
Submission under review, please do not distribute
Non-Linear Statistical Static Timing Analysis for

Non-Gaussian Variation Sources

Lerong Cheng
EE Dept., Univ. of California

Los Angeles, CA 90095

lerong@ee.ucla.edu

Jinjun Xiong
IBM Research Center

Yorktown Heights, NY 10598

jinjun@us.ibm.com

Lei He
EE Dept., Univ. of California

Los Angeles, CA 90095

lhe@ee.ucla.edu

ABSTRACT
Existing statistical static timing analysis (SSTA) techniques
suffer from limited modeling capability by using a linear
delay model with Gaussian distribution, or have scalabil-
ity problems due to expensive operations involved to han-
dle non-Gaussian variation sources or non-linear delays. To
overcome these limitations, we propose a novel SSTA tech-
nique to handle both nonlinear delay dependency and non-
Gaussian variation sources simultaneously. We develop ef-
ficient algorithms to perform all statistical atomic opera-
tions (such as max and add) efficiently via either closed-
form formulas or one-dimensional lookup tables. The re-
sulting timing quantity provably preserves the correlation
with variation sources to the third-order. We prove that
the complexity of our algorithm is linear in both variation
sources and circuit sizes, hence our algorithm scales well for
large designs. Compared to Monte Carlo simulation for non-
Gaussian variation sources and nonlinear delay models, our
approach predicts all timing characteristics of circuit delay
with less than 2% error.

1. INTRODUCTION
For the CMOS technology scaling, process variation has
become a potential show-stopper if not appropriately han-
dled. Statistical static timing analysis (SSTA), in particu-
lar, block-based parameterized SSTA [1, 2, 3, 4, 5, 6], has
thus become the frontier research topic in recent years in
combating such variation effects. The goal of SSTA is to
parameterize timing characteristics of the timing graph as
a function of the underlying sources of process parameters
that are modeled as random variables. By performing SSTA,
designers can obtain the timing distribution (yield) and its
sensitivity to various process parameters. Such information
is of tremendous value for both timing sign-off and design
optimization for robustness and high profit margins.

Although many studies have been done on SSTA in recent
years, the problem is far from being solved completely. For
example, [1, 2] assumed that all variation sources are Gaus-
sian and independent of one another. Based on a linear
delay model, [2] proposed a linear-time algorithm for SSTA,
in which all atomic operations (such as max and add) can be
performed efficiently via the concept of tightness probability.
Because all variation sources are assumed to be Gaussian,
so is the delay distribution under the linear delay model.

Such a Gaussian assumption is, however, no longer toler-
able as more complicated or large-scale variation sources are

taken into account in the nanometer manufacturing regime.
For example, via resistance is known to be non-Gaussian
with asymmetric distribution [7], and dopant concentration
is more suitably modeled as a Poisson distribution [6]. In
addition, the linear dependency of delay on the variation
sources is also not accurate, especially when variation sources
become large [8]. For example, gate delay is inherently a
nonlinear function of channel length and Vth [7, 3], which
are two common sources of variation. Similarly, interconnect
delay is also a nonlinear function of interconnect geometries
[3, 4], which vary because of chemical-mechanical polishing.
These combined non-Gaussian nonlinear variation effects in-
validate the linear delay model with Gaussian assumption
in the existing SSTA.

Recently, non-Gaussian variation sources were addressed
in [6], where independent component analysis (ICA) was
used to find a set of independent components (not necessary
Gaussian) to approximate the correlated non-Gaussian ran-
dom variables. To do this, however, a complicated moment
matching algorithm has to be used to make those atomic
statistical operations feasible. Moreover, it is still based on
a linear delay model, which cannot capture the nonlinear
dependency of delays on process parameters. To capture
these nonlinear dependency effects, [3, 4] proposed to use a
quadratic delay model for SSTA. But to contain the com-
plexity, they had to assume that all variation sources must
follow a Gaussian distribution, even though the delay D it-
self may not be Gaussian. To compute max(D1, D2), [3]
first developed closed formulas to compute the mean and
variance of the quadratic form. It then treats D1 and D2

as a Gaussian distribution to obtain the tightness probabil-
ity. There is, however, no justification on why the tight-
ness probability formula developed for Gaussian distribu-
tions can be applied for non-Gaussian distributions. [4] tried
to re-construct max(D1, D2) through moment matching. To
obtain those moments, however, many expensive numerical
integration (two-dimensional) operations have to be applied.

