
T. 1. Kirkpatrick
N. R. Clark

P E R T as an Aid to Logic Design

Abstract: A new application is presented for PERT, the well-known statistical project-scheduling method. Using PERT, the logic
designer could circumvent usually unrealistic worst-case criteria. He substitutes a formalized statistical method which deter-
mines (1) expected or most probable delays, (2) critical timing paths, (3) timing slack allowable between various inputs, and
(4) probability of achieving an output by a certain time. From these data the designer can make a meaningful judgment re-
garding the reliability of his system. Significantly, he may achieve high reliability without being forced to resort to worst-case
design.

introduction

This paper provides a simple but useful means of statisti-
cally designing logic systems. The procedure is based on a
widely used scheduling aid known as PERT and eliminates
many of the drawbacks associated with designing to a
worst-case criterion. Such valuable information as most
probable time delay, critical paths, and the probability of
any given delay are yielded by this application of PERT.

Not only does the &heme require a minimum of effort
and input data, but also it can be automated, since many
computer libraries contain PERT programs.

The difficulty in using a worst-case technique is readily
apparent. For instance, consider the problem of predicting
the time that a signal will arrive at a given point after
having traveled through several logic stages. Assuming
all stages to be of the same type, the worst-case time is
the worst-case delay of a single stage multiplied by the
number of stages. The worst-case time will then differ
from the nominal or average time in direct proportion
to the number of stages being considered. It is obvious
that not only would most practical systems fail under
absolute worst-case conditions, but also that the assump-
tion of such conditions is unrealistic. The probability is
extremely low that all of the stages in a long logic chain
will present a worst-case delay. Some allowance, then,
should be made for this fact.

It is justifiable at this stage to ask the question “Can
we make allowance for the element of probability without
jeopardizing our design?” One design approach is simply
to assume that over a long logic chain a nominal delay
per stage may be counted on, relying on fast stages to
average out the effect of slow stages. But in using this
approach, there is definitely an involvement with chance.

Even worse, no means is provided for quantitatively
measuring the extent of that involvement. For instance,
how do we answer the question “What is the probability
that the delay will extend 50 ns beyond the nominal
delay?” PERT can assign a definite probability to such
an occurrence.

PERT was developed as a computer-implemented
statistical aid in estimating end dates and critical paths
for the scheduling of large projects. As a scheduling
device, PERT requires as input three estimates concerning
the length of time it will take to do a given job. These
estimates are the most likely time, the shortest time, and
the longest time. As output, PERT provides the probability
of finishing the job at any given time. Thus, the applica-
tion of PERT to logic timing is apparent. It is necessary only
to obtain the three appropriate estimates of circuit delay,
and then with the application of the PERT procedure, the
probability of any given delay can be computed. Also,
and equally important, timing slack and critical paths
can be determined.

Procedure for logic design

In using the PERT approach, the logic designer would first
assemble the basic data:

(1) The three delay figures for each type of logic block
being used: a = shortest, rn = most likely, and
b = longest.

(2) A normal distribution curve in tabular form, such
as that in Table 1.

From the above data the following procedure would 135

IBM JOURNAL * MARCH 1966

then be used to predict whether an output will occur
within a certain time following an input:

(1) Construct a logic diagram (Fig. 2) with the quantities
a, m, b in each block. Since toff # to, in general, there
will be two sets of delay figures for each block. The set
corresponding to the significant transition must be used
at each stage.

(2) Compute the mean time delay and variance for each
block according to the formulae

a + 4 m + b
6

mean: t , =

variance: u2 = (b - ; a)’.

Enter t , and u’ in each block on the diagram.

(3) For each path through the logic diagram compute
over-all mean, T, , and variance, Z2, by summing the in-
dividual components. The critical path which determines
the delay through the net is that path having the largest T,.

Table 1 Values of the standard normal distribution function.*

(4) Compute the factor 2 for each output (or internal
node if desired) according to the formula

Z = To, - T ,
U

where To, = Time by which output is required.
T, = Critical path delay.

The quantity 2 is the distance between the mean of the
output delay distribution and the time by which output
is required, in units of standard deviation.

(5) From the table for the normal distribution curve, read
Pr(2). “Pr” is defined as the probability that the output
will arrive by To*. If 2 is negative (see Ref. 3, p. 166),
then Pr(-2) = 1 - Pr(2).

