification
would simplify creation of these models.

Also, the chipset and memory HDL code had to be
enhanced to include address and data patterns that
were more appropriate for SI analysis.

The simulation could be enhanced further by exercising
all other signal lines in the system. This would exercise
the entire memory bus, and all signals visible in Figure 4
would be highlighted.

Due to time limitations, dynamic ODT and slew-
dependant timing were not modeled in this example.
But, it should be no problem to do so with the AMS
modeling language.

Crosstalk analysis could also be enhanced in this
application by replacing the PCB physical information
with an 86-port S-parameter model.

Summary and Conclusion
This application shows an example of using IBIS 4.1 and
AMS to simplify and improve the electrical and timing
analysis of complex CPU to Memory interfaces. This
technique provides an industry standard method to
accommodate the complexities of modern SDRAM
interface design including:

• High edge and clock rates
• Dynamic On-Die Termination
• Slew dependant timing
• Traditional and pattern-dependant crosstalk
• Electrical violations such as excessive overshoot

or insufficient slew rate
• Timing violations which include degradation due

to PCB and crosstalk effects.
• Automated eye measurement
• Automated pass/fail determination

Furthermore, the verification is performed on a bit by bit
basis yielding much more realistic results over the more
pessimistic eye-diagram post-processing techniques.

This application shows just one of the many ways IBIS
4.1 and AMS can improve the usability, capability and
productivity of SI analysis. Many future applications will
benefit from the combination of IBIS 4.1 and AMS.

