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ABSTRACT
Retiming is effective to improve performance of sequential circuits.
The existing FPGA retiming techniques implicitly assume that an
LUT can only drive a flip-flop (FF) within the same basic logic
block (BLE). Leveraging all FFs within a same cluster of BLEs,
we propose an efficient FF constraint driven retiming algorithm
(CDR), and further extend to statistical retiming (sCDR) for pro-
cess variations. Experiments show that CDR improves performance
by 5.54% on average (up to 11.6%) compared to the BLE-based re-
timing. In addition, sCDR reduces up to 6.93% of the mean delay
and 17.49% of delay deviation with 10x more runtime compared
to CDR. To justify the runtime overhead of sCDR, we propose an
effective way to perform sCDR only when it is beneficial. To the
best of our knowledge, this is the first in-depth study on the FF
constraint driven retiming problem considering process variations
for FPGAs.

1. INTRODUCTION
Retiming [1] has been studied extensively to optimize perfor-

mance in sequential circuits. For ASIC designs, [2] employed re-
timing in the global placement stage to minimize the clock period by
binary search, and [3] presented optimal retiming algorithms with-
out binary search. The available FF slots are pre-fabricated and their
locations are fixed for FPGAs. Therefore, FF constraints should be
considered explicitly for FPGA retiming. Such constraints are not
considered in [2] and [3], however.

There are the following two types of FF constraints in FPGAs.
(1) BLE-based FF Constraint, where BLE is basic logic element
and a lookup table (LUT) can drive a flip-flop (FF) within the same
BLE. (2) CLB-based FF Constraint, where CLB is a cluster of
BLEs and an LUT can drive any FF within the same CLB. [4] and [5]
performed FPGA retiming considering BLE-based FF constraint in
incremental placement. [6, 23] developed FPGA retiming consider-
ing both FF and signal integrity constraints. However, CLB-based
FF constraint, which offers more design flexibility, has not been
considered in these papers. The first contribution of this paper is to
develop an efficient CLB-based FF constraint driven retim-
ing algorithm, namely CDR. CDR reduces critical path delay by
5.54% on average (up to 11.16%) compared to retiming with BLE
based constraints.

Recently, process variations have drawn growing attention be-
cause of their significant impact on delay and power. [7, 8] con-
ducted preliminary studies on the statistical retiming problem for
ASIC designs. However, there is no existing statistical retiming
applicable to FPGAs with FF constraints. The second contribu-
tion of this paper is to extend our CDR algorithm to statistical
CDR (sCDR) to consider process variations. Experiments
show that, compared to CDR, sCDR reduces the mean value and

standard deviation of the critical path delay by up to 6.93% and
17.4%, respectively, with 10x more runtime. Furthermore, we re-
veal the correlation between the potential gain from sCDR and
topology of the timing network, which enables us to perform sCDR
only when it is beneficial.

The rest of the paper is organized as follows. Section 2 presents
FF constraint driven retiming (CDR), and Section 3 extends CDR
to consider process variations. Section 4 concludes the paper. To
the best of our knowledge, this is the first in-depth study of retiming
algorithm considering both FF constraints and process variations
for FPGAs.

2. FF CONSTRAINTS DRIVEN RETIMING

2.1 FF Constraints for Modern FPGAs
Our study assumes island style FPGA architecture [9]. Each

CLB contains K BLEs, and each BLE contains an LUT and an
FF. In order to retime an FPGA design in the post-layout stage, we
need to consider placement and FF binding constraints. In older
FPGA devices, a BLE has only one output. If an LUT drives
the FF within the same BLE, the combinational output of LUT is
NOT allowed to drive other FFs since it cannot be seen by other
FFs. This is called BLE-based constraint and it is assumed by the
existing FPGA retiming work [4] and [5].
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Figure 1: Modeling for the BLE in modern FPGAs

On the other hand, in modern devices such as Virtex 4 [10] and
Stratix II [11], an empty FF can be driven by any LUT within the
same CLB through local routing. Figure 1 shows the simplified
model of the 4-input BLE structure in modern FPGAs. The two
outputs correspond to the normal output and sequential output, re-
spectively. The sequential output is enabled when I4 is occupied to
feed FF directly, which enables the independent access of LUT and
FF within one BLE. This feature introduces more freedom for FF
placement after retiming a circuit. However, if an LUT is allowed
to drive an FF outside of its CLB, the overhead introduced by place-
ment disturbance and extra global interconnect delay1, may negate
the gain of retiming. To reduce the overhead of the post-retiming FF

1
In this paper, the local interconnects are those within one CLB, and

global interconnects are those between CLBs.



placement, we introduce CLB-based FF constraint where an LUT
can drive all FFs within its CLB, but not FFs outside its CLB.

