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ABSTRACT
This paper develops decoupling capacitance (decap) insertion to

minimize the sum of time-domain power noise integral over all

ports (in short, noise) subject to given decap area. We propose

a stochastic current model efficiently yet accurately capturing

temporal correlation between clock cycles, logic-induced correla-

tion between ports, and current variation due to Leff variation

with spatial correlation. Then we develop an iterative alterna-

tive linear programming algorithm applicable to a variety of cur-

rent models. Compared with the baseline model which assumes

maximum currents at all ports, the model considering temporal

correlation reduces noise by up to 80%, and the model consider-

ing both temporal and logic-induced correlations reduces noise by

up to 94%. Compared with using deterministic Leff , considering

Leff variation reduces the mean noise by up to 74% and 3σ noise

by up to 92% when both applying the current model with tempo-

ral and logic-induced correlations. To the best of our knowledge,

this is the in-depth study on power network design considering

current correlations and Leff variation.

1. INTRODUCTION
Reliable power grid design has been an active research topic.
A variety of techniques such as P/G network sizing [1],
topology optimization [2] and decoupling capacitance inser-
tion and sizing, or decap budgeting have been studied. This
paper focuses on the decap budgeting problem, which can be
formulated as a constrained nonlinear optimization problem
and solved by linear programming [3], quadratic program-
ming [4] or conjugate gradient method [5, 6].

However, the aforementioned studies [3–6] on power net-
work design have assumed a maximum current load at ev-
ery port to guarantee the worst-case design scenario. Such
a practice is too pessimistic as it ignores two important cor-
relations. First, the current at a port exhibits temporal cor-
relation, i.e., the current cannot attain maximum all the
time, and depending on the functionality being performed,
the current variation for certain period of clock cycles are
correlated. Second, current loads at different ports are cor-
related due to the inherent logic dependency for a given
design, hence exhibiting logic-induced correlation.

Moreover, [3–6] ignore that current loads are also affected
by process variation, although [7] has considered process
variation induced leakage variation for power grid analy-
sis. While the leakage power is comparable to the dynamic
power because not all components are active simultaneously
in a large system-on-chip, we believe that the dynamic cur-
rent is still dominant compared with the leakage current.

p total port number

L max number of clock cycles for temporal correlation

Îi
k peak current at port k in clock cycle i

a vector of the current peaks at port k

bj
k sampled every L clock cycles starting from cycle j.

Bj
k stochastic variable representing the set of bj

k

b̃j
k a vector of several bj

k
with different Leff

B̃j
k stochastic variable representing the set of b̃j

k

rk independent stochastic variables after ICA

Table 1: Notations for stochastic current model.

As pointed out in [8], in 90nm regime the most significant
variation source is the effective channel length (Leff ), and
Leff variation can be more than 30%. How to design a re-
liable P/G network in the presence of such variation is still
an open problem in the literature.

In this paper, we propose a novel stochastic current model
for current loads on power network and take into account
both temporal and logic-induced correlations, as well as
the effects of systematic Leff variation. We formulate a
new decap budgeting problem with stochastic current model
and propose an iterative alternative linear programming ap-
proach to solve it efficiently and effectively. Experiments
using industrial designs show that under the same decap
area and compared with the baseline model which assumes
maximum currents at all ports the model considering tem-
poral correlation reduces noise by up to 80%, and the model
considering both temporal and logic-induced correlations re-
duces noise by up to 94%. Compared with using determinis-
tic Leff , considering Leff variation reduces the mean noise
by up to 74% and 3σ noise by up to 92% when both ap-
plying the current model with temporal and logic-induced
correlations.

The remaining of the paper is organized as follows. We
propose the stochastic current model in Section 2. We then
formulate the decap budgeting problem with the stochastic
current model in Section 3, and discuss the algorithms to
solve this problem in Section 4. We present experiments in
Section 5 and concludes in Section 6.

