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ABSTRACT
Chemical-mechanical planarization(CMP) is an enabling tech-
nique to achieve wafer planarity in backend manufactur-
ing processes of integrated circuits. However, CMP also
causes variations in metal and dielectric thicknesses due to
the non-uniformity of metal feature density. In this paper,
we first conduct a case study of CMP induced variations
using an industrial CMP simulator and a widely used mi-
croprocessor hardcore fabricated in a 90nm technology with
eight metal layers. We reveal a few interesting characteris-
tics on thickness variations, and particularly vertical and
horizontal correlations between variations while such cor-
relations have been virtually ignored by the existing study.
These characteristics may lead to better modeling and de-
sign optimization for CMP variations. As an example, we
then propose a stochastic CMP model to efficiently incor-
porate CMP variations in the design flow, and develop two
algorithms to reduce the CMP simulation runs by 7X and
3X respectively compared to generating the stochastic CMP
model by detailed CMP simulations.

1. INTRODUCTION
CMP was invented by IBM in the late 80’s to enable multi-

metal layers in the integrated circuits (IC). It is now a com-
monly used technique in interconnect or inter-layer dielec-
tric (ILD) planarization to ensure that interconnect or ILD
thicknesses are uniform. Both chemical and mechanical pro-
cesses are used in polishing metal and dielectric.

Basic process of ILD CMP is to deposit the silicon oxide
thicker than the final thickness and polish the material back
until the step heights are removed, which provides a flat
surface for the next metal layer [1]. Copper CMP process is
more complex and contains three steps: removal of the over-
burden copper, removal of the barrier material, and copper
dishing and oxide erosion [2]. The above basic processes are
repeated to add ILD and metal layers from bottom to top,
and to obtain multi-level interconnections.

Figure 1: Dishing and Erosion in Copper CMP.

Fig. 1 from [3] illustrates dishing and erosion, two main
sources of metal thickness variation. Dishing is the differ-
ence between copper heights in the trenches and around the
trenches. Erosion is the difference between the dielectric
thicknesses before and after CMP. CMP may also cause ILD
variation. As demonstrated in Fig. 2 from [4] where (a) has
no fill feature and (b) has fill feature to make metal den-
sity more uniform, non-uniformity in metal density results
in different removal rate, and further causes variation of ILD
thickness. However, CMP does not affect the interconnect
width and spacing directly.

Figure 2: CMP ILD variation (a)without fill inser-
tion (b)with fill insertion .

To model CMP procedure accurately, a number of sim-
ulators have been published. Pattern-density model from
Preston’s equation [5] is usually used in ILD thickness simu-
lation. It convolves local density of wafer with density filters
to get effective density, and finally calculate ILD thickness.
Copper CMP process is much more complex than ILD pro-
cess. The copper CMP process simulation in [6] models three
steps, calculates the time it takes in each step, and obtains
the amount of dishing and erosion in the end. In addition,
industrial tools are also available such as DVIP (Designer
Virtual Interconnect Predictor) from Cadence [7].

However, CMP simulators only produces raw data of CMP
variations, but do not directly explicate any characteristics
of CMP variations. The first contribution of this paper is to
use a hardcore IP block fabricated in a leading technology
and a mature industrial CMP simulator to reveal character-
istics (called observation in this paper) of CMP variations.
Particularly, we show that there exists strong vertical (i.e.,
between layers) and horizontal (i.e., within a same layer)
correlations between CMP variations. These observations
may lead to more accurate modeling and better design op-
timization for CMP variations. For example, existing work
has studied CMP-induced RC extraction variations [8] and
interconnect performance variations [3], buffering and wire
sizing with fill insertion [9], and CMP aware global routing
[10]. None of these study [8, 3, 9, 10] took into account
the vertical correlation between multiple interconnect lay-
ers. However, this paper demonstrates that such correlation



Figure 3: Diagram to define metal thickness T1,
T2,...,T8; ILD thickness ILD1, ILD2,...,ILD8; stack
Stack1, Stack2,...,Stack8.

has a great impact on metal and dielectric thickness and
should not be ignored.

The second contribution of this paper is that we propose
a stochastic CMP model with spatial correlation in order to
efficiently incorporate CMP variations in the modeling and
design flow. We also develop two algorithms to reduce the
CMP simulation runs by 7X and 3X respectively compared
to generating the stochastic CMP model by detailed CMP
simulations.

