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Abstract-In this paper, we propose a new fast and practical 
technique to eliminate known false paths during the static timing 
analysis (STA). False paths are verified fast using additional 
information stored in arrival times, which is a pass-through 
history of exceptional nodes. The information can be constructed 
with small memory overhead hecause individual false path list is 
not managed in each arrival time. We adapted this method to 
classical arrival time computation and critical path searching 
algorithm The feature is w d  in CubicTime, our full-chip gate 
level static timing analyzer supporting multiple clock domains. We 
describe the details of our algorithm and the experimental results 
compared to those of our previous method and a de-facto 
industry-standard STA tool. 

1. INTRODUCTION 

In SoC design era, as design size is increasing rapidly, better 
performance and larger capacity are needed to verify timing 
operation of circuits. Conventional dynamic simulation 
methods have become inadequate for verifying timing of large 
full chip design because run time is nearly infeasible and efforts 
for generating input stimulus is also extremely high. To 
overcome these capacity limits, static timing analysis (STA) has 
been proposed for efficient full-chip timing verification [ I ,  21. 
STA is an exhaustive method of verifying timing performance 
of synchronous design. It is very efficient not only for its fast 
runtime hut also for its large coverage [ 1,2]. Although the STA 
does not need input stimulus, it guarantees worst-case timing 
operation by covering both rising and falling transition at every 
primary input node. 

Because STA does not take logic into account, it may report 
logically or temporally unrealizable paths. These paths are often 
referred to as false paths. Although STA is very efficient way to 
verify the timing of circuits, it suffers from handling exceptions 
such as false paths. False paths should he detected automatically 
or removed manually in order not to overestimate critical paths. 
The method of eliminating user-specified false path is widely 
used in industry because finding true critical path automatically 
in large circuit takes too much computation time even if 
heuristics are used 161. 

False paths can be specified by a set of false sub-graphs or 
through-path exception formats 16, 91. The former can specify 
more false paths in a single representation than the latter, but it 
is difficult to describe false paths in graph format. In this reason, 
the through-path exception format is widely used in industry. 

Many researches have been done for elimination or detection 
of false paths [4-121. In this paper, we formulate algorithm for 
finding m e  critical path given a set of known false paths 
described in through-path-exceptions format. 
Our approach is effective for some reasons. Unlike previous 

methods [4-12], it does not need additional information for 
individual false paths in each node. Instead, each node has 
minimal points pass-through history information. Moreover, the 
proposed method can easily he adapted to classical arrival time 
computation and path search procedures. 

Our method is implemented in CubicTime, which is the gate 
level in-house STA tool based on Cubicware environment (31. 

The outline of the paper is as follows. In section 2, we 
describe backgrounds for the static timing analysis. In section 3, 
we formulate the algorithm for finding true critical paths in 
detail. In section 4, we describe the experimental results applied 
to several industrial designs. And finally, we give the 
conclusions. 

11. PRELDMINARIES 

In this section, we describe some basic t e r n  and definitions 
for our data structure. And then, we describe classical STA 
algorithm that is adapted and modified in our approach. We 
assume that the design is acyclic. 

A. Design Fonnulation for Sratic Timing Analysis 
The design has a component database for the timing analysis. 

Every pin or node has rising and falling delay edge. Each delay 
edge has both minimum and maximum delay events. A delay 
event means rising or falling signal transition at a certain time. 
Root events are initial transitions at clock sources or primary 
input nodes. A delay arc is a rising or falling pin-to-pin delay 
component [I]. A delay arc can be either of cell arc or net arc. 

Every root event is propagated through delay arcs and each 
node may have a number of delay events from different root 
events[l]. Each delay event has link to the event that causes it, 
then the link is used in backward path search phase. 

B. Arrival Time Computation 
The procedure for arrival time computation is propagating all 

root events from primary inputs or clock sources to path 
endpoints [1,2,3]. Minimum and maximum arrival times (or 
delay events) at each node are worst-case propagation delays 
from its root event to the node. Arrival times are computed in 
breadth-fust-search (BFS) manner after logical level of every 
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node is decided. The arrival time of a node is calculated by sum 
of worst arrival time of its fan-in nodes and incoming cell or net 
arc delay. To support multiple clock domains, arrival times are 
stored separately grouped by their root events. Figure 1 shows 
pseudo algorithm for maximum arrival time computation. 
Minimum arrival time can he computed in similar way. Note 
that only the modified arrival time is propagated to next level 
and the procedure repeats until no more arrival time 
modification occurs. 