[5] and [7] are the only only existing studies that try
to handle both nonlinear and non-Gaussian effects simul-
taneously. However, [5] computes max(D1, D2), by regres-
sion based on Monte Carlo simulation, which is slow; and
there is no guarantee that the correlation between the re-
gression result and variation sources could be kept. To re-
duce the complexity, [7] proposes to separate the variation
sources into two camps: the first camp is Gaussian varia-
tion with linear timing dependency, and the second camp is



non-Gaussian variation with non-linear timing dependency.
This dichotomy of variation sources, however, is somehow
artificial. The max operation is also through tightness prob-
ability, which is computed via expensive numerical multi-
dimensional integration. Hence its scalability to handle a
large number of non-Gaussian variation sources is limited.

In this work, we propose a novel nonlinear and non-Gaussian
SSTA technique (n2SSTA). The major contributions of this
work are multi-fold. (1) Both nonlinear dependency and
non-Gaussian variation sources are handled simultaneously
for timing analysis. (2) All statistical atomic operations
are performed efficiently via either closed-form formulas or
one-dimensional lookup tables. (3) The resulting parameter-
ized timing quantities provably preserve the correlation with
variation sources to the third-order. (4) The complexity of
the n2SSTA algorithm is linear in both variation sources and
circuit sizes. Compared to Monte Carlo simulation for non-
Gaussian variation sources and nonlinear delay models, our
approach predicts all timing characteristics of circuit delay
with less than 2% error.

The rest of the paper is organized as follows. Section 2
presents our nonlinear and non-Gaussian delay modeling.
Section 3 discuss our n2SSTA technique with focus on the
max and add atomic operations. We present experiments in
Section 4, and conclude in Section 5.

2. PRELIMINARIES AND MODELING
In general, device or interconnect delays of a design are a
complicated nonlinear function of the underlying process pa-
rameters and it can be described as

D = F (X1, X2, . . . , Xi, . . .), (1)

where the process parameters (such as channel length and
Vth) are modeled as a random variable Xi. In reality, the
exact form of function F is not known, and Xi are not neces-
sarily Gaussian. In practice, however, we can employ Taylor
expansion as an approximation to the function F .

The simplest approximation is the first- and second-order
Taylor expansion as shown below

D ≈ d0 +
X

aiXi, (2)

D ≈ d0 +
X

aiXi +
X

biX
2
i +

X

i6=k
bi,kXiXk, (3)

where d0 is the nominal value of D; ai and bi are the first-
and second-order sensitivities of D to Xi, respectively; and
bi,k are the sensitivity to the joint variation of Xi and Xk.
When all Xi are assumed to be Gaussian, (2) is called the
first-order canonical form, and is widely used for SSTA [2,
1]; whereas (3) is called the quadratic delay model, and has
been studied in [8, 3, 4, 5]. These models based on Gaus-
sian assumptions are limited in their modeling capability to
reflect the reality. For example, not all variation sources
are Gaussian, and results after max are also not Gaussian.
While some may appear to be Gaussian, in reality, their
variation cannot vary from −∞ to +∞ as a Gaussian dis-
tribution does.

Therefore, we propose a different quadratic model to rep-
resent all timing quantities in a timing graph as follows:

D = d0 +
X

(aiXi + biX
2
i ) + arXr + brX

2
r , (4)

where Xi represents global sources of variation, and Xr rep-
resents purely independent random variation. Unlike previ-
ous work, we allow Xi to follow arbitrary random distribu-

tions with bounded values1, i.e., −wi ≤ Xi ≤ wi. We refer
to the delay model (4) as general canonical form in this pa-
per. Compared to existing work [5, 3, 4, 6], our model is
unique in the sense that we capture the nonlinearity of tim-
ing dependence on variation sources, and handle the non-
Gaussian distribution of variation sources at the same time.