The rest of the paper is organized as follows. Section 2 dis-
cusses experiment setting and reveals CMP variation char-
acteristics with vertical correlation. Section 3 introduces
the stochastic CMP model with spatial correlation and run-
time efficient algorithms to build this model. We conclude
in Section 4.

2. CMP CHARACTERISTICS

2.1 Experimental Setting
To study CMP variations, we use a widely used micropro-

cessor hardcore fabricated in a 90nm technology with eight
metal layers. We show the detailed layer stacking in Fig. 3,
where T1, T2, ..., T8 are metal thickness, and ILD1, ILD2,
..., ILD8 are ILD thickness. We also call metal layer and its
underneath dielectric layer as one stack.

We run CMP simulation using DVIP (Designer Virtual
Interconnect Predictor) from Cadence to obtain the thick-
ness for every metal and dielectric layer, and the thickness
is calculated for every location 10µm away. The thicknesses
are stored in a two-dimensional matrix for each layer. Each
row (or column) of thicknesses are those with same x-axis
(or y-axis) locations. For simplicity of presentation, we re-
port horizontal distance in unit of 10µm unless otherwise
stated. Therefore, a distance of 1 means 10µm. For IP
protection, we report all thickness and variation normalized
with respect to the average thickness in each metal or di-
electric layer. Note that metal fills have been inserted in the
hardcore under study to satisfy the minimum metal density.
We will show that the fill insertion makes metal and dielec-
tric thickness more uniform and enables some desired CMP
characteristics.

2.2 Thickness Variation

2.2.1 Edge Effects

We present the metal thickness T1 and T8 in Fig. 4 and
Fig. 5. As shown in Fig. 4 (a), metal thickness at chip edges
is distinctly larger than those in the center for M1, but not
for M8 (Fig.4 (b)). We cut the edges within 20µm off the
chip for a better observation on metal thickness variation
in Fig. 5. As shown in this figure, the thickness variations
exist in the center of both layers.

We have similar observation on ILD thickness (see Fig.
6 and Fig. 7). When cutting off the edges, we observe
variations in both ILD1 and ILD8 layers. Thickness of
ILD1 at chip edges is significantly larger than those in the
central area (Fig.6 (a)), but not for ILD8 (Fig.6 (b)). While
we only show figures for stacks 1 and 8, other stacks have
similar trend and we conclude the following:

Observation 1 Both metal thickness and ILD thickness at
edges are larger than those in the center for low stacks
(stacks 1-3 in our case study), but not for other stacks.
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Figure 4: 3-D figure of thickness: (a) T1 (b) T8.
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Figure 5: 3-D figure of thickness (Edges within 20µm
are cut off): (a)T1 (b) T8.
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Figure 6: 3-D figure of thickness: (a) ILD1 (b) ILD8.

For more accurate modeling on thickness variation due
to CMP for all layers, all the rest thickness calculation for
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Figure 7: 3-D figure of thickness (Edges within 20µm
are cut off): (a) ILD1 (b) ILD8.

metal and ILD considers the central hardcore 20µm away
from edges. More precisely, we use a 500µm×500µm se-
lected layout window to show results in different layers after
cutting off edges.

2.2.2 Roughness of Layers
Thickness variation in one layer results in the rough sur-

face of this layer. To study roughness of layers, we first study
neighbor difference and maximum difference within one layer
for both metal thickness and ILD thickness. Neighbor differ-
ence (ND) is the thickness difference between two adjacent
locations that are 10µm away. Maximum difference (MD)
is the maximum thickness differences between any two loca-
tions within one layer.

As shown in Table 1, a higher stack has a higher variation
in both metal and ILD thickness. Stacks 1-5 have similar
mean and maximum neighbor difference. On the other hand,
stacks 6-8 also have similar mean and maximum neighbor
difference, but significantly larger than those in stacks 1-5.
For maximum difference, stacks 1-4 have similar values while
stacks 5-8 also have similar values but significantly larger.
A relatively small neighbor difference but larger maximum
difference in stack 5 suggests a locally smooth but globally
rough layer. ILD thickness has a slightly larger variation
compared to the corresponding metal thickness.