2.2 Problem Formulation
Retiming [1] minimizes the critical path delay and clock period

of a circuit by inserting and deleting FFs, but without affecting
the circuit functionality. For retiming, a directed cyclic graph,
G = (V, E), is often constructed to model the circuit for sequential
timing analysis. In this graph, vertices represent the inputs/outputs
of basic circuit elements such as LUTs and FFs. Edges are added
between the inputs of combinational logic elements (e.g. LUTs)
and their outputs, and between the connected pins specified by the
circuit netlist. Each edge is annotated with the delay d(e) of the
circuit element or routing, and the weight w(e) that is the number
of FFs inserted in it. Formally, retiming is defined as follows [1].

Definition 1. Given the retiming graph G = (V, E), a
retiming is an integer-valued vertex-labeling r : V → Z.

The edge weights, w′, after retiming are expressed as

w′(u, v) = w(u, v) + r(v)− r(u), ∀(u, v) ∈ E (1)

Following [3], let T denote a given clock period. The sequential
arrival time, a(v), of node v is

a(v) = max(0, max
∀(u,v)∈E

(a(u)+d(u, v)−w′(u, v) ·T )),∀v ∈ V

A valid retiming solution must satisfy that the edge weights (1)
are non-negative and sequential arrival time is less or equal to the
target clock period T .

Given an FPGA architecture with size-K CLB and a target clock
period T , the retiming constraints are summarized as follows.

X

∀e(u,v)∈C

w′(u, v) ≤ K, ∀C ∈ CLB (2)

r(u) = r(v), ∀e(u, v) ∈ Econ (3)

w′(u, v) = w(u, v) + r(v)− r(u) ≥ 0, ∀e(u, v) ∈ E (4)

a(v) ≤ T, ∀v ∈ V (5)

where CLB is the set of CLBs in the FPGA design, C is the edge set
within a CLB and Econ contains all edges that cannot insert FFs due
to the FPGA architecture constraints. To reduce the overhead of FF
placement after retiming and keep minimal layout disturbance, we
do not allow FFs being inserted in global interconnects. Also, we
do not allow FFs being inserted in timing edges from LUT inputs
to LUT output. Therefore Econ contains all edges corresponding
to global interconnect and LUT inputs to output edges. Constraints
(2), (3), (4) and (5) correspond to the CLB-based FF constraint,
FPGA architecture constraint and the basic retiming constraints,
respectively.

Definition 2. Constraint Driven Retiming (CDR)
Problem is to retime a circuit to achieve minimal clock pe-
riod such that constraints (2), (3), (4) and (5) are satisfied.

2.3 CDR Algorithm
We extend the push down retiming algorithm [3] proposed in for

ASIC to consider FF constraints and interconnect delay for FPGAs.
The basic idea of push down retiming is to iteratively move the FF
backward before the critical node until the termination condition
is satisfied. There are two main differences comparing CDR to
[3]. Firstly, we do not allow FFs being inserted into global inter-
connects. In addition, the local interconnects are pre-fabricated,
and FFs cannot be inserted in the arbitrary positions of the local
interconnects, but only at the ends of timing edges. The second

difference is the CLB-based FF constraint. In the retiming graph,
we pre-record the attribution of each node u, which describes the
ID of the CLB and BLE that node u belongs to. In order to find
and relocate FFs which violate the CLB-based FF constraint, we
use these attributions to update the occupied FF number within a
CLB efficiently in retiming. Given a timing node u, the number
of occupied FFs within CLB i is Ni, and it should be updated as
follows when we perform push down operation on node u.