2. CURRENT MODELING

2.1 Background
Similar to the vectorless P/G analysis in [9], we partition a
circuit into blocks such that different blocks are relatively



independent. For each block, there are multiple ports con-
nected to the power network, and each port is modeled as
a time-varying current load for power network. We apply
extensive simulation to each block independently to get the
current signatures. Because we ignore the interdependence
between blocks, the obtained current signatures may lead to
worst-case design for increased reliability.

We represent the current in one clock cycle as a triangu-
lar waveform with rising time, falling time, and peak value
Î. The peak values vary in different clock cycles and over
different ports. More importantly, there are strong corre-
lation between different ports which we call logic-induced
correlation. In addition, the currents of a port in different
clock cycles are also correlated. For example, it might take
a block several clock cycles to execute certain functions and
the current profile inside those clock cycles are dependent
to each other. For simplicity, we assume that for a given
design, there is a maximum number of cycles L that de-
termines temporal correlation distance so that currents that
are less than L cycles apart are temporally correlated, oth-
erwise they are temporally independent. For example, we
can choose L as the largest number of clock cycles to finish
one instruction. We call this type of correlation as temporal
correlation.

In the following, we devise a stochastic model which can
efficiently capture both the logic-induced correlation and
temporal correlation. For simplicity of presentation, we
summarize notations for the stochastic current model in Ta-
ble 1.

2.2 Stochastic Model to Consider Current In-
terdependence

We record the peak currents at port k (1 ≤ k ≤ p, assuming
total port number p) at different clock cycles, and put them
into vectors, i.e.,

bj
k = [Îj

k, Îj+L
k , Îj+2L

k , . . .], 1 ≤ k ≤ p, 1 ≤ j ≤ L (1)

where Îj
k is the peak currents at port k in clock cycle j, and

bj
k is the set of peak currents sampled every L clock cycles

starting from cycle j. For example, if the peak values in each
clock cycle for port 1 are [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8],
and for port 2 are [0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08],
and we choose L = 2, then

b1
1 = [0.1, 0.3, 0.5, 0.7], b2

1 = [0.2, 0.4, 0.6, 0.8],

b1
2 = [0.01, 0.03, 0.05, 0.07], b2

2 = [0.02, 0.04, 0.06, 0.08]. (2)

We can model the peak current at each port as a stochastic
process. Then the set of bj

k is the samples for the stochas-

tic variable Bj
k with its mean µ(Bj

k) and standard deviation

σ(Bj
k). From the way we construct bj

k, it is clear that bj1
k and

bj2
k exhibit temporal correlation, while bj

k1
and bj

k2
exhibit

logic-induced correlation.
With those stochastic variables Bj

k’s and their correspond-

ing samples bj
k’s, we can compute the logic-induced correla-

tion matrix ρ(j; k1, k2) which describes the correlation be-
tween the peak currents at any two ports k1 and k2 in clock
cycle j as

ρ(j; k1, k2) =
cov(Bj

ki
,Bj

k2
)

σ(Bj
k1

)σ(Bj
k2

)
, (1 ≤ k1, k2 ≤ p), (3)

where cov(Bj
k1

,Bj
k2

) are the covariance between Bj
k1

and Bj
k2

,

and σ(Bj
k1

) and σ(Bj
k2

) are their standard deviations, respec-
tively. Similarly, the temporal correlation matrix ρ(j1, j2; k)
which describes the correlation between the peak currents
between clock cycles j1 and j2 at a given port k can be
computed as

ρ(j1, j2; k) =
cov(Bj1

k ,Bj2
k )

σ(Bj1
k )σ(Bj2

k )
, (1 ≤ j1, j2 ≤ L). (4)

2.3 Extension to Leff Variation with Spatial
Correlation

We use the intra-die variation model for Leff based on [10],
which showed that the variation are mainly spatially corre-
lated but not random, i.e.,

Leff = L0 + Lprox + Lspat + ε, (5)

where L0 is the overall mean, Lprox is a discrete stochastic
variable with a distribution determined by the frequency of
each gate, Lspat corresponds to the spatial variation and ε
is the local random variation. Because

Îi
k ∼ L−0.5

eff t−0.8
ox (Vdd − Vt), (6)

with Leff variation, the samples b̃j
k for each stochastic vari-

able B̃j
k becomes

b̃j
k = bj

k

"s

L̄eff,k

 L1
eff,k

,

s

L̄eff,k

L2
eff,k

, . . .

