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Process Variations in Nanometer Manufacturing

= Random fluctuations in process conditions =» changes physical
properties of parameters on a chip

— What you design # what you get
= Huge impact on design optimization and signoff
— Timing analysis (timing yield) affected by 20% [Orshansky, DAC02]
— Leakage power analysis (power yield) affected by 25% [Rao, DAC04]

— Circuit tuning: 20% area difference, 17% power difference
[Choi, DAC04], [Mani DAC05]

Oxide thickness Random dopants



Process Variation Classification

= Systematic vs random variation

— Systematic variation has a clear trend/pattern (deterministic variation [Nassif,
ISQED00])

» Possible to correct (e.g., OPC, dummy fill)
— Random variation is a stochastic phenomenon without clear patterns
- Statistical nature - statistical treatment of design
= Inter-die vs intra-die variation
— Inter-die variation: same devices at different dies are manufactured differently

— Intra-die (spatial) variation: same devices at different locations of the same die
are manufactured differently
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Spatial Variation Exhibits Spatial Correlation
= Correlation of device parameters depends on spatial locations
— The closer devices - the higher probability they are similar

= Impact of spatial correlation
— Considering vs not considering > 30% difference in timing [Chang ICCAD03]

— Spatial variation is very important: 40~65% of total variation [Nassif, ISQED00]
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A Missing Link

= Previous statistical analysis/optimization work modeled spatial correlation as
a correlation matrix known a priori

— [Chang ICCAD 03, Su LPED 03, Rao DAC04, Choi DAC 04, Zhang DATE05, Mani DAC05, Guthaus ICCAD 05]
= Process variation has to be characterized from silicon measurement

— Measurement has inevitable noises

— Measured correlation matrix may not be valid (positive semidefinite)
= Missing link: technique to extract a valid spatial correlation model

— Correlate with silicon measurement

— Easy to use for both analysis and design optimization
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Modeling of Process Variation

F=h,+ hl(ZDZD,Sys) T +h, (ZDZD,rnd )+h, (ZWID,rnd )+ X,
M e —

F = f, + F
= f,is the mean value with the systematic variation considered
— hy: nominal value without process variation
— Zpopeys: die-to-die systematic variation (e.g., depend on locations at wafers)
= - within-die systematic variation (e.g., depend on layout patterns at dies)

— Extracted by averaging measurements across many chips
[Orshansky TCADO2, Cain SPIEQ3]

= F. models the random variation with zero mean
— Zpopmg inter-chip random variation> X,
— Zyipmg Within-chip spatial variation> X, with spatial correlation p(]
— X.: Residual uncorrelated random variation

F=X +X,+X.

= How to extract F, =» focus of this work
— Simply averaging across dies will not work
7 — Assume variation is Gaussian [Le DAC04]



Process Variation Characterization via Correlation Matrix

= Characterized by variance of individual component + a positive semidefinite
spatial correlation matrix for M points of interests

— In practice, superpose fixed grids on a chip and assume no spatial variation
within a grid

= Require a technique to extract a valid spatial correlation matrix
— Useful as most existing SSTA approaches assumed such a valid matrix

= But correlation matrix based on grids may be still too complex
— Spatial resolution is limited—> points can’t be too close (accuracy)
— Measurement is expensive —>can’t afford measurement for all points
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Process Variation Characterization via Correlation Function

= A more flexible model is through a correlation function
— If variation follows a homogeneous and isotropic random (HIR) field -
spatial correlation described by a valid correlation function p(v)

* Dependent on their distance only
 Independent of directions and absolute locations
- Correlation matrices generated from p(v) are always positive semidefinite

— Suitable for a matured manufacturing process
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Overall Process Correlation without Measurement Noise

Overall process correlation COV( F) m
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Die-scale Silicon Measurement [Doh et al., SISPAD 05]
Samsung 130nm CMOS technology

4x5 test modules, with each module containing
— 40 patterns of ring oscillators
— 16 patterns of NMOS/PMOS

Model spatial correlation as a first-order decreasing polynomial
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Wafer-scale Silicon Measurement [Friedberg et al., ISQED 05]

= UC Berkeley Micro-fabrication Lab’s 130nm
technology

= 23 die/wafer, 308 module/die, 3 patterns/modules |

Correlat

— Die size: 28x22mm?

