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ABSTRACT 
The Multi-Lingual AMS extensions of IBIS 4.1 provide 
significant new capabilities that can be used to 
implement many novel enhancements to SI verification 
techniques and applications.  This paper will describe 
one such application that combines HDL functional 
models and IBIS I/O models of a CPU chipset and DDR-
SDRAM memory to perform a thorough Signal Integrity 
verification of a complete Chipset to Memory interface in 
a single simulation. 
 
 
Introduction 
Just at the time it is becoming critical to perform a 
thorough SI analysis on a dynamic memory interface 
design, it is becoming increasingly difficult to perform 
such an analysis.  High signal edge-rates, advanced 
techniques such as dynamic termination, complex 
requirements such as slew-derated timing, and critical 
pattern-dependant crosstalk issues are presenting 
significant challenges to today’s designer of DDR2 and 
DDR3 memory interfaces.  This paper will demonstrate 
an analysis technique using the latest SI standards that 
has the capability to provide a thorough automated 
DDR2 analysis in one simulation.  
 
This technique utilizes the new multi-lingual capability of 
IBIS 4.1.  It combines the functional HDL test code and 
IBIS I/O models, as provided by the manufacturers, to 
build IBIS 4.1 models that can be used in a complete 
functional SI analysis.  Once the models are assembled, 
importing and assigning models is straight forward, and 
running the simulation involves very few steps. 
 
The functional HDL code includes timing checks and the 
IBIS models contain basic electrical checks.  Using the 
AMS extensions to augment the HDL and IBIS features,  
a functional SI simulation can automatically deal with the 
following: 

• electrical violations such as 
overshoot/undershoot  

• timing violations such as setup and hold time 
• inclusion of crosstalk effects between address, 

data, command and control signals 
• potential pattern-dependant crosstalk between 

multiple victim and aggressor traces 
• slew-dependant timing considerations 
• dynamic termination considerations 
• automatic eye measurements 

 

 
Current DRAM SI Verification Technique 
Currently, SI and Timing of DDR memory interfaces are 
verified with a time-consuming, mostly manual 
procedure.  Individual simulations are run on each net, 
and waveforms are analyzed using a mixture of hand 
measurements, tool-generated measurements, and 
visual inspection.  Eye diagrams are typically the most 
dynamic technique for evaluating signal integrity and 
timing characteristics of an individual net.  
Measurements on the eye-diagrams reveal eye aperture 
widths, slew rates, and overshoot/undershoot 
characteristics.  These parameters indicate waveform 
quality and can be used in a margin analysis to 
determine whether the system is timed appropriately.   
 
All conditions under which the timing of the memory is 
determined are absolute worst-case conditions.  If the 
memory still passes with timing margin (however small), 
it may be reasonably assumed that the module will 
perform to specifications in the real world.  However, this 
method does not give an accurate representation of how 
the memory interface is actually performing.  This worst-
case prediction does not verify every net and is subject 
to simulation setup errors.  Owing to the worst-case 
prediction of all parameters applied to a single net, the 
margin analysis method described above may predict a 
failure, when in fact the actual design is sound.  
Currently, there are very few tools that can analyze the 
timing for each individual net.  This is a severe limitation 
as clock frequencies increase.  Using a methodology 
that estimates an overall worst-case scenario can lead to 
a functional design being rejected due to the limitations 
of the tools available.   
 
IBIS 4.1 and AMS hold great promise to significantly 
automate this process and to provide more direct and 
accurate indication of the performance of the memory 
interface.   
 
 
IBIS 4.1 Enabling Technology 
Through the late 1990s and early 2000s, it became 
increasingly clear to the IBIS committee that continuing 
to add features to the traditional IBIS template was not 
the best way to serve the SI community.  It was 
becoming more difficult to add features for the latest 
technology, and the cycle of committee-ratification EDA-
vendor-adoption was becoming intolerably long.  For 
those reasons, the IBIS committee decided to make a 
fundamental change in the IBIS standard by adopting 



support for standard AMS modeling languages.  Unlike 
the fixed template of the traditional IBIS model, an AMS 
modeling language provides much greater flexibility.  If a 
new feature is required to accommodate the latest 
technology, the modeler simply adds the new feature to 
the model.  This eliminates the need to propose an 
enhancement to the template model, wait for the 
committee to ratify the changes and then wait for the 
EDA vendors to adopt the change.  By simply coding the 
new feature into the AMS model, it immediately 
becomes a supported feature of any IBIS 4.1 compliant 
SI simulator.   
 