#

, (7)

where Li
eff,k with different i are the samples of Leff,k for

the macro corresponding to port k with the nominal value
L̄eff,k, and bj

k are the samples for Bj
k in the deterministic

case as discussed in Section 2.2, In other words, if we have
n samples for Leff,k, then b̃j

k is a vector n times longer than

bj
k.

2.4 Correlation Removal via ICA
To efficiently handle the large size of samples b̃j

k’s, we apply
clustering to divide them into a small number of clusters by
the K-means method [13]. We use the 2-norm to measure
the distance between two samples. If two samples have small
enough distance, they belong to one cluster. Therefore, the
samples in each cluster tend to follow a similar distribution.

If all those variable B̃j
k’s are Gaussian, then we can apply

principal component analysis (PCA) to each cluster to re-
move the interdependence between the stochastic variables
B̃j

k’s. However, this is not the case for our stochastic current
model. Therefore, we use independent component analysis
(ICA) that is applicable to non-Gaussian distribution. The

input to ICA is the samples b̃j
k as well as their correlation

matrices (3) and (4), and the output are a set of independent
stochastic variables ri and their corresponding coefficients
ai(j, k) to reconstruct each B̃j

k, i.e.

B̃j
k =

q
X

i=1

ai(j, k)ri. (8)

The order q is determined for each design such that the rela-
tive error between the original currents and model predicted
currents is less than 5%. The probability density functions
(PDFs) for each ri is also given in the output of ICA as a
one-dimensional lookup table, based on which we can bound
the range of ri as

ri ≤ ri ≤ ri, (9)



where ri and ri can be related to ri’s mean (µ) and variance

(σ2). For example, we can take ri as µ − 4σ, while ri =
µ + 4σ.

Therefore, assuming constant rising and falling times in
describing the triangular current waveform, together with
ai(j, k) which represents the i-th component of the peak
current at port k in clock cycle j, we have all the necessary
information to obtain the i-th time-varying current wave-
form component ui(t; j, k). If we denote T as the clock pe-
riod, then jT ≤ t ≤ (j + 1)T . Put those ui(t; j, k) at all
ports in clock cycle j together as

ui(t; j) =

0

B

B

B

@

ui(t; j, 1)
ui(t; j, 2)
...
ui(t; j, p)

1

C

C

C

A

, jT ≤ t ≤ (j + 1)T, (10)

and then combine all the ui(t; j) in different clock cycles,
we can get ui(t) with 0 ≤ t ≤ LT . Finally, according to
superposition theorem, we have

u(t) =

q
X

i=1

ui(t)ri, 0 ≤ t ≤ LT. (11)

From now on, we will apply (11) to the optimization.

3. PROBLEM FORMULATION

3.1 Parameterized MNA for Decap Budgeting
The P/G network can be modeled as a linear RLC network
with each segment and pad modeled as a lumped RLC el-
ement from extraction. The behavior of any linear RLC
network with p ports of interests is fully described by its
state representation following the modified nodal analysis
(MNA)

Gx + C
dx

dt
= Bu, (12)

y = LT
0 x, (13)

where x is a vector of nodal voltages and inductor currents,
u is a vector of current sources at all ports, G is the conduc-
tance matrix, C is a matrix that includes both inductance
and capacitance elements, B and L0 are port incident matri-
ces, and y is the output voltages of interests at the p ports.