Those familiar with PERT will notice that our procedure
is virtually identical to that used in the project management
application. There are two differences, the first of which
involves Step 1. The PERT chart has circles connected by
paths, the circles representing completed The
paths represent the intervening time delay. In our case,

1 2 3 4 5 6 7 8 9

.o

. I

.2

.3

.4

.5

.6

.7

.8

.9
1 .o
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

2 .o
1.9

2.1
2 2
2.3
2.4
2.5
2.6
2.7
2 s
2 9

,5000
,5398
,5793
.6179
.6554
,6915
,7257
,7580
,7881
,8159
,8413
,8643
.&x9

,9192
,9032

,9332
.9452
,9554
,9641
,9713
,9772

.9861
,9821

,9893
,9918
,9938
.9953
,9965
,9974
,9981

.5040
,5438
,5832
,6217
,6591
,6950
,7291
,7611
.7910
,8186
,8438
,8665
,8869
,9049
,9207
,9345
,9463
,9564
,9648
.9719
,9778

.9864
,9826

.9896

.9920
,9940
,9955
,9966
,9975
,9982

,5080
,5478
,5871
,6255
,6628
,6985
,7324
,7642
,7939
,8212
,8461
,8686
,8888
.go66
.9222
.9357
,9474
,9573
,9556
,9726
.9783

,9868
,9830

,9898
,9922
.9941
,9956

,9976
,9967

,9982

,5120
.5517
,5910
,6293
,6664
,7019
,7357
,7673
.7967
.8238
,8485
,8708
,8907
.go82
.9236
,9370
,9484
,9582
,9664
,9732
,9788
,9834
,9871
,9901
.9925
.9943
,9957
,9968
,9977
.9983

,5160
,5557
,5948
,6331
,6700
.7054
,7389
,7703
,7995
,8264
.8508
,8729
,8925
,9099
,9251
,9382
.9495
,9591
.9671
,9738
.9793
,9838
,9874
,9904
,9927

,9959
,9945

,9969
,9977
,9984

,5199
,5596
,5987
,6368
,6736
.7088
.7422
,7734
,8023
,8289
.853 1
,8749
,8944
,9115
,9265
,9394
.9505
,9599
.9678
,9744
,9798

.9878
,9842

,9906
,9929

,9960
,9946

.9970

.9978
,9984

,5239
,5636
,6026
,6406
.6772
,7123
,7454
,7764
,8051
,8315
,8554
,8770
,8962
,9131
,9278
,9406
,9515
,9608
,9686
.9750
,9803
,9846
,9881
.9909
.9931
,9948
.9961
,9971
,9979
,9985

,5279
,5675
,6064
.6443
,6808
,7157
,7486
,7794
,8078
,8340
,8577
.8790
.8980
,9147
.9292
,9418
,9525
,9616
,9693
,9756
,9808
,9850
,9884
,991 1
9932
.9949
,9962
,9972
,9979
,9985

,5319
,5714
,6103
,6480
,6844
,7190
,7517
,7823
.SI06
,8395
.8599
,8810
,8997

,9306
,9162

,9430
,9535
,9625
,9700
,9762
,9812
.9854
.9887

,9934
,9913

.9951

.9963
,9973
,9980
.9986

.5359

.5753
,6141
.6517
,6879

.7549
,7224

,7852
,8133
.8389
.8621
.8830
,9015
,9177
,9319
,9441
,9545
,9633
,9706
.9767
,9817
.9857
.9890
.9916
,9936
.9952
,9964
.9974
,9981
.9986

3.0 1 .99S7 .9990 .9993 .9995 .9997 ,9998 ,9998 .9999 ,9999 1 .oooo

* From Ref. 1. , 136

T. I. KIRKPATRICK AND N. R. CLARK

the blocks themselves represent the time delays. The
interconnecting lines signify only signal flow, but have no
significance with respect to delay.

The second difference involves the handling of OR

functions, which do not occur in the usual PERT application.
Wherever an OR is encountered, the earliest input t ,
rather than the latest is used for critical path computations.

There is a further use to which this technique can be put.
Suppose we have computed an output T , over the critical
path based on the assumption that all input signals to
the net arrive simultaneously. Now we wish to know
how much slack can be allowed between certain of these
inputs.

The timing slack procedure is as follows.

(1) Using the over-all critical-path output T , as a starting
point, subtract the summation of the t , for all the stages
in the longest path back to the input under investigation.
Do the same for the variances

(2) If the path taken is not the critical path, there will
be a finite, positive I, left after performing the subtraction.
This represents the maximum average slack I, which can
be tolerated without affecting the output time by causing
this path to become critical.