Second, we study the distribution of distance between
neighbor valleys and peaks of thickness. Peaks are defined
as locations with thickness larger than locations around them.
V alleys are defined as locations with thickness smaller than
locations around them. We only select those peaks and
valleys, whose difference to neighbor valleys or peaks are
greater than 4% of the average thickness of the current layer.
Absolute frequency of Manhattan distance (in unit of 10µm)
between peaks and valleys are shown in Fig.8. ILD layers
have more peaks and valleys than correspondingly metal lay-
ers. In addition, ILD layers have a larger portion of peaks
and valleys with small distances. For example, ILD8 has
more frequent peaks and valleys for short distances than
M8. In other words, it is more rough than M8. Based on
Table1 and Figure 8, we conclude:

Observation 2 Roughness increases for higher stacks , and
ILD layers are slightly rougher than metal layers within
same stacks.

2.3 Vertical Correlation

2.3.1 Preliminaries
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Figure 8: Frequency of Manhattan distance between
valleys and peaks: (a) M8 (b) ILD8.

In this section, we will discuss the correlation between
metal thickness and ILD thickness across different layers.
First, for two stochastic variables Fi and Fj , we define the
correlation between them as follows:

ρij =
cov(Fi, Fj)

σFi
σFj

(1)

where σ is the standard deviation and cov(Fi, Fj) is the
covariance. We use MV xm,n to represent the vertical cor-
relation matrix between layers m and n, where x can be
either metal or ILD, correspondingly representing the cor-
relation matrix calculated by metal thickness or ILD thick-
ness. MV xm,n(i, j) is the normalized covariance between
the ith row in layer m and jth row in layer n. Therefore all
thicknesses in the ith row of layer m are samples of Fi in
(1), and those in the jth row in layer n are samples of Fj .

Second, we use correlation matrix image (CM image) in
gray-scale to display vertical correlation matrix. Let 0 dis-
played as black and 1 displayed as white. Values between
0 and 1 are displayed as intermediate shades of gray. So
the brighter a grid is, the higher correlation between rows
in corresponding layers. We can calculate four correlation
matrices between every two sets of thicknesses. One is a cor-
relation matrix, one is a matrix of p-values for testing the
hypothesis of correlation (each p-value is the probability of
getting a correlation as large as the observed value by ran-
dom chance, when the true correlation is zero), other two
are lower and upper bounds for a 95% confidence interval for
each coefficients [11]. In this paper, we only show correlation
matrix images for the 95% upper bounds of confidence inter-
val, which indicates the largest possible correlation between
two rows at a 95% confidence.

Third, we define complementary and correlated to describe
two extreme situations with high correlation. When two
sequences have a high correlation, the absolute value of their
correlation is close to 1. If its real value is close to -1, we
call the two sequences complementary. If it is close to 1, we
call they are correlated.

2.3.2 Observations

Observation 3 When routing is dense, metal and ILD
layers in adjacent stacks have complementary thickness.
The density threshold for complement is technology de-
pendent.

Fig. 9 and Fig. 10 verify above observation. Fig.9 (a)
and Fig.10 (a) plot thicknesses of M1 and M2 (as well as



Metal Thickness ILD Thickness
Layer mean ND max ND MD mean ND max ND MD

1 0.13% 0.88% 2.80% 0.13% 0.94% 2.94%
2 0.07% 0.58% 1.11% 0.12% 0.92% 2.21%
3 0.15% 0.73% 1.91% 0.14% 0.64% 1.74%
4 0.14% 1.22% 1.88% 0.20% 1.12% 2.54%
5 0.20% 1.93% 6.51% 0.20% 2.00% 6.21%
6 0.62% 5.99% 9.50% 0.60% 5.04% 10.28%
7 0.84% 7.80% 11.94% 1.03% 8.61% 15.37%
8 0.68% 5.21% 10.30% 1.04% 10.08% 16.19%

Table 1: Neighbor difference and biggest difference comparison for metal and ILD thickness.

Figure 9: Thickness for M1 and M2 (a) Correlation
of a row (b) Correlation matrix image.

Figure 10: Thickness for ILD1 and ILD2 (a) Corre-
lation of a row (b) Correlation matrix image.

ILD1 and ILD2). They are complementary in a selected
row. M2 (ILD2) tends to be thinner where M1 (ILD1)
is thicker for this row. As shown in Fig.9 (b) and Fig.10
(b), the diagonals of vertical correlation matrix images are
bright. Thus absolute values of correlation coefficients on
the diagonals are close to 1. In short, M1 and M2 (as well
as ILD1 and ILD2) are complementary for the entire chip.
This observation only holds for stacks 1 and 2 in our case
study, where the metal density is high.