When a decap with size wi is inserted into the power net-
work at a given location, its impact can be considered by
adjusting matrices G and C based on the location at the
network and the size of the decap. Mathematically, it can
be represented as

G = G0 +

M
X

i=1

wi · Gw,i, (14)

C = C0 +
M

X

i=1

wi · Cw,i, (15)

where G0 and C0 are the original matrices for the power
network without decap, M is the total number of decaps,
and Gw,i and Cw,i provide the stamping of a unit width
decap at the i-th location. In reality, wi has an upper bound,
i.e.,

0 ≤ wi ≤ wi. (16)

We call the MNA equation with G given by (14), C given
by (15), and u given by (11) as parameterized MNA formu-
lation for decap budgeting. One of the major advantages
in using this parameterized MNA formulation is that it en-
ables us to implicitly compute sensitivities efficiently and
accurately, which will become clearer in the late part of this
paper.

3.2 P/G Network Noise Modeling
Because of the duality between power and ground networks,
in the following, we will focus our explanation on the power
network design. But it is understood that the same formu-
lation applies to the ground network design as well. Same
as [4–6], we model the power network induced noise at a
node as the integral of the voltage drop below a user speci-
fied noise ceiling U within one clock cycle T

zi =

Z

Ωi

(U − yi(t))dt, (17)

where Ωi is the time duration when voltage yi drops below
the noise ceiling U , i.e.,

Ωi = {t|yi(t) ≤ U}. (18)

The figure of merit that measures the qualify of the whole
power network design is defined as the sum of noise at all
ports of interest, i.e.,

f =

p
X

i=1

Z

Ωi

(U − yi(t))dt. (19)

We will call the noise measurement in (19) simply as noise
in the rest of the paper.

3.3 Problem Formulation
The decap budgeting problem can be formulated as the fol-
lowing optimization problem:

Formulation 1. Decap Budgeting: Given a power
network modeled as a RLC network with specified power
pads, time-varying current at different ports, and total avail-
able white space W for decoupling capacitance, the DecapOpt
problem determines the places to insert decoupling capaci-
tance and the sizes of each decoupling capacitance, such that
the noise defined in (19) is minimized.

The decap budgeting problem with stochastic current model
can be mathematically represented as follows:

(P1) min
wi

sup
rk

f =

p
X

i=1

Z

Ωi

(U − yi(wi, rk; t))dt(20)

s.t. 0 ≤ wi ≤ wi, 1 ≤ i ≤ M (21)

M
X

i=1

wi ≤ W (22)

rk ≤ rk ≤ rk, 1 ≤ k ≤ q (23)

where voltage yi is a function of wi, rk, and time t.
Problem (P1) is a constrained min-max optimization prob-

lem. The sup operation over all random variables rk is
to find the worst-case noise violation measures for a given
power network design. This operation guarantees that all
P/G network designs satisfy the given design constrains
while considering both the temporal and logic-induced cor-
relations among ports as well as systematic Leff variation.



This is of particular use for ASIC-style designs, where the
worst-case design performance has to be ensured for sign-off.
The min operation over all decap sizes wi is to find the op-
timal decap budgeting solution so that the worst-case noise
violation is minimized.

4. ALGORITHMS

4.1 Iterative Alternative Programming
Because there exists no general technique to solve the con-
strained min-max problem (P1) optimally, we resort to an
effective iterative optimization strategy, which we call it-
erative alternative programming (IAP). That is, instead of
solving the min-max problem (P1) directly, we solve it by
iteratively solving the following two sub-problems alterna-
tively.

The first sub-problem assumes that all decaps’ sizes wi

are known, hence the worst-case noise can be obtained by
solving the following optimization problem

(P2) sup
rk

f =

p
X

i=1

Z

Ωi

(U − yi(wi, rk; t))dt (24)

s.t. rk ≤ rk ≤ rk, 1 ≤ k ≤ q (25)

The second sub-problem assumes that all random vari-
ables rk have fixed values, hence the decap sizes to achieve
the minimum noise can be obtained by solving the following
optimization problem

(P3) min
wi

f =

p
X

i=1

Z

Ωi

(U − yi(wi, rk; t))dt (26)

s.t. 0 ≤ wi ≤ wi, 1 ≤ i ≤ M (27)

M
X

i=1

wi ≤ W. (28)

Problem (P3) is exactly the deterministic version of the orig-
inal problem formulation (P1).