(3) Assuming the input arrives at the latest time found
in (2), the a’ left after performing the subtraction is the
maximum that can be tolerated without affecting the out-
put Pr calculation.

It is apparent that the a’ resulting from (3) can be
positive, zero, or negative. One would normally expect it
to be positive if similar circuits are used in all paths, but
this is not guaranteed. So the question arises: “What is
the meaning of positive slack coupled with negative
variance?”

To answer this question, let us consider two cases:

Case No. 1 : t i , = t., where ti, is defined as the input
time to the path under investigation.

We can compute a Z’ for the path, assuming some
arbitrary input variance, a;,. If (Z‘)z is the summation of
variances along the path, Z’ = (To* - T,)/Z‘. This will
yield a Pr’ < Pr, where Pr’ is the probability of achieving
an output by To, along the path. Note that Pr’ < Pr
even if a:, = 0.

Case No. 2 : Pr’ = Pr. This implies Z’ = 2. We wish
to solve for the t i , required to satisfy the condition.
If Tl is the mean output time required along the path
under investigation in order for Pr’ = Pr, then Z’ = Z =

(To* - T:)/x’.
Solving, then Ti = T o , - Z‘Z.

Since ti, = T , - (T , - I,), we find

SENSE AMPLIFIER
OUTPUT

TIME IN NSEC

Figure 1 Timing chart for the read cycle.

ti , = To, - T . + t , - Z‘Z.

The ti, limits are - < fin < t,.
If ti, is found to be negative, and if Pr’ = Pr is a rigid

requirement, then a new effective Critical Path might have
to be defined.

Example in ferrite core system design

It will be useful to go through an example of the applica-
tion of this technique. The example that we selected is
an actual case which occurred in the design of a 2-ps
coincident-current ferrite-core storage system.

We desired to know if a 520-ns access time could be
achieved. Absolute worst-case calculations indicated that
it could not. However, we felt that this was not reasonable
because of the large number of circuit elements.

Figure 1 shows the timing chart for the read cycle.
The fixed delay of 300 ns between the 10% point of the
Y current and the strobe pulse is determined empirically. It
depends on a number of parameters that are beyond
the scope of this paper. It will suffice to say that it is
fixed by the averaged core-array characteristics. A timing
adjustment is provided to bring the strobe pulse precisely
to 300 ns. The timing points to be determined then are
the X and Y drive current turn-on times relative to the
storage-select pulse. We also wish to know the amount
of stagger between the two drive pulses.

In calculating the delays we refer to the X-dimension
timing logic in Fig. 2, where each block contains values
for a, m, b, t , , and a’. The pre-driver delay figures are
for the emitter-driven case where the base signal is “solid”
well before the emitter. The driver delay figures are for 137

USING PERT FOR LOGIC DESIGN

AND-OR-INVERT
10-25-39

24.8
23.4

COLLECTOR OR -
READ CYCLE", CURRENT SOURCE AND INVERT

5-15-23 t. = 53.5 27--38-54

14.6
19.8 9.0

WINDINGS 0 2 = 34.4 38.9

STORAGE SELECT-

-
te = 34.8

DRIVER TIMING c DRIVER e PRE-DRIVER
a ~ = 14,6 L

T2

45.4 t. = 39.9 5.1 20.2

T4 T3 - 27.5-44-68.8 e 4.2-4.9-5.9 14.2-19.9-28.4

5.6 b 0.08 c - - g2 = 14.68
- b 47.4

I

Figure 2 X-dimension timing logic.

NOTE: CRITICAL PATH IS HEAVY OUTLINE

Figure 3 Y-dimension timing logic.
10-27-42

KEY I N; I a-m-b

ADDRESS
STORAGE

REGISTER
(SARI

138

26.7
28.4

\

AND-OR-INVERT CURRENT SOURCE t,= 112
10-25-39

19.8
38.9

t,= 150.9 27-38-54 u2= 117.4

&= 137.2
iL

24 8
23.4

-

e PRE-DRIVER c DRIVER i y ;; 1 14.2-19.9-28.4
T3 T4

4.2-4.9-5.9 27,5-44"68,8 e Y-DIMENSION c
CORE ARRAY t.= 182.7

5.1 WINDINGS u2=170.5
45.4 - b 47.4 - b 0.08 c

NOTE: CRITICAL PATH IS HEAVY OUTLINE FI a-m-b

T. I. KIRKPATRICK AND N. R. CLARK

PRE-DRIVER

- """_"""
,'