Ni =



Ni − 1, if u is the input of CLB i
Ni + 1, if u is the output of CLB i

(6)

i.e., one FF is pushed into or outside of the CLB.
The CDR algorithm (shown in Algorithm 1) starts from retiming

graph initialization (lines 1-4), UpdateTiming (line 2) performs
the sequential timing analysis and results in arrival time of each
node. The pseudo code of this routine is shown in Algorithm 2,
where Qr is a queue containing all the nodes requiring retimed in
the current iteration, Topt is the current optimal clock period, Qa

is the queue that contains all the nodes with retiming constraint
violations. The CDR algorithm enters a loop (lines 5-34) with the
termination condition in lines 8-9. [3] presented several efficient
termination conditions which can be extended to CDR in a straight-
forward fashion. After obtaining the arrival time of each node, we
push critical nodes into a queue (lines 10-12). δ is a constant to
compensate the numerical error in the calculation. Line 13-32 per-
forms backward FF movement iteratively. Whenever a label r(v)
changes, we update the occupied FF number inside a CLB by Up-
dateFFInCLB (line 19) based on (6). After each movement,
we check the retiming constraint (based on (2), (3), (4) and (5))
violations (line 24). For violations of retiming constraints, a BFS
(lines 25-28) is performed to relocate FFs to validate the current re-
timing solution. The arrival time for each node should be calculated
again after FF relocation and those critical nodes are pushed into
the queue (lines 29-32). When queue Qr is empty, the clock period
is updated based on the current retiming solution (lines 33-34) and
the next round of the iteration begins.

Regarding to the complexity, we have the following lemma.

Lemma 1. Lines 20-28 can solve CLB-based FF constraint
violation with a constant time complexity.

Proof. Suppose an FF is moved into a CLB from e(p, u) to
e(x, p) and the total number of occupied FFs becomes K+1, which
indicates a CLB-based FF constraint violation. As node p is a CLB
output node, it must have and only have one ancestor (parent) node
x. On the other hand, there always exists a CLB input v that path
v  x exists unless the root of node x is the output of a constant
generator (an LUT that has no inputs). In this case, x can never
be on the critical path since we always assume that the arrival time
of the constant generator input is −∞. Based on our push down
operation, r(v)← r(v)+1, only one FF is moved backward across
one node. If we assume that the total number of timing nodes within
a CLB is M , which is a constant determined by CLB size K, we
need at most M times of FF movements to move at least one FF out
of the CLB. This solves the CLB-based constraint violation.

According to [3], the worst case time complexity of push down
retiming algorithm is O(|V |2|E|) for retiming graph G = (V, E),
where |V | and |E| are numbers of nodes and edges in the retiming
graph, respectively, and the optimal solution exists if a node v
exists such that r(v) > N , where N is the total number of FFs in
the original circuits. Therefore, the worst case time complexity of
CDR is O(|V |2|E| · N) considering Lemma 1. Our experimental
results show that the algorithm is much more efficient than the worst



Algorithm 1 CDR

1: Load retiming graph, G = (E, V ), based on circuit model;
2: T ← UpdateTiming(G);
3: Qr ← ∅; r(v)← 0,∀v ∈ V ; Topt ←∞;
4: Ni ← occupied FF# in Ci, ∀Ci ∈ CLB;
5: while True do

6: if Topt > T then

7: Topt ← T ; ropt(v)← r(v),∀v ∈ V ;
8: if critical edges form a cycle then

9: Report Topt, ropt and exit;
{Push all critical nodes to queue}

10: for each v ∈ V do

11: if a(v) > T − δ then

12: Qr ← Qr ∪ {v};
{Iteratively move FFs to optimize critical path delay}

13: while Qr 6= ∅ do

14: u← dequeue(Qr);
15: if a(u) > T − δ then

16: Exit if certain termination condition is satisfied;
17: r(u)← r(u) + 1;
18: a(u)← max(a(u), max∀e(u,v)∈E d(u, v));

19: Ni ← UpdateFFInCLB(u);
{Validate the retiming solution}

20: Qa ← u;
21: while Qa 6= ∅ do

22: p← dequeue(Qa);
23: for each e(p, x) ∈ E or e(x, p) ∈ E do

24: if Ni > K ∧ e(x, p) ∈ E||e ∈ Econ ∧ r(x) 6=
r(p)||w′(e) ≤ 0 then

25: r(x)← r(x) + 1;
26: Qa ← Qa ∪ {x};
27: if e(x, p) ∈ E then

28: Ni ← UpdateFFInCLB(x);
{update arrival time}

29: T ← UpdateTiming(G);
30: for each v ∈ V do

31: if a(v) > T − δ then

32: Qr ← v;
33: for each v ∈ V do

34: T ← max(T, a(v));
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Figure 2: Backward movements for solving CLB-
based FF constraints

case complexity. Note that our approach will not introduce area
overhead since we only utilize the unused FFs already in FPGAs.