The overall algorithm can be described in Algorithm 1,
where iter is the current iteration number, ITER is the max-
imum iteration bound, and ε determines the stop criteria of
the optimization procedure, i.e., it stops when the change of
objective function |∆f | is sufficiently small.

Algorithm 1 Iterative alternative programming.
INPUT: initial guess wi, rk;
OUTPUT: final solution wi to problem (P1);
for iter = 0; |∆f | ≤ ε or iter ≤ ITER; iter + + do

wi = solve-P3(iter, wi, rk);
rk = solve-P2(iter, wi, rk);
Compute objective function with new rk and wi;

end for

4.2 Efficient Sequential Programming
Both problems (P2) or (P3) are constrained nonlinear opti-
mization problems, and there exits no general technique to
solve them efficiently. Because the constraints in both prob-
lems are linear, if we can approximate the objective func-
tion f by a first-order linear function, the original problems
would become linear programming (LP) problems1. Because

1We can also extend our technique to approximate the ob-
jective function f by a second-order quadratic function, then

efficient solvers exist for LP problems, we can solve the ap-
proximated problems more efficiently than solving the orig-
inal problems directly. Therefore, we propose to solve the
original (P2) or (P3) problem via sequential linear program-
ming (sLP).

For now, let us assume that we know how to compute
the first-order sensitivities of the objective function f with
respect to changing variables, which will be discussed in Sec-
tion 4.3. Therefore, we can easily obtain the linear approxi-
mation of the objective function. For example, for the objec-
tive function in problem (P3), the changing variables are all
∆wi. Therefore, we have the following linear approximation
for the objective function

f ≈ f0 +

M
X

i=1

∂f

∂wi

∆wi, (29)

where f0 is the current value of the objective function, and
∂f

∂wi
are the first-order sensitivities of f . Apparently, (29) is

a linear function of ∆wi. By replacing (24) with (29), we
obtain an approximated LP formulation for (P3).

A high-level description of the sequential programming
algorithm to solve either problem (P2) or (P3) is shown
in Algorithm 2, where iter2 is the current iteration number,
ITER2 is the maximum iteration bound. The iterations stop
when the change of objective function |∆f | is smaller than
ε2, which is dynamically adjusted according to the iteration
number iter in the outer-loop of Algorithm 1. We employ
an exponential decreasing function to adjust ε2 in this work.
The idea is that when the out-loop iteration is small (or we
are far from the optimal solution), we can have an early ter-
mination of the inner-loop optimization procedure as shown
in Algorithm 2 early. But when the outer-loop iteration be-
comes large enough (or we are close to the optimal solution),
we should spend more time in each inner-loop optimization
to find a better global optimal solution. Parameter η is used
to control the efforts that we should spend in the inner-loop’s
optimization.

Algorithm 2 Sequential linear programming for solving
(P2) and (P3).

INPUT: iter, wi, ri;
OUTPUT: updated wi for (P3) or ri for (P2);
ε2 = exp(-η·iter);
for iter2=0; |∆f | ≤ ε2 or iter2 ≤ ITER2; iter2++ do

Compute the first-order sensitivities of f ;
Formulate (P2) or (P3) as an LP problem;
Call LP solver to solve the above problem;
Compute objective function with new wi or ri;

end for

4.3 Sensitivity Computation
To solve (P2) and (P3) via sLP, we need to compute the
sensitivity of the objective function f with respect to the
design variables, i.e., either wi or ri. Because this compu-
tation is similar for both (P2) and (P3), we will focus our
discussion on (P3) in the following.

The first-order sensitivities of the objective function f of
problem (P3) are defined as

∂f

∂wi

= −

p
X

i=1

Z

Ωi

∂yi

∂wi

dt = −

p
X

i=1

Z

Ωi

LT
0i

∂x

∂wi

dt, (30)

the problem would become a quadratic programming (QP)
problem.



