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P E R T  as an Aid to Logic  Design 

Abstract: A new application is  presented for PERT, the  well-known  statistical  project-scheduling  method.  Using PERT, the  logic 
designer  could  circumvent  usually  unrealistic  worst-case criteria. He substitutes a formalized  statistical  method  which deter- 
mines ( 1  ) expected or most  probable  delays, (2) critical timing paths, ( 3 )  timing  slack  allowable  between  various  inputs, and 
(4) probability of achieving an output by a certain time. From these data the  designer  can  make a meaningful  judgment  re- 
garding the reliability of his  system.  Significantly,  he  may  achieve  high  reliability  without  being  forced to resort to worst-case 
design. 

introduction 

This  paper provides a simple but useful means of statisti- 
cally designing logic systems. The procedure is based on a 
widely used scheduling aid known as PERT and eliminates 
many of the drawbacks associated with designing to a 
worst-case criterion. Such valuable information as most 
probable  time delay, critical paths, and  the probability of 
any given delay are yielded by this  application of PERT. 

Not only does the &heme require a minimum of effort 
and  input  data,  but also it can be automated, since many 
computer libraries contain PERT programs. 

The difficulty in using a worst-case technique is readily 
apparent.  For instance, consider the problem of predicting 
the time that a signal will arrive at a given point after 
having traveled through several logic stages. Assuming 
all stages to be of the same type, the worst-case time is 
the worst-case delay of a single stage multiplied by the 
number of stages. The worst-case time will then differ 
from  the nominal or average time  in  direct proportion 
to the number of stages being considered. It is obvious 
that  not only would most  practical systems fail  under 
absolute worst-case conditions, but  also  that  the assump- 
tion of such  conditions is unrealistic. The probability is 
extremely low that all of the stages in a long logic chain 
will present a worst-case delay. Some allowance, then, 
should be made  for this  fact. 

It is justifiable at this stage to ask the question “Can 
we make allowance for  the element of probability without 
jeopardizing our design?” One design approach is simply 
to assume that over a long logic chain a nominal delay 
per stage  may be counted on, relying on fast stages to 
average out  the effect  of slow stages. But  in using this 
approach,  there is definitely an involvement with chance. 

Even worse, no means is provided for quantitatively 
measuring the extent of that involvement. For instance, 
how do we answer the question “What is the probability 
that  the delay will extend 50 ns beyond the  nominal 
delay?” PERT can assign a definite probability to such 
an occurrence. 

PERT was developed as a computer-implemented 
statistical aid in  estimating end dates and critical paths 
for  the scheduling of large projects. As a scheduling 
device, PERT requires as input three estimates concerning 
the length of time it will take  to  do a given job. These 
estimates are  the most likely time, the shortest time, and 
the longest time. As output, PERT provides the probability 
of finishing the  job at any given time. Thus, the applica- 
tion of PERT to logic timing is apparent. It is necessary only 
to  obtain  the  three  appropriate estimates of circuit delay, 
and  then with the application of the PERT procedure, the 
probability of any given delay can  be  computed. Also, 
and equally important, timing slack and critical paths 
can be determined. 

Procedure for logic  design 

In using the PERT approach,  the logic designer would first 
assemble the basic data: 

(1) The three delay figures for each  type of logic block 
being used: a = shortest, rn = most likely, and 
b = longest. 

(2) A normal distribution curve in tabular form, such 
as that in  Table 1. 

From  the above data  the following procedure would 135 
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then be  used to predict  whether an output will  occur 
within a certain  time  following an input: 

(1) Construct a logic  diagram  (Fig. 2) with the quantities 
a, m, b in  each  block.  Since toff # to, in general, there 
will  be  two  sets of delay  figures for each  block. The set 
corresponding to the significant transition must  be  used 
at each  stage. 

(2) Compute the mean  time  delay and variance for each 
block  according to the formulae 

a + 4 m + b  
6 

mean: t ,  = 

variance: u2 = ( b  - ; a)’. 

Enter t ,  and u’ in  each  block  on the diagram. 

(3) For each path through the logic  diagram  compute 
over-all  mean, T, ,  and variance, Z2, by summing the in- 
dividual  components. The critical path which determines 
the delay through the net is that path having the largest T,.  

Table 1 Values  of  the standard normal distribution  function.* 

(4) Compute the factor 2 for each output (or internal 
node if desired)  according to the formula 

Z =  To,  - T ,  
U 

where To, = Time by  which output is required. 
T,  = Critical path delay. 

The quantity 2 is the distance between the mean of the 
output delay distribution and the time by  which output 
is  required,  in units of standard deviation. 