Observation 4 Layers in non-adjacent stacks are neither
complementary nor correlated.

The above observation is verified by Fig.11. In Fig.11
(a), thickness of M1 and M3 is neither correlated nor com-
plementary in the selected row. Correspondingly in Fig.11
(b), we cannot find a bright diagonal from vertical correla-
tion matrix image any more. In short, T1 in Stack1 and T3

in Stack3, which belong to nonadjacent stacks, are neither
complementary nor correlated over the entire chip. Obser-
vation 4 holds for all stacks in our experiments.

Observation 5 Within one stack, the metal layer and its
underneath ILD layer have correlated thicknesses.

Fig.12 illustrates Observation 5. It shows metal thickness
and ILD thickness in stack 4 are highly correlated, i.e. M4

Figure 11: Thickness for M1 and M3 (a) Correlation
of a row (b) Correlation matrix image.

Figure 12: Thickness for M4 and ILD4 (a) Correla-
tion of a row (b) Correlation matrix image.

and ILD4 tend to be thicker at the same location. This
observation holds for all stacks. In contrast, a metal layer
in general is not correlated with the ILD layer on the top
stack.

3. EFFICIENT CMP MODELING

3.1 Stochastic Modeling with Spatial
Correlation

Although CMP variation is deterministic for given multi-
layer layout, modeling its variation for each 10µm leads to
explosive data amount and should be avoided. A viable al-
ternative is to use a stochastic model. In this model, we di-
vide each layer uniformly into, e.g., 10×10 regions, and then
model the thickness in each region by a Gaussian variable
with mean and variance, together with correlation between
variances of different regions. We treat the thicknesses at
different locations (e.g., 10µm away as in this paper) in each
region as samples. Then mean, variance spatial correlation
according to (1) can be calculated. Such correlation helps to
improve accuracy in a statistic static timing analysis capable
of dealing with spatial correlation.

Fig. 13 plots the spatial correlation between locations
versus various distances between locations. One can easily
see from the figure that the spatial correlation cannot be
ignored and it is not isotropic with respect to the distance.
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Figure 13: Correlation over distance: (a) M5 (b)
ILD3

This is different from device variations which often has an
isotropic spatial correlation with respect to the distance.

3.2 Speedup of Stochastic Modeling
Because using CMP simulation for every location 10µm

away to build the above stochastic model is time consuming,
we will propose two algorithms to speedup model generation
and also verify the accuracy of the two algorithms.

3.2.1 Algorithm 1
The algorithm Alg1 is based on interpolation in the fre-

quency domain and is shown in Table Algorithm 1. While
the most steps are straightforward, combining 1D FFT of
D̂r and D̂c and 2D FFT of D̂g in Step 4 does not give us

all elements in Ŵ for all locations 10µm away and we pad
these missing elements by 0.

Algorithm 1:
1. Obtain matrix Dg by CMP simulations for a uniform
grid K̃ coarser than K (the finest granularity)
2. Perform CMP simulations for every Kµm along 1st

row and 1st column, and get two sequences Dr and Dc

3. Deduct mean value from Dg, Dr, Dc, and obtain

D̂g, D̂r, D̂c.

4. Combine one-dimensional (1D) FFT of D̂r and D̂c,

and 2D FFT of D̂g to obtain an estimated 2D FFT Ŵ

for the unknown thickness matrix for D̂ with the finest
granularity.
5. Perform 2D IFFT on Ŵ and then add mean value of
Dg, finally obtain estimated thickness D̂

6. Use D̂ to build stochastic model

3.2.2 Algorithm 2
Because we can locate and simulate peaks and valleys of

thickness, we can simply use bicubic interpolation based on
the above peaks and valleys. The resulting Alg2 in Table
Algorithm 2 is simple yet effective to be shown in the next
Section 3.2.3.

Algorithm 2:
1. Locate and simulate peaks and valleys of thickness.