2.4 Experimental Results
We conduct experiments on sequential circuits from MCNC and

QUIP benchmarks, which are mapped into FPGAs with LUT size
of 4 and cluster size of 10. We use the Berkeley predictive de-
vice model [12] for 65nm technology node. We use the min-ED
(energy-delay product) device setting (Vdd = 0.9v and Vth = 0.3v),
as suggested in [13] for higher yield. All experimental data are col-
lected on a Linux workstation with a 1.9GHz Xeon CPU and 2GB
memory. In our synthesis flow, we first perform logic optimization
and technology mapping by SIS [14] and TurboMap [15], respec-
tively. To obtain more flexibility in retiming, we duplicate FFs
with high degree fanouts (>10). The circuits are then packed and
placed by T-VPack and VPR [9], respectively. Retiming followed
by routing (by VPR) is then performed.

To justify the effectiveness of retiming by relaxing BLE based

Algorithm 2 UpdateTiming(G = (E, V ))

1: a(v)← 0,∀v ∈ V ; T ← 0; Q ← V ;
2: while Q 6= ∅ do

3: u ← dequeue(Q);
4: for each e(u, v) ∈ E do

5: if w′(u, v) = 0 then

6: a(v)← max(a(v), a(u) + d(u, v));
7: T ← max(T, a(u) + d(u, v));
8: if v /∈ Q then

9: Q← Q ∪ v;
10: else

11: a(v)← max(a(v), d(u, v));
12: T ← max(T, a(v));
13: Return T ;

constraints to CLB based constraints, we first extend [3] to consider
BLE based constraints by allowing only FF insertion in timing
edges from an LUT output to its corresponding FF input, and then
compare the algorithm to CDR. Table 1 shows that retiming with
CLB based constraints (column CLB-con) improves performance
by over 5% on average compared to retiming with BLE based
constrained (column [3]-ext).

Furthermore, we show the effectiveness of constraint-aware re-
timing by comparing CDR to constraint unaware retiming [3] fol-
lowed by FF legalization (i.e. locally adjusting FFs until constraints
(2), (3), (4) and (5) are satisfied). Table 1 shows that CDR (col-
umn CLB-con) achieves over 6% performance improvement on
average compared to the constraint-unaware retiming with legal-
ization (column UCR+legalization). For most of the circuits, no
improvement can be obtained since the legalization phase moves
FFs back to their original (non-retimed) locations in order to sat-
isfy FF constraints. On the other side, CDR solves FF constraints
within optimization procedure and therefore achieves a much better
retiming solution.

BLE-con CLB-con

Circuit [3]-ext UCR+legalization CDR

bigkey 9.7 9.6 ( -1.03% ) 9.4 ( -2.08% )
clma 40.9 41.2 ( 0.73% ) 39.5 ( -4.13% )
diffeq 22.1 22.5 ( 1.81% ) 20.4 ( -9.33% )
dsip 8.4 8.9 ( 5.95% ) 8.1 ( -8.99% )

elliptic 28.1 28.1 ( 0.00% ) 27.8 ( -1.07% )
frisc 28.1 28.1 ( 0.00% ) 26.3 ( -6.41% )
s298 38.8 39.3 ( 1.29% ) 38.4 ( -2.29% )

s38417 24.4 24.4 ( 0.00% ) 24.1 ( -1.23% )
s38584 18.1 18.1 ( 0.00% ) 16.1 ( -11.05% )
tseng 22.8 22.8 ( 0.00% ) 20.9 ( -8.33% )

ave 24.14 24.3 ( 0.66% ) 23.1 ( -5.49% )

barrel64 14.33 14.92 ( 4.09% ) 14.20 ( -5.03% )
mux64 16bit 9.33 8.86 ( -5.03% ) 8.64 ( -2.55% )
mux8 128bit 7.34 7.38 ( 0.62% ) 7.02 ( -5.20% )
mux32 16bit 7.62 8.07 ( 5.99% ) 7.63 ( -5.78% )
mux8 64bit 6.56 6.52 ( -0.68% ) 6.31 ( -3.33% )

oc cordic r2p 30.39 32.47 ( 6.85% ) 30.30 ( -7.17% )
oc wb dma 17.74 18.69 ( 5.37% ) 17.50 ( -6.83% )

oc cordic p2r 24.75 25.00 ( 0.99% ) 23.08 ( -8.30% )
oc correlator 107.50 107.78 ( 0.26% ) 104.59 ( -3.05% )

ave 25.06 25.52 ( 1.83% ) 24.36 ( -5.25% )