= Average measurements for critical dimension

= Model spatial correlation as a decreasing PWL o s w0 15 20 25
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Limitations of Previous Work
= Both modeled spatial correlation as monotonically decreasing functions (i.e.,
first-order polynomial or PWL)
— Devices close by are more likely correlated than those far away

= But not all monotonically decreasing functions are valid

— For example, p(v)=-v2+1 is monotonically decreasing on [0,2!/2]

p(V) A3

d3
d

0
Vv Al d1 Ao

0 1
— When d1=31/32, d2=1/2, d3=1/2, it results in a non-positive definite matrix

(1 o(d,) p(d3)\ (1 0.0615 0.75) Smallest eigen-
value is -0.0303
Q=| p(d,) 1 o(d,) |=|0.0615 1 0.75

13



Theoretic Foundation from Random Field Theory

= Theorem: a necessary and sufficient condition for the function p(v)
to be a valid spatial correlation function [Yaglom, 1957]

— For a HIR field, p(v) is valid iff it can be represented in the form of

pW) = [ Jo(@)d (@ (W)

- where J(t) is the Bessel function of order zero
- ®(mw) is a real nondecreasing function such that for some non-negative p

J‘OO d(@w)) _
0 (1+w?)P

— For example:
O(w) =1—1+wW* /b*)"° ==—=> p(v) =exp(-bv)

— We cannot show whether decreasing polynomial or PWL functions
belong to this valid function category - but there are many that we

can
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= Motivations
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— Robust = immune to measurement noise
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Robust Extraction of Spatial Correlation Function

= Given: noisy measurement data for the parameter of interest with

possible inconsistency

= Extract: global variance 62, spatial variance o¢?, random variance
or?, and spatial correlation function p(v)

= Such that: o052, 64?, ogx? capture the underlying variation model,
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and p(v) is always valid

M measurement sites

TR

N sample chips

fi,i measurement at Global variance
chip k and location i _ _

Spatial variance

Random variance

,O(V) Valid spatial correlation function

How to design test circuits and place them are not addressed in this work




Extraction Individual Variation Components

= Variance of the overall chip variation

1 (i Sk fri)? Unbiased Sample Vari
2 o 2 __ 2 ) )1 ple Varilance
O ~0f — MN — 1(;§fk,z o MN ) [Hogg and Craig, 95]

= Variance of the global variation

1 2 (Zz fk,z‘>2
O )

2 .o .2__ 2 2
O'GNO'g—O'f—O'fc

2
O'f — M
= Spatial covariance

2k Jhilky 2k Shi 2k Jiy

cov(F;, F;) = cov(v) ~ N1 NN - 1)

= We obtain the product of spatial variance o¢? and spatial correlation
function p(v)

2 2 2
0§ - p(v) = cov(F;, F}) — og = cov(v) — o
— Need to separately extract o2 and p(v)

— p(v) has to be a valid spatial correlation function
17



Robust Extraction of Spatial Correlation

= Solved by forming a constrained non-linear optimization problem

min :
a2,p(v)

o; - p(v)—cov(v)+o; H

— Difficult to solve - impossible to enumerate all possible valid functions

= [n practice, we can narrow p(v) down to a subset of functions
— Versatile enough for the purpose of modeling

= One such a function family is given by [Bras and Iturbe, 1985]

p(V) = Z(b—zvj K, (b-v)-T(s-1)~

— K'is the modified Bessel function of the second kind
— I' is the gamma function
— Real numbers b and s are two parameters for the function family

= More tractable 2 enumerate all possible values for b and s
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Robust Extraction of Spatial Correlation

= Reformulate another constrained non-linear optimization problem
_ -2

s—1
min : 207 (bzvj Ks_l(b-v)-l“(s—l)‘l—cov(v)+cfg2

1 a—,
Different choices of b 0.8 '.
and s = different shapes \J
of the function »each 0.6 b=1 b=0.1

function is a valid spatial (““‘

correlation function 0.4r s 24.6.8,10

0.2

b=10
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Experimental Setup based on Monte Carlo Model