For simplicity, we ignore cross terms (XiXk) in (4) and as-
sume independence between Xi. The reasons are the timing
dependency on cross terms is usually weak. When Xi and
Xk are Gaussian, cross terms can be replaced by non-cross
terms through orthogonalization [4]. When Xi are corre-
lated, techniques like ICA may be used to generate a set of
new independent components [6]. Without loss of general-
ity, we assume that all variation sources are centered with
zero mean values, i.e., E[Xi] = 0. We denote the proba-
bility density function (PDF) of Xi as gi(xi), which can be
given as either a closed formula or an empirical lookup table.
Knowing the PDF of Xi, we can easily compute its tth-order
raw moments, i.e., mi,t = E(Xt

i ). We can also compute the
raw moments of D, i.e., Mt = E(Dt), by using the Bino-
mial moment evaluation technique [8]. With raw moments,
central moments can be computed easily. For example, the
first three central moments of D are

U1 = M1, (5)

U2 = M2 − M 2
1 , (6)

U3 = M3 + 2M3
1 − 3M1M2. (7)

Note that the first- and second-order central moments U1

are essentially D’s mean (µ = U1) and variance (σ2 = U2),
respectively. The skewness of D is U3/σ3.

3. ATOMIC OPERATIONS FOR SSTA
To compute the arrival time and required arrival time in
a block-based SSTA framework, four atomic operations are
sufficient, i.e., addition, subtraction, maximum, and mini-
mum, provided that we can represent all timing results af-
ter each operation back to the same general canonical form
(4). Because of the symmetry between addition and sub-
traction (similarly maximum and minimum) operations, in
the following, we will only discuss operations on addition
and maximum. It is understood that similar discussion ap-
plies to subtraction and minimum operations, as well. That
is, given D1 and D2 in the form of (4),

D1 = d01 +
X

(ai1Xi + bi1X
2
i ) + ar1Xr1 + br1X

2
r1, (8)

D2 = d02 +
X

(ai2Xi + bi2X
2
i ) + ar2Xr2 + br2X

2
r2, (9)

we want to compute D = D1 + D2 or D = max(D1, D2)
such that the resulting D can be represented as (4).

Denote ∆D1 = D1 − µ1 and ∆D2 = D2 − µ2 with µ1

and µ2 as mean values of D1 and D2, respectively. As both
D1 and D2 model timing quantities in a timing graph, their
values are physically lower- and upper-bounded:

−l ≤ ∆D1 ≤ l, −h ≤ ∆D2 ≤ h. (10)

For a practical problem, the size of the bound, l or h, can
be easily determined by relating to either its minimum and
maximum delays, or its sigma-sample values.

1
For Gaussian variables, whose lower and upper bound can be rea-

sonably set as its k-sigma values to bound its variation in reality. For
example, wi = 4σi or 5σi with k = 4 or 5.



Input: D1 and D2 in format of (8) and (9)
Output: D ≈ max(D1, D2) in format of (4)

1. Compute (D1, D2)’s JPDF g(D1, D2) via Fourier series;
2. Compute raw moments of max(D1, D2): Mt = E[max(D1, D2)t];
3. Compute E[Xt

i max(D1, D2)] for t=1,2;
4. Compute ai and bi in (4) by matching E[Xt

i max(D1, D2)]
for t=1,2;

5. Compute ar and br in (4) by matching max(D1, D2)’s

2nd− and 3rd-order moments;
6. Compute d0 in (4) by matching max(D1, D2)’s 1st-order moment.

Figure 1: Overall algorithm for computing
max(D1,D2).