Table 1: Clock period (ns) comparisons with differ-
ent deterministic retiming algorithms

3. STATISTICAL RETIMING

3.1 Statistical Sequential Criticality
Following the statistical timing model in [16], the delay of a

timing edge is modeled as a normal distributed random variable
[17], and the spatially correlated variation is extracted by [18] and
orthogonalized by principle component analysis (PCA) [19].

Under the presence of process variations, we employ the first or-
der statistical timing analysis [17] into our CDR algorithm frame-
work. The critical path delay is then approximated as a normal
random variable. To perform retiming under process variations,



we need to reconsider the following two problems. How to judge
the performance of a retiming solution represented by a ran-
dom variable? How to select the critical nodes under the
statistical context?

[20] suggested comparing two random variables a and b by
checking the probability of P (a < b) and accepting a < b if
P (a < b) > PT , where 0.5 ≤ PT ≤ 1.0. [7] presented a concept
of “disutility function”, disu(x), which is defined as

disu(x) = E(x) + ω ·
p

E(x−E(x))2 (7)

where E(x) is the mean of random variable x. The probability based
comparison in [20] relaxes the deterministic ordering relation with
probability PT and will potentially increase the number of “critical”
nodes that are needed to be retimed, which increases the runtime
and therefore is not applied. On the other hand, the disutility
function targets the worst case performance of the system and may
lead to pessimism on statistical delay. To alleviate the pessimism
of disutility function, we define the statistical sequential criticality,
seq crit(u) of node u as

seq crit(u) = crit(u)α · disu(d(u)) (8)

where crit(u) is the statistical criticality [17] of node u, which
provides the probability that node u lies on the critical path, and α
is an empiricial constant (1.0 in this paper). Obviously, sequential
criticality seeks those timing nodes that have large arrival time and
high probability lying on the critical path. This criticality is used to
select the critical nodes in the retiming procedure.

We tested several combination parameters ω and α for circuit
bigkey (the other circuits show the similar trend for these two
parameters.). The mean and standard deviation of the critical path
delay under different settings are summerized in Table 2, which
shows that ω=3 (in (7)) and α=1 (in (8)) is the best combination to
improve the timing yield in our algorithm. Note that a small ω make
the algorithm focus on reducing mean values of critical path delay,
and may produce larger standard deviations, which reduce timing
yield. In addition, a medium α reduces the pessimism of disutility
function and therefore improves the overall performance, however a
big α will over-emphasize statistical criticality and enforce sCDR to
consider more timing nodes and therefore reduce the effectiveness
of sCDR within 50 iterations.

α=0 (i.e. [7]) α=1 α=3
ω=3 11.02+1.65 10.99+1.34 11.04+1.39
ω=1 11.01+1.69 10.97+1.54 11.13+1.52
ω=0 11.01+1.70 10.98+1.47 11.16+1.51

Table 2: Mean+standard deviation for bigkey

3.2 Statistical Constraints Driven Retiming
We extend our CDR algorithm to sCDR to consider process vari-

ations in retiming by performing sequential statistical static timing
analysis (S-SSTA). The necessary updates of CDR are addressed as
follows.

• The deterministic timer, UpdateTiming, is replaced by
UpdateStatTiming, which is shown in Algorithm 3. In
the statistical sequential timer, a forward BFS is first per-
formed to calculate the statistical arrival time of each timing
node and arrival tightness probability (ATP) [17]. A back-
ward BFS is then performed to calculate the criticality of each
timing node. After that, the statistical critical path delay and
the maximum of sequential criticality by (8) are obtained.

• The judgment of performance improvement (line 6 in Algo-
rithm 1) is replaced by comparing the disutility function value

(7) of the distribution of the current critical path delay T and
that of the current optimal critical path delay Topt.

• The sequential criticality of the current node and the max-
imum sequential criticality are compared to determine the
critical nodes (line 11 and line 31 in Algorithm 1).