(5 )  From the table for the normal distribution curve,  read 
Pr(2). “Pr” is  defined as the probability that the output 
will arrive by To*. If 2 is  negative (see  Ref. 3, p. 166), 
then Pr(-2) = 1 - Pr(2). 

Those familiar  with PERT will  notice that our procedure 
is  virtually  identical to that used  in the project  management 
application. There are two  differences, the first of  which 
involves  Step 1. The PERT chart has  circles  connected by 
paths, the circles  representing  completed The 
paths represent the intervening time delay.  In our case, 
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the blocks  themselves  represent the time  delays. The 
interconnecting  lines  signify  only  signal flow, but have no 
significance  with  respect to delay. 

The second  difference  involves the handling of OR 

functions, which do not occur  in the usual PERT application. 
Wherever an OR is  encountered, the earliest input t ,  
rather than the latest is used for critical path computations. 

There is a further use to which this technique  can  be put. 
Suppose we have  computed an output T ,  over the critical 
path based on the assumption that all input signals to 
the net arrive simultaneously. Now  we  wish to know 
how  much  slack  can  be  allowed  between  certain of these 
inputs. 

The timing  slack  procedure  is as follows. 

(1) Using the over-all critical-path output T ,  as a starting 
point, subtract the summation of the t ,  for all the stages 
in the longest path back to the input under  investigation. 
Do the same  for the variances 

(2) If the path taken  is not the critical path, there will 
be a finite,  positive I, left after performing the subtraction. 
This  represents the maximum average slack I, which  can 
be tolerated without  affecting the output time by causing 
this path to become critical. 

(3) Assuming the input arrives at the latest  time found 
in  (2), the a’ left after performing the subtraction is the 
maximum that can be tolerated without affecting the out- 
put Pr calculation. 

It is apparent that the a’ resulting from (3) can be 
positive,  zero, or negative.  One  would  normally  expect it 
to be  positive if similar  circuits are used  in all paths, but 
this is not guaranteed. So the question  arises: “What is 
the meaning of positive  slack  coupled  with  negative 
variance?” 

To answer  this  question,  let  us  consider  two  cases: 

Case No. 1 :  t i ,  = t., where ti, is  defined as the input 
time to the path under investigation. 

We can  compute a Z’ for the path, assuming  some 
arbitrary input variance, a;,. If (Z‘)z is the summation of 
variances  along the path, Z’ = (To* - T,)/Z‘. This will 
yield a Pr’ < Pr, where  Pr’  is the probability of achieving 
an output by To,  along the path. Note that Pr’ < Pr 
even  if a:, = 0. 

Case No. 2 :  Pr’ = Pr.  This  implies Z’ = 2. We  wish 
to solve for the t i ,  required to satisfy the condition. 
If Tl is the mean output time  required  along the path 
under  investigation in order for Pr’ = Pr, then Z’ = Z = 

(To* - T:)/x’.  
Solving,  then Ti = T o ,  - Z‘Z. 

Since ti, = T ,  - (T ,  - I,), we find 

SENSE AMPLIFIER 
OUTPUT 

TIME IN NSEC 

Figure 1 Timing chart for the read cycle. 

ti ,  = To,  - T .  + t ,  - Z‘Z. 

The ti, limits are - < fin < t,. 
If ti, is found to be  negative, and if Pr’ = Pr is a rigid 

requirement,  then a new  effective Critical Path might  have 
to be  defined. 

Example in ferrite core  system design 

It will  be  useful to go through an example of the applica- 
tion of this  technique. The example that we selected  is 
an actual case  which  occurred  in the design  of a 2-ps 
coincident-current  ferrite-core storage system. 

We desired to know if a 520-ns  access  time  could  be 
achieved.  Absolute  worst-case  calculations  indicated that 
it could  not.  However, we felt that this was not reasonable 
because of the large  number of circuit  elements. 

Figure 1 shows the timing chart for the read cycle. 
The fixed  delay  of 300 ns  between the 10% point of the 
Y current and the strobe pulse  is  determined  empirically. It 
depends  on a number of parameters that  are beyond 
the scope of this paper. It will  suffice to say that  it is 
fixed  by the averaged core-array characteristics. A timing 
adjustment  is  provided to bring the strobe pulse precisely 
to 300 ns. The timing points to be  determined then are 
the X and Y drive current turn-on times  relative to the 
storage-select  pulse. We also wish to know the amount 
of  stagger  between the two  drive  pulses. 