IBIS 4.1 and AMS have opened the door to many novel 
applications such as the functional SI simulation 
described in this paper.  Other applications include 
automated measurements such as jitter and eye opening 
for SERDES interfaces, fast configurable AMS 
alternatives to traditional transistor-level SPICE models, 
DFE and Clock/Data recover PLL models.   
 
Figure 1 shows how IBIS 4.1 compares to traditional 
IBIS.  While at first glance, the IBIS 4.1 multi-lingual 
wrapper may seem like an unnecessary step, it is 
actually a very useful complement to the AMS model. 
While the model provides the traditional electrical 
simulation information, the IBIS wrapper provides all the 
physical information not available to the user of the raw 
model. This physical information greatly simplifies 
integration of the device into the overall simulation.  It 
also provides measurement criteria for automated 
testing and other information that makes the model 
easier to use..  
 g
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[Pin] 

1   dcp      NC
2   dcm     NC
3   bpn      NC
4   bpp      NC
|
|**********************
|
[Diff Pin]

1    2
4    3

|
[Series Pin Mapping] 
2 3 R_1G_ohm
|

[circuit call] component
port_map inp 1
port_map inm 2
port_map outp 3
port_map outm 4
[end circuit call]

[external circuit] component
language SPICE 
corner typ comp.sp comp
ports inp inm outp outm
[end external circuit]

*

.subckt comp

+ inp inm outp outm

*S-parameter model

*RLC SPICE model, 

*Transistor model,

*VHDL-AMS Model

.ends

comp.sp

 
Figure 1.  Traditional IBIS 3.x and IBIS 4.1 
 
 
Figure 2 is an actual excerpt from one of the two IBIS 
files created for this functional SI simulation.  The top 
section (down to the **EXTERNAL MODEL** divider) 
shows the traditional IBIS component, package 
parasitics and component pinout information.  The next 
section (between the **EXTERNAL MODEL** and 
**TABLE MODEL** dividers) shows the new IBIS 4.1 
syntax.  The [Node Declarations] section declares all of 
the nodes used as connections internal to the IBIS 
model.  The [Circuit Call] section connects some of 
these nodes and [Component] pins to external HDL 

models.  The HDL models themselves are declared 
through the [External Circuit] section.  The [External 
Circuit] keyword indicates that this is an external multi-
lingual model. The “Language VHDL-AMS” statement 
indicates that the underlying model is in IEEE 1076.1 
VHDL-AMS syntax.  Since VHDL-AMS is a pure 
superset of VHDL, the VHDL code for the chipset and 
memory modules can be simulated in a VHDL-AMS 
simulator.  The IBIS “corner” statement has been 
enhanced to include the names of the files where the 
VHDL source code resides and the names of the entity-
architecture pair to use.  The last section (below the 
**TABLE MODEL** divider) is a traditional IBIS [Model] 
statement that defines the I/O table model for the dq_full 
buffer.   
 

Figure 2. Excerpt of an IBIS 4.1 model used in this 
Functional SI example 
 
 



 
 
Functional SI Analysis 
Figure 3 shows a block diagram of a functional SI test 
system.  This illustrates the connectivity of the HDL and 
IBIS models to the physical board layout using the IBIS 
4.1 constructs.  
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Figure 3.  Block Diagram of Functional SI Simulation 
 
 
As mentioned earlier, once the model is in IBIS 4.1 
format, using it in an IBIS 4.1 SI simulator becomes 
routine.  Figure 4 shows the layout of a memory module 
analyzed with this functional SI technique.  The traces 
that are part of the simulation are shown highlighted in 
white.  Once the simulation is initiated, the SI tool 
automatically assembles the following items into a netlist 
and invokes a mixed signal simulation. 
  