3.1 Max Operation
The max operation is the hardest operation for block-based
SSTA. In this work, we propose a novel technique to ef-
ficiently compute the max of two general canonical forms,
i.e., D = max(D1, D2), and the result D will still be in the
form of (4). With respect to the overall flow in Fig. 1, we
first compute the joint PDF (JPDF) of D1 and D2, which is
achieved via an efficient algorithm based on Fourier series.
Knowing JPDF of D1 and D2, we can compute the raw mo-
ments of max(D1, D2) to arbitrary orders efficiently. Sim-
ilarly, the joint moments (related to correlation) between
max(D1, D2) and variation sources Xi can also be com-
puted efficiently. With the above computation ready, we
re-construct the general canonical form of D ≈ max(D1, D2)
by matching the joint moments between max(D1, D2) and
Xi, the first three order moments of max(D1, D2). In the
following, we discuss the details of our approach.

3.1.1 JPDF via Fourier Series
Computing JPDF is an essential step for max operation.
In [2], because both D1 and D2 are Gaussian distribution in
linear canonical form (2), their JPDF can be easily obtained
by computing the covariance between D1 and D2. When
D1 and D2 are non-Gaussian, however, no closed form can
be easily derived to compute their JPDF. For example, [4]
resorted to expensive numerical integration to obtain JPDF
of two non-Gaussian distributions in quadratic form.

In the following approach, we propose a novel method to
efficiently compute JPDF of D1 and D2 in general canonical
form. Denote JPDF of ∆D1 and ∆D2 in (10) as f (v1, v2),
and JPDF of D1 and D2 as g(v1, v2). It is easy to show that:

g(v1, v2) = f(v1 − µ1, v2 − µ2). (11)

Hence knowing f(v1, v2) is equivalent to knowing g(v1, v2).
To compute JPDF f (v1, v2) in the region [−l, l;−h, h],

we approximate it via its first K orders of Fourier series as
follows:

f (v1, v2) ≈
K

X

p,q=−K

αpq · eζpv1+ηqv2 , (12)

where ζp = jpπ/l and ηq = jqπ/h with j =
√
−1. The

Fourier coefficients αpq is given by

αpq =
1

4lh

Z l

−l

Z h

−h

e−ζpv1−ηqv2 · f(v1, v2)dv1dv2.(13)

Because JPDF f(v1, v2) is zero outside the valid region, (13)

can be further simplified as

αpq =
1

4lh
E[e−ζp∆D1−ηq∆D2 ]

=
1

4lh
e−Yc,pq E[e−Yr1,pq−Yr2,pq−

P

Yi,pq ], (14)

where Yc,pq = ζp(d01 − µ1) + ηq(d02 − µ2); Yi,pq = (ζpai1 +
ηqai2)Xi +(ζpbi1 + ηqbi2)X

2
i ; Yr1,pq = ζpar1Xr1 + ζpbr1X

2
r1;

and Yr2,pq = ηqar2Xr2 + ηqbr2X
2
r2. Because all Xi’s are

independent, so are all Yi,pq’s, Yr1,pq, and Yr2,pq . Then αpq

can be further simplified as:

αpq =
1

4lh
e−Yc,pq E[e−Yr1,pq ]E[e−Yr2,pq ]

Y

E[e−Yi,pq ]. (15)

As both Yi,pq , Yr1,pq and Yr2,pq can be written as a general
form as Y = c1Xi + c2X

2
i with c1 and c2 being two constant

values, in the following, we discuss how to compute E[e−Y ]
in its general form. By definition,

E[e−Y ] =

Z wi

−wi

e−c1xi−c2x2

i gi(xi)dxi, (16)

where gi(xi) is PDF of Xi, whose range is given by −wi ≤
Xi ≤ wi.

For arbitrary gi(xi), we can also build a two-dimensional
(2D) table indexed by c1 and c2 to speed-up computing (16).
But the size of 2D-table may be very large. In the following,
we present an effective solution that requires only 1D-table
lookup. We divide Xi’s range into M number of small sub-
regions, S1 . . . SM . Within each small sub-region, we ap-
proximate x2

i by its first-order Taylor expansion around the
sub-region’s center point xi0, i.e.,

x2
i ≈ x2

i0 + 2xi0(xi − xi0) = 2xixi0 − x2
i0. (17)