For simplicity of presentation, we have loosely applied the
derivative notation on a vector for component-wise deriva-
tive. To compute the sensitivity of f w.r.t. wi, all we need
to know is the sensitivity of the state vector x with respect
to wi. We use Taylor expansion to express x as follows

x = x0 +

M
X

i=1

αi∆wi + . . . , (31)

where αi is the first-order sensitivity of x w.r.t. random
variable wi, i.e., we have

∂x

∂wi

= αi. (32)

To compute these sensitivities, we recognize that x also
satisfies the differential equation given by (12). By Laplace
transformation and applying the parameterized MNA for-
mulation, we re-write (12) as follows

(G +

M
X

i=1

∆wi · Gw,i)x + s(C +

M
X

i=1

∆wi · Cw,i)x = Bu. (33)

By plugging (31) into (33), we obtain terms of ∆wi with
different orders. By equating the zero-order terms of ∆wi

from both left and right hand sides in (33), we obtain a set
of equations as follows

(G + sC)x0 = Bu. (34)

By equating the first-order terms of ∆wi, we obtain sets of
equations as follows for all 1 ≤ i ≤ M

(G + sC)αi = −(Gw,i + sCw,i)x0. (35)

By applying the Backward Euler integration formula and
assuming the time step as h, we can re-write (34) and (35)
as follows

(G +
C

h
)x0(t + h) = Bu(t + h) + x0(t)

C

h
, (36)

(G +
C

h
)αi(t + h) = −(Gw,i +

Cw,i

h
)x0(t + h)

+
x0(t)Cw,i + αi(t)C

h
. (37)

Because all equations in (36) and (37) share the same left-
hand side matrix, (G + C/h), we only need to perform LU-
factorization once, and then reuse the same factorization to
solve for x0 and αi sequentially at each time step. This com-
putation is efficient because it only involves some matrix-
vector multiplications, and backward and forward substitu-
tions.

In summary, we can compute the first-order sensitivities
of the objective function f of problem (P3) by following
the Algorithm 3. Note that once we know x0 after solving
(36), we can compute the voltage response at all ports of
interests as y = LT

0 x0. Hence the objective function f can
be evaluated by following the definition in (19).

5. EXPERIMENTAL RESULTS
In this section, we present experiments using four industrial
P/G network designs. For each benchmark, we randomly
selected 20% of total nodes as candidate nodes for decap
insertion, i.e., M = 20%N . We run experiments on a UNIX
workstation with Pentium 2.66G CPU and 1G RAM. We
partition the circuits according to the method in [9]. We

Algorithm 3 Sensitivity computation for (P3).

INPUT: wi, rk , h, T ;
OUTPUT: f and αi;
factorization: LU factorize G + C/h;
for t = 0; t + h ≤ T ; t = t + h do

Solve (36) for x0(t + h);
end for

for t = 0; t + h ≤ T ; t = t + h do

Solve (37) for αi(t + h);
end for

use K-means clustering and the package FASTICA [11] to
perform ICA. Finally, we use MOSEK as the linear pro-
gramming solver [14] and random walk based simulator [12]
with detailed input current waveform to obtain the noise re-
ported in this section. This verifies not only our algorithm
but also our stochastic current modeling.

5.1 Decap Budgeting without Leff variation
We compare three current models as shown in Table 1:
maximum currents at all ports, stochastic model with logic-
induced correlation only (L = 1), and stochastic model with
both logic-induced and temporal correlation. For temporal
correlation, we always use L = 4 since all circuits tested take
at most four clock cycles to complete any one instruction.
Table 1 reports the noise and runtime for the four bench-
marks with different number of nodes. Compared with the
baseline model with maximum currents at all ports 2, the
model considering temporal correlation reduces noise by up
to 80%; and the model considering both temporal and logic-
induced correlations reduces noise by up to 94% (see bold
in Table 2). This is because the first two models cannot
model the currents effectively and lead to inserting unnec-
essarily large decaps in some regions. Thus, they result in
more noise in the other regions since the total decap area is
given. As for the runtime, model 2 needs about 1.5× more
time than model 1, while model 3 needs about 2.3× more.
The runtime overhead is the price we have to pay in order
to achieve better designs.

