
Fast and Practical False-Path Elimination
Method for Large SoC Designs

Chul Rim, Soo-Hyun Kim, Joo-Hyun Park, Myung-Soo Jang,
Jin-Yong Lee, Kyu-Myong Choi, and Jeong-Taek Kong

CAE center, System U1 business, Device Solution Network, Samsung Electronics Company,

Abstract-In this paper, we propose a new fast and practical
technique to eliminate known false paths during the static timing
analysis (STA). False paths are verified fast using additional
information stored in arrival times, which is a pass-through
history of exceptional nodes. The information can be constructed
with small memory overhead hecause individual false path list is
not managed in each arrival time. We adapted this method to
classical arrival time computation and critical path searching
algorithm The feature is w d in CubicTime, our full-chip gate
level static timing analyzer supporting multiple clock domains. We
describe the details of our algorithm and the experimental results
compared to those of our previous method and a de-facto
industry-standard STA tool.

1. INTRODUCTION

In SoC design era, as design size is increasing rapidly, better
performance and larger capacity are needed to verify timing
operation of circuits. Conventional dynamic simulation
methods have become inadequate for verifying timing of large
full chip design because run time is nearly infeasible and efforts
for generating input stimulus is also extremely high. To
overcome these capacity limits, static timing analysis (STA) has
been proposed for efficient full-chip timing verification [I , 21.
STA is an exhaustive method of verifying timing performance
of synchronous design. It is very efficient not only for its fast
runtime hut also for its large coverage [1,2]. Although the STA
does not need input stimulus, it guarantees worst-case timing
operation by covering both rising and falling transition at every
primary input node.

Because STA does not take logic into account, it may report
logically or temporally unrealizable paths. These paths are often
referred to as false paths. Although STA is very efficient way to
verify the timing of circuits, it suffers from handling exceptions
such as false paths. False paths should he detected automatically
or removed manually in order not to overestimate critical paths.
The method of eliminating user-specified false path is widely
used in industry because finding true critical path automatically
in large circuit takes too much computation time even if
heuristics are used 161.

False paths can be specified by a set of false sub-graphs or
through-path exception formats 16, 91. The former can specify
more false paths in a single representation than the latter, but it
is difficult to describe false paths in graph format. In this reason,
the through-path exception format is widely used in industry.

Many researches have been done for elimination or detection
of false paths [4-121. In this paper, we formulate algorithm for
finding m e critical path given a set of known false paths
described in through-path-exceptions format.
Our approach is effective for some reasons. Unlike previous

methods [4-12], it does not need additional information for
individual false paths in each node. Instead, each node has
minimal points pass-through history information. Moreover, the
proposed method can easily he adapted to classical arrival time
computation and path search procedures.

Our method is implemented in CubicTime, which is the gate
level in-house STA tool based on Cubicware environment (31.

The outline of the paper is as follows. In section 2, we
describe backgrounds for the static timing analysis. In section 3,
we formulate the algorithm for finding true critical paths in
detail. In section 4, we describe the experimental results applied
to several industrial designs. And finally, we give the
conclusions.

11. PRELDMINARIES

In this section, we describe some basic t e r n and definitions
for our data structure. And then, we describe classical STA
algorithm that is adapted and modified in our approach. We
assume that the design is acyclic.

A. Design Fonnulation for Sratic Timing Analysis
The design has a component database for the timing analysis.

Every pin or node has rising and falling delay edge. Each delay
edge has both minimum and maximum delay events. A delay
event means rising or falling signal transition at a certain time.
Root events are initial transitions at clock sources or primary
input nodes. A delay arc is a rising or falling pin-to-pin delay
component [I]. A delay arc can be either of cell arc or net arc.

Every root event is propagated through delay arcs and each
node may have a number of delay events from different root
events[l]. Each delay event has link to the event that causes it,
then the link is used in backward path search phase.

B. Arrival Time Computation
The procedure for arrival time computation is propagating all

root events from primary inputs or clock sources to path
endpoints [1,2,3]. Minimum and maximum arrival times (or
delay events) at each node are worst-case propagation delays
from its root event to the node. Arrival times are computed in
breadth-fust-search (BFS) manner after logical level of every

0-7803-8182-3/03/$17.00 02003 IEEE 397

node is decided. The arrival time of a node is calculated by sum
of worst arrival time of its fan-in nodes and incoming cell or net
arc delay. To support multiple clock domains, arrival times are
stored separately grouped by their root events. Figure 1 shows
pseudo algorithm for maximum arrival time computation.
Minimum arrival time can he computed in similar way. Note
that only the modified arrival time is propagated to next level
and the procedure repeats until no more arrival time
modification occurs.