In calculating the delays we refer to the X-dimension 
timing  logic in Fig. 2, where  each  block contains values 
for a, m, b, t , ,  and a’. The pre-driver  delay  figures are 
for the emitter-driven case  where the base  signal  is  “solid” 
well  before the emitter.  The  driver  delay figures are for 137 
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Figure 2 X-dimension timing logic. 
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Figure 4 Read  driver  circuit and its  delay. 

the base-driven  case,  where the collector  is  conditioned 
well before the base input delay  could  allow  collector 
current flow.  Refer to Fig. 4, which  shows the circuitry and 
timing in a little  more  detail. As is  shown, the current 
source  conditions the collector of T4 before the base  delay 
period  is  over.  Therefore, the critical path is not through 
the current source. It should be noted that this  is a special 
case not encountered in pure logic  networks,  since the base 
input delay is very  much greater than the collector input 
delay. For pure logic  networks, Rule 3 on page 145 would 
hold. 

Computing  over-all T,,  and 2; along the critical path 

T,, = 14.6 + 20.2 + 5 .1  + 45.4 = 85 .3  ns 

22 = 9.0 + 5.6 + 0.1 + 47.4 = 62.1. 

Figure 3 shows the Y-dimension timing  logic.  Again 
computing T,, and 2: along the critical path, 

T, ,  = 14.6 + 15.2 + 30.7 + 26.7 + 24.8 + 20.2 

+ 5.1 f 45.4 = 182.7 ns 

2: = 9.0 + 12.3 + 44.3 + 28.4 + 23.4 + 5.6 

+ 0.1 + 47.4 = 170.5.  

Calculating the probability of achieving  an output by 

520 ns, we first  must  find the 2 factor 

Z = (Tad - Tev)/dZ. 
In this case, To,  = 520 - 300 = 220 ns, so 

Z =  
220 - 182.7  37.3 -__ -  - 

VGG 1 3 . 1  
- 2.85. 

The probability (Pr) that the output will  occur by 
520 ns  is then read off in  Table 1:  

Pr = 0.9978 for 2 = 2.85 

To interpret this result, the following  points should be 
considered: 

(1) The system  is  primarily  composed of switching 
elements and therefore is not prone to random noise 
effects. 

(2) The input data should be applicable to the actual 
operating conditions and should include  any  systematic 
effects  caused by environment, as well as random tolerance 
variations. 

Under these  conditions, the result says that an average 
of 22 units  per 10,000 manufactured will fail to meet the 
access-time  requirement. It does not say that a given 
unit will fail 22 times  per 10,000 accesses,  since  condition 
(1) above  precludes  this  type of randomness. The only  time 
a core  memory  exhibits random errors is when it is  close 
to the limit of its operating region,  where random noise 
can  momentarily  push the operating point outside the 
limit. 

Next we must  calculate the stagger between the X and 
Y pulses. We  may treat the numbers T, ,  and T,, as random 
variables. The stagger  then  would  be  defined as T e a :  

T , ,  = T,,  - T,,  = 182.7 - 85.3 = 97.4 ns. 

We need to know the probability that the stagger  will 
be greater than 80 ns. To do this, we must  consider the 
properties of a sum of random variables. 

If the sum Sn is defined as 

sn =x X1 + X, + X ,  + X n ,  
where X ,  . . . X, are random variables,  then the variance 
(u') of S ,  is given  by Ref. 3: 

Var (s,) = a: + 2 cov (xi, xk). 

n 

k = l  i,k 

In our case, the random variables are independent, 
therefore 

cov (xi, X,) = 0 

and 
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Using this result, we calculate for the variance of the 
stagger 

2f = 22 + 2: = 62.1 + 170.5 = 232.6. 

To find the probability that  the stagger  will  be  less 
than 80 ns, we  define To.  = 80 and T ,  = T., and compute 

This yields Pr, = 0.1251. Then the probability that 
the stagger  will exceed 80 ns  is  given  by: 

1 - Pr, = 0.8749. 

Next we  wish to know  how  much  slack  we  can  allow 
between the storage-select  pulse and the address  lines. 
Referring to Fig. 2, we calculate the t ,  and a’ at the 
emitter input to the predriver  (labeled  “e” on the block) 

t .  = 14.6 + 20.2 = 34.8 

uz = 9.0 + 5.6 = 14.6. 

Now  proceeding as in  Step 1 of the timing-slack 
procedure, 

tesAB = 34.8 - 14.6 = 20.2 ns 

= 14.6 - 9.0 = 5.6. 

This  means that as long  as the address  arrives  on the 
average by 20.2 ns  following storage select  with  variance 
not exceeding 5.6, the system  performance will not be 
degraded. 