In Fig. 1, we plot the time-domain responses at one ran-
domly selected port for two optimization iterations by al-
ternatively solving the problem (P3) and (P2). The bench-
mark has 1284 nodes. The initial waveform is denoted by
“A0:initial”. After performing decap sizing once by solving
problem (P3) with a fixed choice of random variables rk,
we obtain the new waveform as denoted by “A1:(P3)”. We
then switch to solve problem (P2) by varying the values of
those random variables rk, but with fixed decap sizes wi.
We see that the waveform of the final worst-case voltage
drop becomes worse compared to the deterministic solution;
hence we obtain a new voltage drop waveform as denoted
by “A2:(P2)”. We then switch back to solve the decap siz-
ing problem (P3) with fixed but newly updated choice of
random variables rk. At the end of this optimization, we
arrive at a new voltage waveform as denoted by “A3:(P3)”.
Apparently, compared to “A1:(P3)”, the new solution has
smaller voltage drop. If we continue the same procedures
by following the IAP algorithm given in Fig. 1, similar se-
quences of time domain voltage drop waveforms would re-
peat as we have shown in Fig. (1) until we converge to an
optimal solution. Also, The voltage drop is reduced mostly

2We solve it by iteratively solving (P3) without altering to
(P2).



Model 1 maximum currents at all ports
Model 2 stochastic model with logic-induced correlation
Model 3 Model 2 + temporal correlation

Node # noise (V*s) runtime (s)
model model model model model model

1 2 3 1 2 3
1284 6.33e-7 1.28e-7 4.10e-8 104.2 161.2 282.3

10490 5.21e-5 1.09e-5 4.80e-6 973.2 1430 2199
42280 7.92e-4 5.38e-4 9.13e-5 2732 3823 5238
166380 1.34e-2 5.37e-3 2.28e-3 3625 5798 7821

avg 1 37.3% 11% 1 1.50X 2.26X

Table 2: Noise and runtime comparison between the
three models.

Node # V.R. sLP sLP+Leff
µ 3σ RT µ 3σ RT

(V*s) (V*s) (s) (V*s) (V*s) (s)

1284 10% 9.28e-7 3.97e-7 184.2 6.14e-7 1.38e-7 332.8
20% 9.43e-7 4.55e-7 6.38e-7 1.86e-7 (1.81X)

10490 10% 1.03e-4 4.79e-5 1121 7.22e-5 1.23e-5 3429
20% 1.22e-4 6.38e-5 7.94e-5 2.06e-5 (3.06X)

42280 10% 2.29e-3 9.72e-4 2236 8.23e-4 1.01e-4 6924
20% 2.43e-3 1.01e-3 8.28e-4 1.92e-4 (3.10X)

166380 10% 2.06e-2 9.91e-3 3824 5.31e-3 8.32e-4 11224

20% 2.31e-2 1.03e-2 5.92e-3 9.33e-4 (2.93X)

avg 10% 1 1 1 49.5% 19.8% 2.73X
20% 1 1 51.2% 24.7%

Table 3: µ, 3σ and runtime (RT) comparison be-
tween sLP+Leff and SLP. The variation amount
(V.R.) represents the intra-die variation.

in the first optimization iteration denoted as “A1:(P3)”.
Afterward, the voltage drop reduction is relatively small.
This observation is in agreement with the common knowl-
edge about any sensitivity-based optimization techniques.
In this particular example, we find that the first two itera-
tions reduces the noise by 51.4%.

Figure 1: Time domain waveforms at one port after
sLP for different iterations.