11 calculate design arrival time (pax)
repeat {

for each node of logic level i {

Q =list of cell input pins
for each pin q in Q {

for each output pinp in level i nodes {

11 take arc unativity into account
get q - p arc delay
&v@) = MAX(arriv(q) +delay(q +p) , arriv@))

1
1 until no node arrival is changed

Figure 1: Algorithm for anival time computation

C. Logical False Path
Logical false path is logically UNealiZable path [5,11,131.

Because STA doesn't take logic into accoun6 it searches critical
path only referred to delays. Figure 2 shows simple example of
logical false path. If logic is not taken into account, path
A+C+E+F is selected as a longest path. But this path is
unrealizable for select signals to two multiplexers are opposite.
Actually, the paths A+B+E+F and A+C+D+F are
realizable longest path. So, the path A+C+E+F must be
specified as a false path and should be eliminated during timing
analysis phase not to overestimate longest path.

Figure 2 An example of typical logical false path

III. FALSE PATH ELIMINATION

The key idea of the approach is storing pass-through history
of the user-specified exceptional points in each delay event and
making use of them later for path verification. Note that each
false path is specified in a partially ordered list of nodes the path
is propagating through, and false path verification occurs at

every constrained path endpoint. By preceding operation, every
false path fhrough-poinf specified by user is marked as special
point, and every endpoint has set of all possible false paths to
the endpoint. These operations do not need any complex
process and can he done with very small overhead.

A. Building Excepfion-fhrough Hisfory
Each delay event has exceptional-point-through history if the

delay event is propagated through at least one exceptional point.
Computing the history information of each event can be
embedded in arrival time computation process. We call the
history as "false head" as in [6] and denote it by FH. The
structure of the false head is simply an array or a list of nodes.

The function InherifFalseHead described in figure 3 shows
overall false head inheritance mechanism. The function is called
whenever the delay event D is modified for propagating the
delay event S. Each delay event may store its own false bead or
just point false bead of the event that causes it. Because the
portion of exceptional nodes to entire nodes is very small, false
bead does not change frequently while propagating through
nodes. Therefore, in most case, only pointing the false head of
its cause event is enough rather than storing its own false head.

I/ inherit false head from cause event S to caused event D
InheritFalseHead (S, D) {

FHD= NODE,

if (FHs i 0) {

if (NODE, is primary input & exceptional) {

] else {
11 initial node is exceptional

if (NODED is exceptional) {
FHD= FHs.{NODED)

1 else {
FHD = FHs

1

FHo= {NODE,) //new FH issued

FHD = 0

11 grow new FH

11 directly point

1 else if (NODE, is exceptional) {

1 else {

1
11 remove previous inheritance

1
I

Figure 3:. Building false head of D node

B. Finding True Critical Path
Once arrival time and false heads are computed at every delay

event, critical path to every path endpoint should be found to
analyze design timing. Classical path searching algorithm is
basically a depth-frst backward searching process. The worst-
case delay event on a path endpoint is traced backwards to its
root event to build a full path [I , 21.

If a delay event propagated to an endpoint has no false head,
the delay event is true, so true critical path can easily he found
by tracing the cause-event backwards from an endpoint delay
event. Otherwise, if a delay event on the endpoint has false head
and the endpoint has a possible false path list, the delay event
needs to be verified.

398

I/ initially, SLACKCUTOFF = LOOSE, T D = 0, FT = 0

BackwardSearchTrueParh (E, FT, TP, T D) {
if (FHE = 0 and FT is not false path) {

SLACKclrnnEm = TEdnq - arn’u(E) - T D
if (SLACKcunnENT < SLACKCUTOFF) {

/ I new critical path is found
SLACKCUTOFF = SLACKCURRENT
Build critical path with E and T P

)
) else if (FHE = FHrREV and E is not exceptional) {

search backwards without false path check (1)
) else {

if (FHE*FT makes false path) {
// searching branches backwards .._. ______ (1)
PUSH(FT, E), if E is exceptional
PLISH(TP, E)
for each branch E‘ of E {

TD’ = T D + delay(E‘- E)
BackwardSearchTruePath (E’, FT, TP, TD‘)

POP(FT, E), if E is exceptional
POP(TP, E)

I / found true path
SLACKcUnRENT = T,.,, - arriu(E) - TD

) else {

if (SLACKCURRENT < SLACKCLTOFF) t
SLACKCUT~FF = SLACKCURRENT
Build critical path with E and TP

1

1

Figure 4 . Recursive backward critical path search algorithm

Another exception point through history “false tail”, named
as in [61, is generated during the backward path searching
process. False tail, denoted by FT, is exceptional points pass-
through history of current backward path search session. The
false tail is managed dynamically by push and pop operations
for the stack during the recursive search process as shown in
figure 4. Note that only one false tail is managed for critical path
searching.