11 calculate design arrival time (pax) 
repeat { 

for each node of logic level i { 

Q =list of cell input pins 
for each pin q in Q { 

for each output pinp in level i nodes { 

11 take arc unativity into account 
get q - p  arc delay 
&v@) = MAX(arriv(q) +delay(q +p)  , arriv@)) 

1 
1 until no node arrival is changed 

Figure 1: Algorithm for anival time computation 

C. Logical False Path 
Logical false path is logically UNealiZable path [5,11,131. 

Because STA doesn't take logic into accoun6 it searches critical 
path only referred to delays. Figure 2 shows simple example of 
logical false path. If logic is not taken into account, path 
A+C+E+F is selected as a longest path. But this path is 
unrealizable for select signals to two multiplexers are opposite. 
Actually, the paths A+B+E+F and A+C+D+F are 
realizable longest path. So, the path A+C+E+F must be 
specified as a false path and should be eliminated during timing 
analysis phase not to overestimate longest path. 

Figure 2 An example of typical logical false path 

III. FALSE PATH ELIMINATION 

The key idea of the approach is storing pass-through history 
of the user-specified exceptional points in each delay event and 
making use of them later for path verification. Note that each 
false path is specified in a partially ordered list of nodes the path 
is propagating through, and false path verification occurs at 

every constrained path endpoint. By preceding operation, every 
false path fhrough-poinf specified by user is marked as special 
point, and every endpoint has set of all possible false paths to 
the endpoint. These operations do not need any complex 
process and can he done with very small overhead. 

A. Building Excepfion-fhrough Hisfory 
Each delay event has exceptional-point-through history if the 

delay event is propagated through at least one exceptional point. 
Computing the history information of each event can be 
embedded in arrival time computation process. We call the 
history as "false head" as in [6] and denote it by FH. The 
structure of the false head is simply an array or a list of nodes. 

The function InherifFalseHead described in figure 3 shows 
overall false head inheritance mechanism. The function is called 
whenever the delay event D is modified for propagating the 
delay event S. Each delay event may store its own false bead or 
just point false bead of the event that causes it. Because the 
portion of exceptional nodes to entire nodes is very small, false 
bead does not change frequently while propagating through 
nodes. Therefore, in most case, only pointing the false head of 
its cause event is enough rather than storing its own false head. 

I/ inherit false head from cause event S to caused event D 
InheritFalseHead (S, D) { 

FHD= NODE, 

if (FHs i 0) { 

if (NODE, is primary input & exceptional) { 

] else { 
11 initial node is exceptional 

if (NODED is exceptional) { 
FHD= FHs.{NODED) 

1 else { 
FHD = FHs 

1 

FHo= {NODE,) //new FH issued 

FHD = 0 

11 grow new FH 

11 directly point 

1 else if (NODE, is exceptional) { 

1 else { 

1 
11 remove previous inheritance 

1 
I 

Figure 3:. Building false head of D node 

B. Finding True Critical Path 
Once arrival time and false heads are computed at every delay 

event, critical path to every path endpoint should be found to 
analyze design timing. Classical path searching algorithm is 
basically a depth-frst backward searching process. The worst- 
case delay event on a path endpoint is traced backwards to its 
root event to build a full path [ I ,  21. 

If a delay event propagated to an endpoint has no false head, 
the delay event is true, so true critical path can easily he found 
by tracing the cause-event backwards from an endpoint delay 
event. Otherwise, if a delay event on the endpoint has false head 
and the endpoint has a possible false path list, the delay event 
needs to be verified. 
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I/ initially, SLACKCUTOFF = LOOSE, T D  = 0, FT = 0 

BackwardSearchTrueParh (E, FT, TP, T D )  { 
if (FHE = 0 and FT is not false path) { 

SLACKclrnnEm = TEdnq - arn’u(E) - T D  
if (SLACKcunnENT < SLACKCUTOFF) { 

/ I  new critical path is found 
SLACKCUTOFF = SLACKCURRENT 
Build critical path with E and T P  

) 
) else if (FHE = FHrREV and E is not exceptional) { 

search backwards without false path check (1) 
) else { 

if (FHE*FT makes false path) { 
// searching branches backwards .._. ... . ______  (1) 
PUSH(FT, E),  if E is exceptional 
PLISH(TP, E) 
for each branch E‘ of E { 

TD’ = T D  + delay(E‘- E)  
BackwardSearchTruePath (E’, FT, TP, TD‘) 

POP(FT, E), if E is exceptional 
POP(TP, E) 

I /  found true path 
SLACKcUnRENT = T,.,, - arriu(E) - TD 

) else { 

if (SLACKCURRENT < SLACKCLTOFF) t 
SLACKCUT~FF = SLACKCURRENT 
Build critical path with E and TP 

1 

1 

Figure 4 .  Recursive backward critical path search algorithm 

Another exception point through history “false tail”, named 
as in [61, is generated during the backward path searching 
process. False tail, denoted by FT, is exceptional points pass- 
through history of current backward path search session. The 
false tail is managed dynamically by push and pop operations 
for the stack during the recursive search process as shown in 
figure 4. Note that only one false tail is managed for critical path 
searching. 