By substituting (17) into (16), we obtain

E[e−Y ] ≈
M

X

i=1

Z

Si

e−c1xi−c2(2xixi0−x2

i0)gi(xi)dxi

=
M

X

i=1

ec2x2

i0Fi(−jc1 − 2jc2xi0), (18)

where Fi(·) is the Fourier transformation of gi(xi) in the
sub-region Si. So we can pre-calculate all Fi(·) for all pre-
determined sub-regions for each variation source, and store
these results into a 1D lookup table for SSTA. In this work,
we uniformly divide the valid region of each variation source
into twelve (M = 12) sub-regions.

d0 ai bi ar br

D1 0 {2,1,3,2} {4,3,4,4} 1 2
D2 0 {1,2,2,1} {3,4,3,3} 1 2

Table 1: Experiment setting to verify max(D1, D2).

To validate our computing of JPDF of two general canoni-
cal equations, we compare our computed JPDF with Monte-
Carlo simulated JPDF. One of the examples is shown in
Fig. 2 with four sources of random variables (i.e., Xi for
i = 1, 2, 3, 4) that all follow a uniform distribution in the
range of [−0.5, 0.5], as shown in Table 1, which will be used
for the rest of this section for verification. The order of
Fourier series to approximate JPDF is four (K = 4). Fig 2
convincingly shows that our approach is accurate in predict-
ing the exact JPDF.
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Figure 2: Joint PDF comparison.

3.1.2 Raw Moments of Max(D1, D2)

In this section, we present a technique to compute raw mo-
ments Mt = E[max(D1, D2)

t] for Max(D1, D2). By defi-
nition, knowing (D1,D2)’ JPDF g(v1, v2), Mt can be com-
puted by

Mt =

ZZ

v1>v2

vt
1g(v1, v2)dv1dv2 +

ZZ

v2>v1

vt
2g(v1, v2)dv1dv2. (19)

According to (11) and (12), Mt can be further written as

Mt =

k
X

p,q=−k

αpq · L(t, p, q, l, h, µ1, µ2), (20)

where L(t, p, q, l, h, µ1, µ2) is defined as follows:

L =

ZZ

v1>v2

vt
1e

ζp(v1−µ1)+ηq(v2−µ2)dv1dv2 +

ZZ

v2>v1

vt
2e

ζp(v1−µ1)+ηq(v2−µ2)dv1dv2. (21)

It is easy to see that (21) can be evaluated via closed form
formulas efficiently. For example, in the case of µ1−l < µ2−
h, we have L= 1

ηq
e−ζpµ1

`

e−ηqµ2J(t, ζp + ηq, µ2 −h, µ2 + h)-

(−1)qJ(t, ζp, µ2 − h, µ2 + h)
´

+ 1
ζp

e−ηqµ2

`

e−ζpµ1J(t, ζp +

ηq, µ2 − h, µ2 + h)- (−1)pJ(t, ηq , µ2 − h, µ2 + h)
´

, where the

function J(t, γ, τ1, τ2) =
τ2
R

τ1

xteγxdx and can be computed by

integration by parts, i.e.,

J =
1

γt+1

t
X

i=0

(−1)t−i γit!

(n − i)!
(eγτ2τ i

2 − eγτ1τ i
1). (22)

Similar equations can be derived for other cases, as well. In
the interest of space, we omit the details and refer readers
to our technical report to be cited upon publication.

We compare our approach to Monte Carlo simulation to
validate (20) in computing the raw moments. Based on the
same setting as in Table 1, Table 2 compares the first three-
order raw moments of max(D1, D2). Our computation is
accurate, and the relative error is less than 5%.

3.1.3 Computation of E[X t
i · Max(D1, D2)]

To compute Eci,t = E[Xt
i · max(D1, D2)], we first obtain

JPDF of Xi, ∆D1, and ∆D2 by using a technique similar

Raw Moment 1st-order 2nd-order 3th-order
This work (20) 3.62 15.31 72.68
Monte Carlo 3.65 15.61 75.33

Error 0.90% 1.92% 3.52%

Table 2: Raw moment computation.

to that developed in Section 3.1.1. JPDF f(xi, v1, v2) is
approximated by the first K-order Fourier series as follows:

f(xi, v1, v2) ≈
K

X

p,q,s=−K

βi
pqs · eξi,sxi+ζpv1+ηqv2 , (23)

where ξi,s = jsπ/wi, and coefficients βi
pqs are given by

βi
pqs =

eYc,pq

8wilh
E[e−Yr1,pq ]E[e−Yr2,pq ]E[e−Ŷi,pq ]

Y

k 6=i

E[e−Yk,pq ]

where Ŷi,pq=(ζpai1 +ηqai2−ξi,s)Xi+(ζpbi1 +ηqbi2)X
2
i . The

above expectation has the same form as (16), hence they
can be easily evaluated, as well.