Given FH and FT, the concatenation FH-FT makes complete
exceptional points pass-through history of current searching
path. If one of known false paths to the path endpoint is ordered
subset of the sub-path FH-FT, current searching path is false.

To fmd a true critical path to an endpoint, every possible
critical branch path must be checked. Since a delay event stored
in a node has worst-case arrival time, whatever the event is true
or not, there cannot he more critical branch path in the fan-in
cone to the node. Thus, the fan-in branch whose slack is less
than the minimum m e slack found before can he pruned for the
backward searching. Figure 4 shows the algorithm for fmding

m e critical path. In the pseudo code, E denotes the delay event
currently tracing, TP denotes tail path, and TD denotes the delay
of the tail path. The algorithm runs recursively, tracing branches
backwards.

While tracing backwards the nodes from N,,,, to N,,, if FH,, is
identical to FH,,,, and the node N,, is not exceptional, false path
matching is not needed because there is no difference in FH-FT
between the nodes. Thus, the procedure may continue to the
further fan-in branches without redundant false path matching.

Although the described algorithm runs very fast in most case,
the worst-case complexity of the procedure is - number of
possible paths to the endpoint, where F is average fan-in count
of node and D is logical depth to the endpoint. But the
performance degradation hardly happens because many
branches are pruned during the process. Moreover, F is
typically small value around 2, and false path matching occurs
only at a few nodes.

’C’

Bold : user specified exception-through Point
ltalio : false head of arrival event

Figure 5 : False path veilication example

Figure 5 shows an example flow of proposed algorithm. To
simplify the problem, only maximum delay path is explained. It
is assumed that there is single root event and all gate delays are
same. In the figure, bold letters represent user-specified
exceptional nodes and italic string represents the false head
stored in the event. By preceding operation, there is user
specified false path {C+F+H) on the D pin of the flip flop.
The initial longest path is found to he {A-C-D+F-G-H)
by referencing propagation delay only. But it is false path
because user specified false path {C-F-H) is an ordered
subset of the path, so true critical path should be found. The
detailed flow of the proposed algorithm is described as follows.

1. Onthefinaleventontheendpoint,FHis (C,F, H)andFTis().
The current searching path is false because the user-specified
false path (C, F, H) is an ordered subset of the FH-FT.

2. The procedure continues to G and F respectively. On these two
nodes, FH is (C, F) and F 7 is (H). Because (C, F, H) is an
ordered subset of the FH-FT, the current searching path is false.

3. On the nodes D and C, the FH is (C) and FT is (F, H). The
current searching path is false path because the (C, F, H) is an
ordered subset of the FH-FT.

4. When tracing a branch node 8, FH is () and FTis (F, H). This
makes true path because (C, F, H) is not an ordered subset of the
FH-FT. Hence, the event on B and the tail path make a full ttue
path (A, B, D, F, G, H) .

5. The other branches E and I don’t have worse slack. So further
branch searching is not needed fmm them. Finally, the m e
critical path is proven to be (A, B, 0, F, G, H)

399

The method described was applied to 7 industrial full-chip
gate-level designs ranging from 12,000 to 300,000 instances.

experiments were performed on a dedicated SUN blade-1000
machine running in 32hit mode with enough physical memory.
Table 1 shows the specifications of the sample designs. Every
design script used is real signoff STA script and has multiple

Design

A
B
C
D
E
F

They consist of PDA, MODEM, and processor core chips. The

clock defmitions and real false path descriptions.