• All max and plus operations are replaced with probabilistic
equivalents.

• Termination condition in Algorithm 1 (line 8-9) is no longer
valid since it is impossible to identify the set of critical edges
deterministically in the context of process variation. Alterna-
tively, we set an upper bound to control the iteration number.
Figure 3 shows the performance improvement (mean+3·std)
converges in the first 50 iterations for circuit bigkey. The
same trends are observed for other test cases and therefore
we set the 50 as the iteration upper bound in sCDR.
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Figure 3: Performance improvement in first 50 iter-
ations (for bigkey)

Algorithm 3 UpdateStatTiming(G = (E, V ))

1: a(v)← 0,∀v ∈ V ; T ← 0; Q ← V ;
{Calculate ATP for each timing edge and statistical arrival time
for each node.}

2: while Q 6= ∅ do

3: u ← dequeue(Q);
4: for each e(u, v) ∈ E do

5: atp(e) ← ATP(e);
6: if w′(u, v) = 0 then

7: a(v)← max(a(v), a(u) + d(u, v));
8: T ← max(T, a(u) + d(u, v));
9: if v /∈ Q then

10: Q ← Q ∪ v;
11: else

12: a(v)← max(a(v), d(u, v));
13: T ← max(T, a(v));
{Initialize criticality for sink nodes}

14: for each e(u, v) ∈ E do

15: if w′(u, v) > 0 then

16: Q← Q ∪ {u};
17: crit(u)← 1.0

NF F +NP O
;

18: else

19: crit(v)← 0;
{Calculate criticality for each timing node.}

20: while Q 6= ∅ do

21: v ← dequeue(Q);
22: for each e(u, v) ∈ E do

23: if w′(u, v) = 0 then

24: crit(u)← crit(u) + atp(e) · crit(v);
25: if v /∈ Q then

26: Q ← Q ∪ u;
27: Return T and max∀v∈V seq crit(v);



3.3 Experimental Results
In our experiments, we first generate spatial correlation matrix

and PCA presented in Section 3.1, then perform sCDR algorithm
after placement. Following the setting in [16], we assume a variation
in each of Leff and Vth of 10%, 10% and 6% at 3σ2, respectively,
to model global, spatial and local variations. To model spatial
correlation, each FPGA chip is partitioned into grids such that each
grid contains five tiles in one dimension (around 0.5mm in 65nm
technology). The correlation covariance coefficient decreases to
0.1 at 2mm distance.

Table 3 compares the effectiveness of sCDR to CDR under pro-
cess variations. Compared to CDR, the sCDR algorithm reduces the
mean and standard deviation of the critical path delay distribution
by 0.34% and 0.45% for MCNC testset and by 1.82% and 3.66% for
QUIP testset on average, respectively. Note that sCDR obtains up
to 16.10% mean reduction and 25.76% standard deviation reduction
compared to CDR, which shows the effectiveness and importance of
integrating statistical timing analysis in retiming. The runtime for
both CDR and sCDR are shown in Table 3 (column time). sCDR
further optimizes circuits under process variations with about 20x
runtime overhead compared to CDR. For two circuits, clma and
s38417, sCDR gives solutions inferior to CDR due to our heuristic
metric (8) for selecting the critical nodes. This will be addressed in
our future research.

3.4 Prediction for Effectiveness of sCDR
Table 3 shows that sCDR has over 10x runtime overhead com-

pared to CDR while the effectiveness, i.e. timing yield improvement
compared to CDR, of sCDR is not significant for certain designs
(e.g. clma). Therefore it is necessary to develop an effective way to
predict the potential gain (further improvement compared to CDR)
of sCDR. In fact, the improvement due to sCDR depends on the
topology of the timing network of a design. Figure 4 shows two
different topologies for a design with 3 inputs and 2 outputs. The
delay values are labeled in timing edges. In topology (a), all input-
to-output paths share a long segment (A, B) and an FF is inserted
in it. As the deterministic retiming CDR reduces the determinis-
tic timing critical path length, CDR can achieve a good balance
of delay among all input-to-output critical paths in topology (a).
However, sCDR can hardly further improve timing yield for this
case since either forward or backward move of FFs will change the
statistical criticality of all the input-to-output paths and it tends to
accept the solution produced by CDR. In topology (b), there are
two independent input-to-output paths, i.e., p1 = (PI,C, D, PO)
and p2 = (PI,E, F, PO). CDR achieves the best critical path
delay for both paths without considering variations. Suppose node
E is more sensitive to process variations, sCDR will move the FF in
segment (E,F ) backward, reduce the statistical criticality of node
E, and increase the tolerance of the process variations. Note that
the delay distribution on path p1 remains the same after sCDR while
the timing yield for the overall network increases.
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Figure 4: (a) Circuit without independent path (b)
Circuit with 2 independent paths