I

I T l M E IN NSEC -
Figure 4 Read driver circuit and its delay.

the base-driven case, where the collector is conditioned
well before the base input delay could allow collector
current flow. Refer to Fig. 4, which shows the circuitry and
timing in a little more detail. As is shown, the current
source conditions the collector of T4 before the base delay
period is over. Therefore, the critical path is not through
the current source. It should be noted that this is a special
case not encountered in pure logic networks, since the base
input delay is very much greater than the collector input
delay. For pure logic networks, Rule 3 on page 145 would
hold.

Computing over-all T,, and 2; along the critical path

T,, = 14.6 + 20.2 + 5 .1 + 45.4 = 85 .3 ns

22 = 9.0 + 5.6 + 0.1 + 47.4 = 62.1.

Figure 3 shows the Y-dimension timing logic. Again
computing T,, and 2: along the critical path,

T, , = 14.6 + 15.2 + 30.7 + 26.7 + 24.8 + 20.2

+ 5.1 f 45.4 = 182.7 ns

2: = 9.0 + 12.3 + 44.3 + 28.4 + 23.4 + 5.6

+ 0.1 + 47.4 = 170.5.

Calculating the probability of achieving an output by

520 ns, we first must find the 2 factor

Z = (Tad - Tev)/dZ.
In this case, To, = 520 - 300 = 220 ns, so

Z =
220 - 182.7 37.3 -__ - -

VGG 1 3 . 1
- 2.85.

The probability (Pr) that the output will occur by
520 ns is then read off in Table 1:

Pr = 0.9978 for 2 = 2.85

To interpret this result, the following points should be
considered:

(1) The system is primarily composed of switching
elements and therefore is not prone to random noise
effects.

(2) The input data should be applicable to the actual
operating conditions and should include any systematic
effects caused by environment, as well as random tolerance
variations.

Under these conditions, the result says that an average
of 22 units per 10,000 manufactured will fail to meet the
access-time requirement. It does not say that a given
unit will fail 22 times per 10,000 accesses, since condition
(1) above precludes this type of randomness. The only time
a core memory exhibits random errors is when it is close
to the limit of its operating region, where random noise
can momentarily push the operating point outside the
limit.

Next we must calculate the stagger between the X and
Y pulses. We may treat the numbers T, , and T,, as random
variables. The stagger then would be defined as T e a :

T , , = T,, - T,, = 182.7 - 85.3 = 97.4 ns.

We need to know the probability that the stagger will
be greater than 80 ns. To do this, we must consider the
properties of a sum of random variables.

If the sum Sn is defined as

sn =x X1 + X, + X , + X n ,
where X , . . . X, are random variables, then the variance
(u') of S , is given by Ref. 3:

Var (s,) = a: + 2 cov (xi, xk).

n

k = l i,k

In our case, the random variables are independent,
therefore

cov (xi, X,) = 0

and

139

USING PERT FOR LOGIC DESIGN

Using this result, we calculate for the variance of the
stagger

2f = 22 + 2: = 62.1 + 170.5 = 232.6.

To find the probability that the stagger will be less
than 80 ns, we define To. = 80 and T , = T., and compute

This yields Pr, = 0.1251. Then the probability that
the stagger will exceed 80 ns is given by:

1 - Pr, = 0.8749.

Next we wish to know how much slack we can allow
between the storage-select pulse and the address lines.
Referring to Fig. 2, we calculate the t , and a’ at the
emitter input to the predriver (labeled “e” on the block)

t . = 14.6 + 20.2 = 34.8

uz = 9.0 + 5.6 = 14.6.

Now proceeding as in Step 1 of the timing-slack
procedure,

tesAB = 34.8 - 14.6 = 20.2 ns

= 14.6 - 9.0 = 5.6.

This means that as long as the address arrives on the
average by 20.2 ns following storage select with variance
not exceeding 5.6, the system performance will not be
degraded.

Conclusion

A simple, formalized technique has been demonstrated
for studying delays through logic networks. It yields
quantitative estimates for :

(1) Probability that an output will occur by a given time
(2) Critical paths
(3) Timing slack allowable between various inputs.

The advantages over previous methods are:

(1) It is more realistic than the worst-case criterion.
(2) It effectively allows a nominal design to be used, and

puts a confidence factor on that design.