After obtaining JPDF f(xi, v1, v2) of Xi, ∆D1, and ∆D2,
JPDF of Xi, D1, and D2 can be obtained as g(xi, v1, v2)=f (xi,v1−
µ1,v2 − µ2). Hence Eci,t can be computed by

Eci,t =

ZZZ

v1>v2

xt
iv1f(xi, v1 − µ1, v2 − µ2)dxidv1dv2 +

ZZZ

v2>v1

xt
iv2f(xi, v1 − µ1, v2 − µ2)dxidv1dv2.

As f(xi, v1, v2) is known from (23), we finally obtain

Eci,t =

K
X

p,q,s=−K

βi
pqsJ(t, ξi,s,−wi, wi)L(1, p, q, l, h, µ1, µ2), (24)

using functions L and J in (21) and (22), respectively.
Table 3 compares our computed Eci,1 and and Eci,2 with

Monte-Carlo simulation based on the same settings in Table
1. We see that our approach is accurate with less than 6%
error compared to Monte Carlo simulation.

Variation X1 X2 X3 X4

Eci,1 Ours (24) 0.152 0.098 0.166 0.155
MC 0.158 0.095 0.168 0.159

Error 3.8% 2.9% 0.8% 2.4%
Eci,2 Ours (24) 0.355 0.362 0.356 0.366

MC 0.338 0.345 0.338 0.347
Error 5.0% 5.2% 5.3% 5.3%

Table 3: Computation of Eci,1 and Eci,2.

3.1.4 General Canonical Form for D = max(D1, D2)

To reconstruct D = max(D1, D2) into the general canonical
form in (4), we need to determine d0, ai, bi, ar and br. For
computational efficiency, we rewrite D in (4) as follows:

D = d′
0 +

X

Zi + Zr, (25)

Zi = aiXi + bi(X
2
i − mi,2), (26)

Zr = arXr + br(X
2
r − mr,2), (27)

d′
0 = d0 + brmr,2 +

X

bimi,2, (28)

where mi,t is the tth-order moment of Xi. Because Xi’s
are independent with zero means, so are the Zi’s and Zr.
Therefore, according to (25), the first three-order central



moments of D can be evaluated as

U1 = d′
0, (29)

U2 =
X

µzi,2 + µzr,2, (30)

U3 =
X

µzi,3 + µzr,3, (31)

where µzi,t and µzr,t are the tth-order central moment of Zi

and Zr, respectively. According to the definition of Zr (or
Zi), we compute µzr,2 (or µzi,2) by

µzr,2 = (mr,4 − m2
r,2)b

2
r + 2mr,3arbr + m2

r,2a
2
r. (32)

Similarly, µzr,3 (or µzi,3) is computed by

µzr,3 = (mr,6 − 3mr,4mr,2 + m3
r,2)b

3
r + mr,3a

3
r +

3(mr,4 − m2
r,2)a

2
rbr + 3(mr,5 − mr,3mr,2)arb

2
r.(33)

By equating (29) to (31) with (5) to (7) correspondingly, we
match D in (4) with the first three-order central moments of
the exact max(D1, D2). Moreover, we also strive to match
the joint moments of Xi and max(D1,D2) to the third-order,
as the latter are closely related to the correlation between
Xi and max(D1,D2). This is achieved by determining ai

and bi as follows:

Eci,1 = aimi,2 + bimi,3, (34)

Eci,2 = µmi,2 + aimi,3 + bi(mi,4 − m2
i,2). (35)

As Eci,1 and Eci,2 are known from (24) and the moments
mi,t, we solve for ai and bi from (34) and (35), which form a
linear system of equations with two unknowns. Knowing all
ai and bi, we determine ar and br by plugging µzr,2 of (32),
µzr,3 of (33), U2 of (6), and U3 of (7) into (30) and (31) and
solving these system of equations. Then the only unknown
left for D in (4) is d0 can be obtained by equating (29) to
(5).