= Monte Carlo model = different variation amount (inter-chip vs
spatial vs random) + different measurement noise levels

— Easy to model various variation scenarios

— Impossible to obtain from real measurement

= Confidence in applying our technique to real wafer data
1
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Results on Extraction Accuracy

21

Chip # Site # Noise level Error(c,) Error(oc,) Error(p(v))

2000 60 10% 0.40% -1.90% 2.00%
50% 0.30% -2.80% 2.70%

100% 0.30% -2.60% 3.70%

1000 60 10% 7.50% 1.20% 1.00%
50% 7.20% 1.00% 1.00%

100% 6.90% 1.40% 1.00%

50 10% 6.50% 0.80% 2.80%

50% 5.70% -0.40% 3.00%

100% 5.10% -3.00% 3.50%

40 10% 8.60% -4.10% 6.50%

50% 8.70% -3.90% 7.00%

100% 8.90% -2.30% 8.40%

More measurement data (Chip# x site #) =» more accurate extraction
— More expensive
— Guidance in choosing minimum measurements with desired confidence level
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Robust Extraction of Spatial Correlation Matrix

= Glven: noisy measurement data at M number of points on a chip

= Extract: the valid correlation matrix Q that is always positive
semidefinite

= Useful when spatial correlation cannot be modeled as a HIR field
— Spatial correlation function does not exist
— SSTA based on PCA requires Q to be valid for EVD

M measurement sites

1 2 |
_'q A f. . measurement at
g L, ch on' (1 \
R | chip k and location i le
0’ |
0' |
.5 Pu1 0 1)
Q’ |

N sample chips Valid correlation matrix
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Extract Correlation Matrix from Measurement

= Spatial covariance between two locations

2k Shifkg 2k Sk 2k Thy
N -1 N(N — 1)

cov(Fy, Fj) =~

Variance of measurement at each location

1 Ok fr.0)?
0-12?2'%]\[_1(§f]g’7j_ ka, )

Measured spatial correlation

— e e plj

Assemble all p; into one measured spatial correlation matrix A
— But A may not be a valid because of inevitable measurement noise
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Robust Extraction of Correlation Matrix

min: ||A—Q|
Q2
s.t. : 2 € correlation matrizx.

= Find a closest correlation matrix Q to the measured matrix A
= Convex optimization problem [Higham 02, Boyd 05]

= Solved via an alternative projection algorithm [Higham 02]

— Details in the paper

1 0.0615 0.75
ASe = 0, YO@ A=|00615 1 075
for ](3:1,2, 0.75 0.75 1
i’“ — }];k—}% ASk—1 1 0.0734 0.7326
k = Ps(Ry) 0.0734 1 0.7326
ASp = X - Ry, 0.7326 0.7326 1
Y, = Py(Xg)
and | A=

A—Q ||1»=0.0313 — 0.0149
(), | I AL
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Results on Correlation Matrix Extraction

Sites 50 100 150 200
MA) ene -0.83 -1.43 -1.84 -2.38
Y() I 0 0 0 0
IIA-Q|| 2.09 4.35 6.85 9.39
IIA-Q||/]|A]] 5.2% 5.9% 6.6% 7.3%

= Ais the measured spatial correlation matrix

Q Is the extracted spatial correlation matrix

A 1s the smallest eigenvalue of the matrix

= Original matrix A is not positive, as A is negative

Extracted matrix Q is always valid, as A is always positive
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Conclusion and Future Work

= Robust extraction of statistical characteristics of process
parameters is crucial

— In order to achieve the benefits provided by SSTA and robust circuit
optimization

= Developed two novel technigues to robustly extract process
variation from noisy measurements

— Extraction of spatial correlation matrix + spatial correlation function

— Validity is guaranteed with minimum error
= Provided theoretical foundations to support the techniques

= Future work
— Apply this technique to real wafer data

— Use the model for robust mixed signal circuit tuning with consideration
of correlated process variations
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