Conclusion 

A simple,  formalized  technique has been demonstrated 
for studying  delays through logic  networks. It yields 
quantitative estimates for : 

(1) Probability that an output will  occur  by a given  time 
(2) Critical paths 
(3) Timing  slack  allowable  between  various inputs. 

The advantages  over  previous  methods are: 

(1) It is  more  realistic than the worst-case  criterion. 
(2) It effectively  allows a nominal design to be  used,  and 

puts a confidence factor on that design. 

The primary  limitations are: 

(1) Availability of the three necessary  delay  figures. 
(2) Assumptions  made about the validity of the beta 

and normal distributions. 
(3) The bias  resulting from the simplifying  assumption 

made  in the formulation of the PERT procedure 
(see  Ref. 5,  p. 654) which renders it a practical 
method to use. 

140 The first of these  can  be  alleviated by application of 
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engineering  judgment and experience  with the particular 
class of logic  circuits being  used. The second and third 
merit further discussion. 

With appropriate choice of constants, the beta  dis- 
tribution: 

f(t) = K( t  - a)“(b - t ) ’ ,  

can  closely approach the normal distribution. 
In addition, a skew  may  be introduced by choosing 

CY # y. The original PERT developers  assumed that random 
delay  processes  could  be  adequately  described by the 
beta  distribution. In the equation t, = (a f 4m + b)/6, 
choosing (m - a) # (b - m) is  equivalent to choosing 
a # y. The central limit theorem was  used to justify use 
of the normal distribution to approximate the output of 
a network of beta  distributions. 

The third limitation  listed  above  can be illustrated as 
follows:  Consider the case  of a two-input AND, shown  in 
Fig. 5. 

We  wish to know t , , ,  given t c A  and t e B .  The Cumulative 
Probability  is the probability that  the signal has arrived 
by time t .  It is the integral of the density  (beta  distribution). 
Since both inputs must  have  occurred  before the circuit 
will start to generate an output, we must  multiply the 
two input distributions. Figure 5 shows  two  cases,  one 
where fA(t)  = le(?), and the other where fa(?) # fB(t) .  
It is apparent that teetf (the t ,  of the effective input dis- 
tribution) is later than either ten or t e B .  The worst  case is 
where f A ( t )  = f B ( t ) .  

Now consider the OR function  shown  in  Fig. 6. Since 
C = A + By the circuit  will start to generate an output 
as soon as A or B or both have  arrived. We  may calculate 
the effective input distribution by observing the Boolean 
equality A + B = AB + AB + AB. There are three 
mutually exclusive  ways  in  which the INCLUSIVE OR can 
be  realized.  Their  probability distributions are 

P ( A @  = fA(t)[l - f B ( f ) l  

P( AB) = f B ( ? ) [ l  - 
P ( A B )  = f ~ ( t ) f ~ ( f ) -  

Adding, we get 

P ( A  + B) = !A(?)  - f A ( f ) f B ( f )  + fB(?) 
- f A ( t ) f B ( t )  + f A ( t ) f B ( t )  

= / A ( ? )  + f B ( t )  - f A ( f ) f B ( t ) .  

It is  seen that tsefr is  earlier than either t , ,  or t eB.  Again, 
the amount of bias  depends  on the overlap of fa(?) and 

In the original PERT application, the assumption was 
made that the input distribution with the latest t, pre- 
dominated at each  multiple-input  node.  Since all the 
activities in the PERT chart involved AND functions, the 

fB( t )*  
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0 

CL 

m 

Figure 5 Two cases for Cumulative Probability, two-input 
AND circuit. 

answers  obtained were  systematically  biased  early  (Ref. 5, 
p. 654). Interestingly  enough, the great bulk of articles, 
papers, and textbooks which have  since  been  written 
about PERT appear to ignore  this  point  entirely. 

In applying the PERT procedure to logic  networks, it 
would appear the assumptions  concerning the shape of 
the delay distributions would be as valid as in the original 
application. The systematic t ,  bias should actually be 
less,  since  usually there are about as many OR as there are 
AND functions. 

Further development 

Thus far, only  limited  use  has  been  made  of  this  technique. 
In the future, application to large  computing  systems 
might  yield  considerable  insight into system  performance, 
critical  timing situations, and areas in which requirements 
could  be  relaxed  without  performance  degradation. All 
this  is  achieved  without  imposing  any  cumbersome 

Figure 6 Two cases for Cumulative Probability, EXCLUSIVE 
OR circuit. 

procedures on the designer. In fact, it could  reduce the 
work  required of  him  if an automated PERT system  is 
available. 
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