To verify that our constructed D is accurate in approx-
imating max(D1, D2), we compare our results with Monte
Carlo simulation. Based on the settings in Table 1, Fig. 3
shows that our approach matches Monte Carlo simulation
accurately and it captures not only mean and variance, but
also the skewness. In contrast, the Gaussian approximation
that matches only mean and variance is very different from
Monte Carlo simulation.
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Figure 3: Comparison of PDF after max operation.

3.2 Add Operation
To compute D = D1 + D2 and put it back in (4), it can
be done straight-forwardly for both the nominal value and
global random variables’ coefficients, as we only need to add

up the corresponding terms, i.e., d0 = d01 + d02, ai = ai1 +
ai2, and bi = bi1 + bi2.

For the uncorrelated random variable, one approach is to
keep the correlation between the addition result with the
two input uncorrelated random variables (Xr1 and Xr2).
This is achieved by promoting these two variables into global
random variables after addition, thus their coefficients are
the same as before. The downside of this approach is that it
causes the length of our general canonical form to be longer
after each addition. An alternative way is to combine the
two input uncorrelated random variables (Xr1 and Xr2) into
a new uncorrelated random variables Xr by matching both
the second- and third-order central moments of the exact
addition operation. This is similar to solving ar and br for
max(D1, D2), hence we omit the details in the interest of
space. The drawback of this approach is that the correlation
between D and Xr1 and Xr2 is lost.

We see that the above two approaches complement each
other. Following a similar idea as [9], we choose the first
approach when the coefficient of Xr1 and Xr2 is larger than
a pre-defined threshold so we do not lose correlation, and
choose the second approach when the coefficient of Xr1 and
Xr2 is small so we can keep the form compact. But either
way, the result after addition will be still in the form of (4).

3.3 Complexity Analysis
For the max operation as shown in Fig. 1, the complexity
is low because all computation involved is based on either
closed-form formulas or one-dimensional lookup tables. The
complexity of one max operation is thus O{K3N}, where K
is the highest order for Fourier series, and N is the number
of variation sources. In another words, our max operation
is linear with respect to variation sources. In practice, both
K and N are small numbers compared to circuit size, so
the complexity of maximum operation is constant. Similar
arguments hold for the add operation. Since both max and
add can be done in constant time, our block-based SSTA
can be done in linear time in circuit sizes.

4. EXPERIMENTAL RESULTS
We have implemented our n2SSTA algorithm in C, and ap-
plied it to the ISCAS89 suite of benchmarks obtained from
[10]. Because there is no variation information in the orig-
inal benchmark, as a proof of concept, we randomly gener-
ate such information in this work. For each benchmark, the
number of variation sources ranges from 5 to 20 depending
on circuit sizes. The total variation amount ranges from 5%
to 20% of its nominal value. For each variation source, it
follows either a Gaussian distribution, uniform distribution,
or tri-angle distribution obtained from uniform-sum distri-
bution of degree two. For easy comparison, the final circuit
delay is normalized with respect to its nominal delay, thus
results reported here are unit-less. We compare the solution
quality of n2SSTA with the golden Monte Carlo simulation
of 100,000 runs.