The primary limitations are:

(1) Availability of the three necessary delay figures.
(2) Assumptions made about the validity of the beta

and normal distributions.
(3) The bias resulting from the simplifying assumption

made in the formulation of the PERT procedure
(see Ref. 5, p. 654) which renders it a practical
method to use.

140 The first of these can be alleviated by application of

T. I. KIRKPATRICK AND N. R. CLARK

engineering judgment and experience with the particular
class of logic circuits being used. The second and third
merit further discussion.

With appropriate choice of constants, the beta dis-
tribution:

f(t) = K(t - a)“(b - t) ’ ,

can closely approach the normal distribution.
In addition, a skew may be introduced by choosing

CY # y. The original PERT developers assumed that random
delay processes could be adequately described by the
beta distribution. In the equation t, = (a f 4m + b)/6,
choosing (m - a) # (b - m) is equivalent to choosing
a # y. The central limit theorem was used to justify use
of the normal distribution to approximate the output of
a network of beta distributions.

The third limitation listed above can be illustrated as
follows: Consider the case of a two-input AND, shown in
Fig. 5.

We wish to know t , , , given t c A and t e B . The Cumulative
Probability is the probability that the signal has arrived
by time t . It is the integral of the density (beta distribution).
Since both inputs must have occurred before the circuit
will start to generate an output, we must multiply the
two input distributions. Figure 5 shows two cases, one
where fA(t) = le(?), and the other where fa(?) # fB(t) .
It is apparent that teetf (the t , of the effective input dis-
tribution) is later than either ten or t e B . The worst case is
where f A (t) = f B (t) .

Now consider the OR function shown in Fig. 6. Since
C = A + By the circuit will start to generate an output
as soon as A or B or both have arrived. We may calculate
the effective input distribution by observing the Boolean
equality A + B = AB + AB + AB. There are three
mutually exclusive ways in which the INCLUSIVE OR can
be realized. Their probability distributions are

P (A @ = fA(t)[l - f B (f) l

P(AB) = f B (?) [l -
P (A B) = f ~ (t) f ~ (f) -

Adding, we get

P (A + B) = !A(?) - f A (f) f B (f) + fB(?)
- f A (t) f B (t) + f A (t) f B (t)

= / A (?) + f B (t) - f A (f) f B (t) .

It is seen that tsefr is earlier than either t , , or t eB. Again,
the amount of bias depends on the overlap of fa(?) and

In the original PERT application, the assumption was
made that the input distribution with the latest t, pre-
dominated at each multiple-input node. Since all the
activities in the PERT chart involved AND functions, the

fB(t)*

g 1,~"""""""""""-
i - m <
0

CL

m

Figure 5 Two cases for Cumulative Probability, two-input
AND circuit.

answers obtained were systematically biased early (Ref. 5,
p. 654). Interestingly enough, the great bulk of articles,
papers, and textbooks which have since been written
about PERT appear to ignore this point entirely.

In applying the PERT procedure to logic networks, it
would appear the assumptions concerning the shape of
the delay distributions would be as valid as in the original
application. The systematic t , bias should actually be
less, since usually there are about as many OR as there are
AND functions.

Further development

Thus far, only limited use has been made of this technique.
In the future, application to large computing systems
might yield considerable insight into system performance,
critical timing situations, and areas in which requirements
could be relaxed without performance degradation. All
this is achieved without imposing any cumbersome

Figure 6 Two cases for Cumulative Probability, EXCLUSIVE
OR circuit.

procedures on the designer. In fact, it could reduce the
work required of him if an automated PERT system is
available.

References

1. L. P. Hartung and J. E. Morgan, "PERT/PEP-A Dynamic
Project Control Method," IBM FSD Space Guidance
Center, Report 61-816-2005, Owego, New York, 1961.

2. N. C. Loeber, "PERT for Small Projects," Machine Design
134-139 (Oct. 25, 1962).

3. William Feller, An Introduction to Probability Theory and
10 Applications, Vol. I, Wiley, New York, 1957.

4. Jordon Kadet and Bruce H. Frank, "PERT for the Engineer,"
IEEE Spectrum, 131-137 (Nov. 1964).

5. D. G. Malcolm, J. H. Roseboom, C. E. Clark, and W.
Fazar, "Application of a Technique for Research and
Development Program Evaluation," J. Operations Research
SOC. Amer. 7, 646-669 (1959).

Received July 26, 1965.

141

USING PERT FOR LOGIC DESIGN