Table 1: Sample design specification

Runtime (elapsed, sec)
with FH, FT w/o FH,FT Commercial

48 1208 59
130 222s 88
79 208 69

322 3480 623
112 1922 191
1 I4 4001 379

G I 255 I 3988 I 628
Table 2 Elapsed time for all consmints check

Design

A
B
C
D
E

Memory Usage (MByte)
with FH,m w/o FH,FT Commercial

128 123 173
243 217 169
63 61 100

638 598 549
426 417 361

To show the effectiveness of our approach. the proposed F

memory usage. For the experiments, timing analysis is done for
both minimum and maximum paths in order to check setup, hold,
recovery, and removal violations at every path endpoint.
Our previous false path verification method matches false REFERENCES

path using path swcmre after a full path without any
[I] J. Cherry. " p a l - A CMOS timing analyzer", proc. o f f h e DAC, 1988,

look-ahead data such as false head and false tail.
The perfOrnIanCe comparison result is shown in table 2.

Elapsed time is used as the metric to compare with commercial
tool, The runtime includes time for arrival time computation and
all path verification as well as time for preprocessing operations
such as loop breaking and constant propagation. The result
shows that the proposed approach is up to ahout 35 times faster
than the previous and also up to about 3,3 times faster
than de-facto industry standard Commercial ST.4 tool. The

pp. 148-153
121 T. G. Szymanski. "LEADOUT: A Static Timing Analyzer for MOS

Circuits",PIocofICCAD, 1986. pp. 130-133
131 Myung-Sa, Jang, et al. "CubicWare: a hierarchical design system for

deep submicron ASIC", Proc. of I2lh ASICLVOC Conference 1999,
pp.168-172

141 Hmn Chang: Abraham, J.A. T H A N , An efficient critical path analysis
algorithm", Derign Auromrion. 1993, wirh rhe European Even1 in ASIC
Design. P r o c e e d i w W h l European Conference. Feb 1993. PP. 4 4 .
448

151 Haizhou Chen: Bing LU: Ding-Zhu DU. "Static timing analysis with false
paths", Proc .of Internorional Conference on Coinpuler Design , 2000, average runtime is also about 16 times faster than the Drevious

330 I 321 1 688

method and 1.9 times faster than commercial STA tooi. pp. 541-544
David Blaauw, et. al. "Removing user specified false paths from timing
graphs'', Proc.of DAC 2000.

171 P. C. ~ c ~ e e r . R. K. ~ r a m n . "Efficient Aleontimu for Camoutine the

161 For memory usage comparison shown in table 3, the
proposed method uses slightly more memory of about 5% than . .
theprevious method for the speed gain. This means that saving

overhead. The memory usage comparison to commercial STA

Longest Viable Path in a Combinational Ne&k", PIOC. of d A C h 9 ,
pp. 561-567
Tsukiyama, S, Tan&, M.; Fukui, M. "Techniques to remove false paths
in statistical static timing analysis", ASIC. 2001. Proceedings. 4th
1nrernoriono1 Cm$erence 0". 2W1, pp. 3 9 4 4
Goldbere, E. Saldanha. A. 'Timinr! analvsis with imvlicitlv rvecified

181
false head in every node can he done with only small memory

tool does not tell regular tendency but seems to he comparable.
191 - -

false paths". VtSIDerign. 2OW. Thineenrh Inlernatimd Conference on
2003. 00.518-522 V. CONCLUSION ..

In this work, we have proposed a technique for eliminating
!UIown false paths during the static timing analysis and
searching true critical path. The idea Of the approach is
looking ahead of the pass-through history of each arrival time
and verifying the path without constructing it. Our experiment
for some real indushy designs have demonstrated that
method is up to 3.3 times faster than commercial de-facto

be extended to handle mother path exceptions such as

[IO] Belkhale, KP, Suess, A.J.'Timinganalysiswithknownfalse subgraphs",
Computer-Aided Design, 1995. ICCAD-95. Digest of Technical Poperr.,
1995 IEEWACM Internorion01 Co~rference on, Nov 1995, pp. 736 -739

[I I] Bolender, E, Lipp, H.M. 'Timing verification - a new understanding of
false paths'', Dpsign Auiomiion, 1992. Proceedings. 13rdl European
Confererice o n , Mor 1992. pp. 383 -387
KUkimOtO, y, Braytan. R.K. "Timing-safe f a k path removal for
combinational modules", Computer-Aided Design. 1999. Digesr of
Technical Popers. 1999 IEEWACM Internorioml Conference on , 1999,

1131 D. H. C. Du, S. H. C. Yen, and S. Ghanta "On the General False Path
Problem in Timing Analysis", Prm. of the 26rh DAC 1989, pp. 555-5607

'

standard tool while memory usage is comparable. The method pp. 544 -549

multi-cycle paths.

400