Similar to the experiment setting in [11], Table 4 com-
pares n2SSTA and Monte Carlo simulation in terms of the
ratio between sigma and mean, the 95% yield timing, and
runtime in second. In the first (or second) set of experi-
ments, all variation sources follow a uniform (or a tri-angle)
distribution. According to the six benchmarks reported, we
see that our n2SSTA algorithm can accurately predict all
timing metrics with, on average, less than 2% error com-



Bench Monte Carlo n2SSTA
mark σ/µ 95% run σ/µ 95% run

% yield time (s) % yield time (s)
Uniform Variation Sources

s27 14.7 1.41 3.4 14.8 1.41 0.80
s386 14.9 1.41 61 14.9 1.41 2.00
s444 15.1 1.42 44 14.8 1.42 3.07
s832 15.0 1.41 91 14.5 1.41 5.24
s1494 15.4 1.41 285 15.6 1.41 7.97
s5378 15.3 1.42 855 14.9 1.42 27.1
Avg - - - 1.37% 0.01% 1/22.3

Tri-angle Variation Sources
s27 13.6 1.44 4.3 13.8 1.44 0.80
s386 13.6 1.45 61 13.7 1.45 1.88
s444 14.2 1.47 57 14.3 1.47 2.99
s832 15.0 1.48 115 15.0 1.48 6.81
s1494 14.1 1.45 284 14.3 1.45 7.60
s5378 13.9 1.45 903 14.0 1.45 25.6
Avg - - - 0.73% 0.01% 1/24.4

Table 4: Experiments for non-Gaussian variations
and nonlinear delay. The number in a circuit name
is the number of gates in the circuit.

pared to Monte Carlo simulation, while achieving about 25×
speedup. The runtime of n2SSTA roughly grows linearly as
the circuit size grows. We also show the PDF comparison
result in Fig 4. We see that our n2SSTA algorithm obtains
almost the same PDF as Monte Carlo simulation. This con-
vincingly shows the validity and accuracy of our n2SSTA
algorithm in predicting timing distribution.
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Figure 4: PDF comparison for s5378 with non-
Gaussian variations and nonlinear delay

We also compare n2SSTA with our implementation of [2]
(denoted as linSSTA) by assuming Gaussian variations and
linear delay model for both. From Table 5, we see that in
predicting σ/µ, n2SSTA matches Monte Carlo simulation
well with about 5.5% error, while linSSTA has about 11%
error. 2 This clearly shows that n2SSTA is not only more
general, but also more accurate than linSSTA. Interestingly,
we find that both approaches predict the 95% yield point
well. This partially explains why linSSTA algorithm is still
useful for timing analysis, provided the variations are indeed
Gaussian. The PDF comparison of the three approaches is
shown in Fig. 5. We see that our n2SSTA predicts the PDF
almost the same as Monte Carlo simulation, while the PDF
from linSSTA deviates from that of Monte Carlo simulation.

5. CONCLUSIONS
A novel SSTA technique n2SSTA has been presented to
handle both nonlinear delay dependency and non-Gaussian
variation sources simultaneously. We have shown that all

2Note that n2SSTA has a larger error for Gaussian variation
sources in Table 5 than for uniform or triangle variation
sources in Table 4. This is because n2SSTA needs to use
bigger bounds defined in (10) for Gaussian variations than
for uniform or triangle variations.
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Figure 5: PDF comparison for s5378 with Gaussian
variations and linear delay

Bench Monte Carlo n2SSTA linSSTA
mark σ/µ % 95% σ/µ % 95% σ/µ % 95%
s27 15.9 1.50 14.9 1.48 13.9 1.47
s386 15.7 1.50 14.9 1.48 14.1 1.46
s444 15.7 1.49 14.9 1.47 14.2 1.46
s832 15.7 1.49 14.8 1.46 14.1 1.45
s1494 16.1 1.50 15.5 1.47 14.4 1.46
s5378 15.8 1.48 14.6 1.46 14.0 1.46

Avg Error - - 5.5% 1.61% 10.9% 1.88%

Table 5: Results for Gaussian variation sources.

statistical atomic operations (such as max and add) can
be performed efficiently via either closed-form formulas or
one-dimensional lookup table. It has been proved that the
complexity of n2SSTA is linear in both variation sources
and circuit sizes. Compared to Monte Carlo simulation for
non-Gaussian variations and nonlinear delay models, our
approach predicts all timing characteristics of circuit delay
with less than 2% error. In the future, we will extend our
work to consider more general delay models, such as non-
polynomial delays and/or dependency on variations’ cross
terms.
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