Motivated by the example shown in Figure 4, we find that a larger
2
I.e. a 99.73% chance that variation is within +/- 10% or 6% deviated

from the nominal value.

number of independent critical paths indicates greater effectiveness
of sCDR. Note that there usually exist few fully independent paths3
in a real design and most of them overlap with each other. We
propose the concept of cluster of coupled paths (CCP) to evaluate
the topology of a timing network. Those paths closely coupled with
each other are clustered and form a CCP. For an instance, in Figure
4, there is one CCP in (a) and two in (b). Intuitively, CCP reflects
the coupling strength of a timing network. More CCPs indicates
fewer path sharing and more improvement is expected from sCDR.

To predict the effectiveness of sCDR, we check the number of
CCPs for the top-N deterministic timing critical and near-critical
paths (CNP). We first enumerate the top-N CNPs, p1, · · · , pN , and
then calculate, lij , the total length of all overlapped segments be-
tween each two paths pi and pj . A normalized coupling strength
coefficient matrix (CCM) LN = {lij/lmax} is then generated,
where lmax is the length of the most critical path, i.e., clock pe-
riod. Given CCM LN for the top-N CNPs, the number of CCPs
of these paths can be measured based on singular value decompo-
sition (SVD) [22]. The number of large singular values (LSV) can
approximate the number of CCPs in the top-N CNPs. Figure 5
summarizes the derivation of the predictor for the effectiveness of
sCDR.

CCP# in 

t o p - N  CN Ps  

E f f e c t iv e ne s s  

o f  s CD R

# o f  l a r g e  s ing u l a r  

v a l u e s  o f  L

Figure 5: Prediction for the effectiveness of sCDR

As an example for predicting the effectiveness of sCDR, again
we consider the two networks shown in Figure 4, the L2 matrices
for (a) and (b) are as follows.

L2(a) =

"

1 0.8 0.8
0.8 1 0.8
0.8 0.8 1

#

(9)

L2(b) =

2

4

1 0 0
0 1 0.8
0 0.8 1

3

5 (10)

The singular values for L2(a) and L2(b) are [2.6, 0.2, 0.2] and
[1.8, 1.0, 0.2], respectively, and the number of singular values larger
than 1.0 are one and two. This matches our observation very well.
Therefore, we have the following empirical prediction for the ef-
fectiveness of our sCDR algorithm.

Claim 1. Larger LSV number of LN (n) matrix for net-
work n indicates more CCPs so that more effective of sCDR,
i.e., more timing yield improvement, is expected compared to
CDR.

To verify Claim 1, we extract the top-30 CNPs for all test circuits
and calculate their LSV numbers. Figure 6 compares the LSV num-
ber and the reduction of the mean clock period by sCDR compared
to CDR4. The overall trend of the results confirm the above theory.
This predictor enables us to perform sCDR only when large gain is
expected. Note that the prediction is “binary” but not “con-
tinuous” in the sense that it indicates a good gain by sCDR if
the LSV number is larger than a threshold, however, a larger
LSV number does not necessarily mean a higher gain. We
find that setting the LSV threshold of 10 for top-30 CNPs leads to
3
I.e, a path with no overlap to any other paths.