2. Perform bicubic interpolation to obtain D̂.

3. Use D̂ to build stochastic model.

3.2.3 Accuracy Comparison

Figure 14: Correlation matrix image comparison for
M1: (a) Original data (b) Alg.1 (c) Alg.2

Figure 15: Correlation matrix image comparison for
ILD1: (a) Original data (b) Alg1 (c) Alg2

In this part, we compare Alg1 and Alg2 with the original
model where CMP simulation is performed for each data
point. In Tables 2 and 3, “Error on Mean” is the average
error for the mean thickness for all regions in the stochastic
model, “Relative Variance” is average of relative variance
(defined as variance divided by mean value within each re-
gion) for all regions in the stochastic model, and “Simulation
Number” is the number of CMP simulation runs needed in
speedup algorithm divided by total simulation runs needed
by the original model.

As shown in Table 2, both Alg1 and Alg2 are accurate
enough in terms of mean thickness. Alg2 is 3X more accu-
rate than Alg1 on average. In addition, not shown in the
table, the maximum errors on mean thickness estimation for
both Alg1 and Alg2 are less than 1%. However, both algo-
rithms tend to under-estimate variances because the FFT in-
terpolates in Alg1 and bicubic interpolation in Alg2 smooth
(reduce) the variations of estimated thicknesses. Compared
to Alg1, Alg2 is about 3X better in variances estimation as
shown in the tables, especially in higher layers when relative
variation is large. Figures 14 and 15 compare the correlation
matrices for the original model and the models generated by
Alg1 and Alg2. It is clear that Alg2 is reasonably accurate
and is more accurate than Alg1 in terms of spatial correla-
tion.

Although Alg2 achieves better accuracy, it needs to locate
peaks and valleys of thickness, which can be done at some
extra run time. On the other hand, Alg1 is easier to imple-
ment and has a constant number of simulation runs. The
number of simulation runs for Alg2 changes with respect to
different designs, and is 1.5X more than Alg1 in this case
study. The two algorithms offers a tradeoff between accu-
racy and time complexity and may be suitable for different
tool flows.

4. CONCLUSIONS AND DISCUSSIONS
In this paper, we have revealed several interesting char-

acteristics (Observations 1-5) on thickness variations and
vertical and horizontal correlations between the variations.
We have also proposed a stochastic CMP model and devel-
oped two algorithms to reduce the CMP simulation runs by
7X and 3X, respectively, to build this stochastic model.

It is easy to see that we can leverage the vertical cor-



Error on Mean Relative Variance Simulation Number
Layer Alg.1 Alg.2 Accurate Alg.1 Alg.2 Alg.1 Alg.2

1 0.16% 0.03% 0.22% 0.06% 0.15% 14% 30%
2 0.05% 0.01% 0.05% 0.01% 0.03% 14% 32%
3 0.13% 0.02% 0.19% 0.05% 0.13% 14% 32%
4 0.10% 0.02% 0.13% 0.03% 0.10% 14% 36%
5 0.18% 0.03% 0.55% 0.21% 0.42% 14% 37%
6 0.32% 0.17% 4.94% 0.89% 3.28% 14% 33%
7 0.24% 0.12% 4.97% 0.68% 3.75% 14% 34%
8 0.12% 0.09% 3.01% 0.45% 2.40% 14% 36%

Table 2: Comparison for metal thickness.

Error on Mean Relative Variance Simulation Number
Layer Alg.1 Alg.2 Accurate Alg.1 Alg.2 Alg.1 Alg.2

1 0.17% 0.04% 0.22% 0.06% 0.16% 14% 30%
2 0.11% 0.02% 0.27% 0.07% 0.19% 14% 31%
3 0.11% 0.02% 0.20% 0.05% 0.14% 14% 33%
4 0.13% 0.03% 0.38% 0.08% 0.24% 14% 33%
5 0.24% 0.03% 0.72% 0.27% 0.56% 14% 34%
6 0.34% 0.16% 6.55% 1.21% 4.50% 14% 32%
7 0.34% 0.16% 11.46% 1.74% 7.29% 14% 33%
8 0.21% 0.20% 8.10% 1.13% 5.69% 14% 36%

Table 3: Comparison for ILD thickness.

relation between thickness variations (Observations 3-5) to
further speed up CMP modeling and likely to obtain another
2X-3X speedup. This is part of our future work. In addi-
tion, we will develop interconnect routing and optimization
considering CMP variations with vertical (inter-layer) corre-
lation which has been ignored by the existing work. Finally,
the large amount of variation (up to 10%) on thickness may
cause defocusing in lithography and in turn affect intercon-
nect width and spacing. The interaction between CMP and
lithography will be studied in the future as well.
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