5.2 Leff Variation Aware Decap Budgeting
In the presence of variation, we want to minimize the worst-
case noise for Leff variation. We solve this via the proposed
IAP technique in Algorithm 1. We denote our Leff variation
aware approach as sLP+Leff and the counterpart as sLP .
We compare the mean value µ and 3σ value of the noise
distribution based on Monte Carlo simulation with 10,000
runs, and the results are reported in Table 3.

When the variation amount is 10% (20%), compared with
using deterministic Leff , considering Leff variation reduces
the mean noise by up to 74% and 3σ noise by up to 92% (see
bold in Table 3), when both applying the current model with

temporal and logic-induced correlations. Interestingly, we
find that the relative improvement decreases as the process
variation increases. This is expected, as usually the 3σ noise
heavily depends on the variation. The larger the variation,
the worse the 3σ value. As for the runtime between sLP and
sLP+Leff , sLP+Leff needs about 2.7× more time than sLP
on average.

6. CONCLUSIONS AND FUTURE WORK
This paper develops decoupling capacitance (decap) inser-
tion to minimize time-domain power noise integral (in short,
noise) subject to given decap area. We propose a stochastic
current model efficiently yet accurately capturing temporal
correlation between clock cycles, logic-induced correlation
between ports, and impact of Leff variation with spatial cor-
relation. Then we develop an iterative alternative program-
ming algorithm applicable to a variety of current models.
Compared with the baseline method which assumes maxi-
mum currents at all ports, the method considering tempo-
ral correlation reduces noise by up to 80%, and the method
considering both temporal and logic-induced correlations re-
duces noise by up to 94%. Compared with using determinis-
tic Leff , considering Leff variation reduces the mean noise
by up to 74% and 3σ noise by up to 92% when both ap-
plying the current model with temporal and logic-induced
correlations. To the best of our knowledge, this is the in-
depth study on power network design considering current
correlations and Leff variation.

It is clear that the proposed technique can be easily ex-
tended to consider other types of process variation (e.g.,
threshold variation) and design freedoms for designing reli-
able power supply networks. This will be our future work.

7. REFERENCES
[1] X. D. Tan and C. J. Shi, “Reliability-constrained area

optimization of VLSI power/ground networks via sequence of
linear programmings,” in IEEE/ACM DAC, pp. 78–83, 1999.

[2] K.-H. Erhard and et al, “Topology optimization techniques for
power/ground networks in VLSI,” in DATE, 1992.

[3] M. Zhao and et al, “A fast on-chip decoupling capacitance
budgeting algorithm using macromodeling and linear
programming,” in IEEE/ACM DAC, 2006.

[4] H. Su and et al, “Optimal decoupling capacitor sizing and
placement for standard-cell layout designs,” IEEE TCAD,
2003.

[5] J. Fu and et al, “A fast decoupling capacitor budgeting
algorithm for robust on-chip power delivery,” in ASPDAC,
2004.

[6] H. Li and et al, “Partitioning-based approach to fast on-chip
decap budgeting and minimization,” in IEEE/ACM DAC,
2005.

[7] I. A. Ferzli and F. N. Najm, “Statistical verification of power
grids considering process-induced leakage current variations,”
in IEEE/ACM ICCAD, 2003.

[8] Y. Cao and L. T. Clark, “Mapping statisitical process
variations toward circuit performance variability: An analytical
modeling approach,” in IEEE/ACM DAC, 2005.

[9] D. Kouroussis and et al, “Incremental partitioning-based
vectorless power grid verification,” in IEEE/ACM ICCAD,
2005.

[10] M. Orshansky and et al, “Impact of Spatial Intrachip Gate
Length Variability on the Performance of High-speed Digital
Circuits,” IEEE TCAD, 2002.

[11] A. Hyvarinen and E. Oja, “A Fast Fixed-Point Algorithm for
Independent Component Analysis,” Neural Computation, 1997.

[12] H. Qian and et al, “Power Grid Analysis Using Random
Walks,” IEEE TCAD, 2005.

[13] A. Moore, “K-means and Hierarchical Clustering - Tutorial
Slides,”.

[14] http://www.mosek.com