4
Two circuits, mux64 16bit and dsip, are not shown in this chart.

They have big LSV numbers while they do not gain much by sCDR
due to the heuristic objective function



non-retimed CDR sCDR
mean(ns) std(ns) mean (impv) std (impv) cpu(s) mean (impv) std (impv) cpu(s)

bigkey 11.32 1.33 11.26 (-0.57%) 1.43 (7.57%) 4 10.99 (-2.99%) 1.34 (1.03%) 27
dsip 10.03 1.98 9.63 (-3.98%) 2.00 (0.84%) 4 9.62 (-4.10%) 2.00 (0.84%) 34
s298 42.73 6.41 40.88 (-4.32%) 6.54 (1.92%) 10 40.88 (-4.33%) 6.51 (1.43%) 95

s38584 19.62 3.69 18.34 (-6.50%) 3.64 (-1.57%) 23 18.42 (-6.08%) 3.40 (-7.91%) 221
s38417 29.37 4.10 29.32 (-0.16%) 3.94 (-3.87%) 31 29.16 (-0.71%) 4.26 (3.96%) 289
clma 44.93 6.04 43.39 (-3.43%) 5.78 (-4.32%) 54 43.85 (-2.42%) 5.80 (-3.89%) 1247
tseng 24.05 4.31 22.40 (-6.88%) 4.03 (-6.69%) 1 22.31 (-7.25%) 4.01 (-7.02%) 13

elliptic 31.03 4.89 30.79 (-0.78%) 4.89 (0.11%) 14 30.02 (-3.24%) 4.87 (-0.27%) 118
frisc 31.03 4.89 29.99 (-3.37%) 4.90 (0.20%) 24 29.81 (-3.92%) 4.84 (-1.03%) 378
diffeq 25.67 5.86 24.53 (-4.43%) 4.96 (-15.44%) 19 24.55 (-4.35%) 4.86 (-17.05%) 145
(ave) 26.98 4.35 26.05 (-3.43%) 4.21 (-3.25%) 18 25.96 (-3.77%) 4.19 (-3.70%) 257

barrel64 17.00 2.84 16.42 (-3.43%) 2.68 (-5.75%) 1 15.84 (-6.86%) 2.40 (-15.57%) 5
mux64 16bit 11.02 1.70 10.36 (-5.94%) 1.67 (-1.78%) 2 10.20 (-7.40%) 1.61 (-5.10%) 14
mux8 128bit 8.46 1.41 8.17 (-3.44%) 1.40 (-0.61%) 1 7.95 (-6.06%) 1.24 (-12.27%) 7
mux32 16bit 9.89 1.79 8.92 (-9.85%) 1.61 (-10.12%) 2 8.30 (-16.10%) 1.33 (-25.76%) 22
mux8 64bit 8.16 1.45 7.58 (-7.10%) 1.29 (-11.39%) 3 7.42 (-9.14%) 1.20 (-17.30%) 34

oc cordic r2p 36.06 5.71 35.20 (-2.39%) 5.41 (-5.33%) 4 34.40 (-4.61%) 5.19 (-9.20%) 68
oc wb dma 21.49 3.32 20.75 (-3.46%) 3.13 (-5.62%) 18 20.67 (-3.84%) 3.10 (-6.61%) 543

oc cordic p2r 29.29 4.62 28.99 (-1.04%) 4.64 (0.33%) 4 27.74 (-5.31%) 4.20 (-9.22%) 73
oc correlator 119.37 23.64 116.65 (-2.28%) 23.23 (-1.73%) 10 115.78 (-3.00%) 23.09 (-2.33%) 40

(ave) 28.97 5.17 28.12 (-2.96%) 5.01 (-3.08%) 5 27.59 (-4.78%) 4.82 (-6.74%) 90

Table 3: Comparison with CDR and sCDR

good results. The runtime of the prediction is negligible compared
to CDR. In general, our SVD based predictor quatitively gives the
sensitivity of the network toplogy to the process variations and
thereby can be used in any other statistical timing optimization
procedures besides retiming.
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Figure 6: LSV number vs. further statistical delay
reduction by sCDR

4. CONCLUSION
To utilize retiming in modern FPGAs, we have proposed an op-

timal FF constraint driven retiming algorithm, namely CDR, with
polynomial time complexity. Furthermore, we have extended our
CDR algorithm to sCDR to handle process variations by consid-
ering statistical timing analysis during the retiming procedure.

The experimental results show that CDR achieves on average
5.54% and up to 11.6% performance improvement compared to
the optimal retiming algorithm with the BLE based FF constraints.
Tested on a rich set of circuits from MCNC and QUIP testset, sCDR
reduces up to 6.93% of the mean value and 17.49% of the standard
deviation of the distribution of the clock period compared to CDR.
To justify the runtime overhead of sCDR, we propose an effective
way to predict the potential gain from sCDR, which enables us to
perform sCDR only when it is beneficial.
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