Given FH and FT, the concatenation FH-FT makes complete 
exceptional points pass-through history of current searching 
path. If one of known false paths to the path endpoint is ordered 
subset of the sub-path FH-FT, current searching path is false. 

To fmd a true critical path to an endpoint, every possible 
critical branch path must be checked. Since a delay event stored 
in a node has worst-case arrival time, whatever the event is true 
or not, there cannot he more critical branch path in the fan-in 
cone to the node. Thus, the fan-in branch whose slack is less 
than the minimum m e  slack found before can he pruned for the 
backward searching. Figure 4 shows the algorithm for fmding 

m e  critical path. In the pseudo code, E denotes the delay event 
currently tracing, TP denotes tail path, and TD denotes the delay 
of the tail path. The algorithm runs recursively, tracing branches 
backwards. 

While tracing backwards the nodes from N,,,, to N,,, if FH,, is 
identical to FH,,,, and the node N,, is not exceptional, false path 
matching is not needed because there is no difference in FH-FT 
between the nodes. Thus, the procedure may continue to the 
further fan-in branches without redundant false path matching. 

Although the described algorithm runs very fast in most case, 
the worst-case complexity of the procedure is - number of 
possible paths to the endpoint, where F is average fan-in count 
of node and D is logical depth to the endpoint. But the 
performance degradation hardly happens because many 
branches are pruned during the process. Moreover, F is 
typically small value around 2, and false path matching occurs 
only at a few nodes. 

’C’ 

Bold : user specified exception-through Point 
ltalio : false head of arrival event 

Figure 5 :  False path veilication example 

Figure 5 shows an example flow of proposed algorithm. To 
simplify the problem, only maximum delay path is explained. It 
is assumed that there is single root event and all gate delays are 
same. In the figure, bold letters represent user-specified 
exceptional nodes and italic string represents the false head 
stored in the event. By preceding operation, there is user 
specified false path {C+F+H) on the D pin of the flip flop. 
The initial longest path is found to he {A-C-D+F-G-H) 
by referencing propagation delay only. But it is false path 
because user specified false path {C-F-H) is an ordered 
subset of the path, so true critical path should be found. The 
detailed flow of the proposed algorithm is described as follows. 

1. Onthefinaleventontheendpoint,FHis (C,F, H)andFTis(). 
The current searching path is false because the user-specified 
false path (C, F, H) is an ordered subset of the FH-FT. 

2. The procedure continues to G and F respectively. On these two 
nodes, FH is (C, F )  and F 7  is (H). Because (C, F, H) is an 
ordered subset of the FH-FT, the current searching path is false. 

3. On the nodes D and C, the FH is (C) and FT is (F, H). The 
current searching path is false path because the (C, F, H) is an 
ordered subset of the FH-FT. 

4. When tracing a branch node 8, FH is ( )  and FTis (F, H). This 
makes true path because (C, F, H) is not an ordered subset of the 
FH-FT. Hence, the event on B and the tail path make a full ttue 
path (A, B, D, F, G, H ) .  

5.  The other branches E and I don’t have worse slack. So further 
branch searching is not needed fmm them. Finally, the m e  
critical path is proven to be (A, B, 0, F, G, H) 
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The method described was applied to 7 industrial full-chip 
gate-level designs ranging from 12,000 to 300,000 instances. 

experiments were performed on a dedicated SUN blade-1000 
machine running in 32hit mode with enough physical memory. 
Table 1 shows the specifications of the sample designs. Every 
design script used is real signoff STA script and has multiple 

Design 

A 
B 
C 
D 
E 
F 

They consist of PDA, MODEM, and processor core chips. The 

clock defmitions and real false path descriptions. 

Table 1: Sample design specification 

Runtime (elapsed, sec) 
with FH, FT w/o FH,FT Commercial 

48 1208 59 
130 222s 88 
79 208 69 

322 3480 623 
112 1922 191 
1 I4 4001 379 

G I 255 I 3988 I 628 
Table 2 Elapsed time for all consmints check 

Design 

A 
B 
C 
D 
E 

Memory Usage (MByte) 
with FH,m w/o FH,FT Commercial 

128 123 173 
243 217 169 
63 61 100 

638 598 549 
426 417 361 

To show the effectiveness of our approach. the proposed F 

memory usage. For the experiments, timing analysis is done for 
both minimum and maximum paths in order to check setup, hold, 
recovery, and removal violations at every path endpoint. 
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