• Chipset HDL Model  
• Chipset IBIS Models  
• Chipset Package Models  
• PCB Stub and VIA Models  
• PCB Trace Models  
• PCB Resistor Pack Models  
• PCB Capacitor Models  
• PCB Connector Models 
• Memory Package Models  
• Memory IBIS Models  
• Memory HDL Model 

 
 

 
Figure 4. Section of PCB Memory Module layout with 
simulated traces highlighted in white 
 
Functional SI Verification Results 

Since functional SI analysis uses the digital code from 
the chipset testbench, the system stimulus is 
automatically generated.  Likewise, since the memory 
responds to commands from the chipset as it would in a 
real system, the data patterns originating from the 
memory are completely automated as well.  Also, the 
chipset and memory both use digital HDL that contains 
timing checks, so any timing violation caused by PCB 
effects will be flagged.  Figure 5 shows an example of 
this (created when some traces were extended past their 
critical length).  
 

 
Figure 5.  Output screen showing timing error 
messages 
 
 
Figure 6 shows the analog address, clock and data 
signals at the memory die during a burst write from the 
chipset.  Notice that all the traces are evaluated 
simultaneously, using pseudo-random address and data 
patterns.   Alternatively, incrementing address and data, 
or walking ones patterns could also be easily 
accommodated.  These results were obtained after 
roughly 3 minutes of simulation.  
  

 
Figure 6.  Analog Simulation Results of Address, Clock, 
and Data 
 
 
Figure 7 shows the digital address and clock signals at 
the memory die during a burst write from the chipset.  
 



 
Figure 7.  Digital Simulation Results of Address and Clock 
 
Figure 8 shows the combined analog and digital address 
signals at the memory die during a burst write from the 
chipset.  Combination of the analog and digital 
waveforms provides a useful visualization of the logical 
analog equivalent.  
 

 
Figure 8.  Analog and Digital Simulation Results of 
Address 
 
Improvements and Future Development 
Setting up this verification technique required 
instantiating a [Model] in a [Circuit Call] statement.  This 
is specifically not allowed by the IBIS 4.1 specification 
(but was fortunately allowed by our test simulator).  
Removal of this exclusion from the IBIS specification 
would simplify creation of these models.   
 
Also, the chipset and memory HDL code had to be 
enhanced to include address and data patterns that 
were more appropriate for SI analysis.   
 
The simulation could be enhanced further by exercising 
all other signal lines in the system.  This would exercise 
the entire memory bus, and all signals visible in Figure 4 
would be highlighted. 
 
Due to time limitations, dynamic ODT and slew-
dependant timing were not modeled in this example.  
But, it should be no problem to do so with the AMS 
modeling language.   
 
Crosstalk analysis could also be enhanced in this 
application by replacing the PCB physical information 
with an 86-port S-parameter model.    
 
 

Summary and Conclusion 
This application shows an example of using IBIS 4.1 and 
AMS to simplify and improve the electrical and timing 
analysis of complex CPU to Memory interfaces.  This 
technique provides an industry standard method to 
accommodate the complexities of modern SDRAM 
interface design including: 

• High edge and clock rates 
• Dynamic On-Die Termination 
• Slew dependant timing 
• Traditional and pattern-dependant crosstalk 
• Electrical violations such as excessive overshoot 

or insufficient slew rate 
• Timing violations which include degradation due 

to PCB and crosstalk effects. 
• Automated eye measurement 
• Automated pass/fail determination 
  

Furthermore, the verification is performed on a bit by bit 
basis yielding much more realistic results over the more 
pessimistic eye-diagram post-processing techniques.  
 
This application shows just one of the many ways IBIS 
4.1 and AMS can improve the usability, capability and 
productivity of SI analysis.  Many future applications will 
benefit from the combination of IBIS 4.1 and AMS. 
 


