

Robust Extraction of Spatial Correlation

Jinjun Xiong, Vladimir Zolotov*, Lei He

EE, University of California, Los Angeles IBM T.J. Watson Research Center, Yorktown Heights*

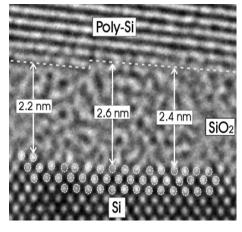
Sponsors: NSF, UC MICRO, Actel

Acknowledgements to Dr. Chandu Visweswariah

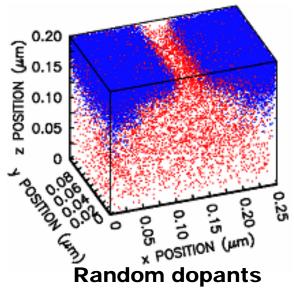
Process Variations in Nanometer Manufacturing

- Random fluctuations in process conditions

 changes physical
 properties of parameters on a chip
 - What you design \neq what you get
- Huge impact on design optimization and signoff
 - Timing analysis (timing yield) affected by 20% [Orshansky, DAC02]
 - Leakage power analysis (power yield) affected by 25% [Rao, DAC04]
 - Circuit tuning: 20% area difference, 17% power difference [Choi, DAC04], [Mani DAC05]



Oxide thickness



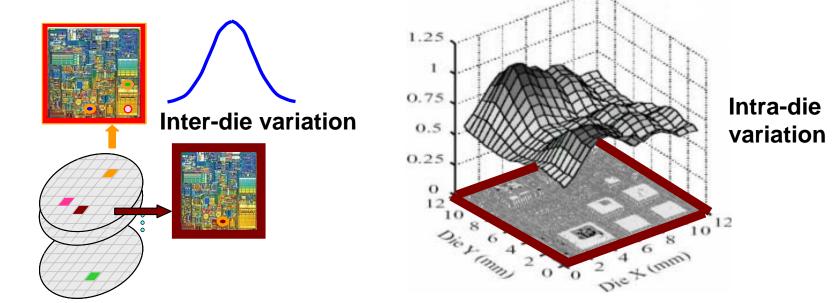
Process Variation Classification

Systematic vs random variation

- Systematic variation has a clear trend/pattern (deterministic variation [Nassif, ISQED00])
 - Possible to correct (e.g., OPC, dummy fill)
- Random variation is a stochastic phenomenon without clear patterns
 - Statistical nature \rightarrow statistical treatment of design

Inter-die vs intra-die variation

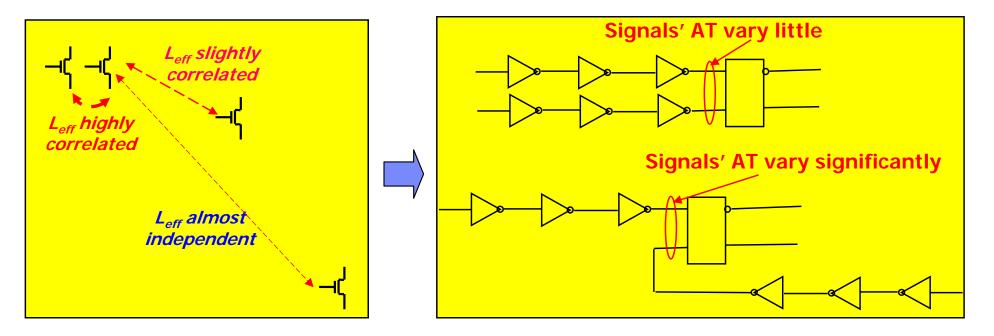
- Inter-die variation: same devices at different dies are manufactured differently
- Intra-die (spatial) variation: same devices at different locations of the same die are manufactured differently



Spatial Variation Exhibits Spatial Correlation

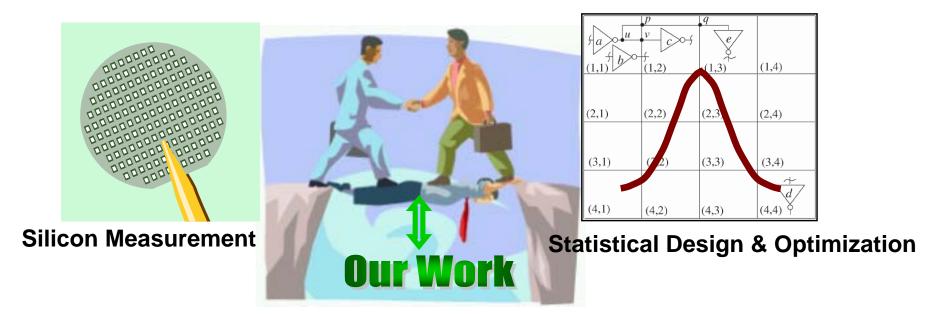
Correlation of device parameters depends on spatial locations

- The closer devices \rightarrow the higher probability they are similar
- Impact of spatial correlation
 - Considering vs not considering \rightarrow 30% difference in timing [Chang ICCAD03]
 - Spatial variation is very important: 40~65% of total variation [Nassif, ISQED00]



A Missing Link

- Previous statistical analysis/optimization work modeled spatial correlation as a correlation matrix known a priori
 - [Chang ICCAD 03, Su LPED 03, Rao DAC04, Choi DAC 04, Zhang DATE05, Mani DAC05, Guthaus ICCAD 05]
- Process variation has to be characterized from silicon measurement
 - Measurement has inevitable noises
 - Measured correlation matrix may not be valid (positive semidefinite)
- Missing link: technique to extract a valid spatial correlation model
 - Correlate with silicon measurement
 - Easy to use for both analysis and design optimization



Agenda

- Motivations
- Process Variation Modeling
- Robust Extraction of Valid Spatial Correlation Function
- Robust Extraction of Valid Spatial Correlation Matrix
- Conclusion

Modeling of Process Variation

$$F = h_0 + \frac{h_1(Z_{D2D,sys})}{F} + \frac{h_3(Z_{WID,sys})}{F} + \frac{h_2(Z_{D2D,rnd})}{F} + \frac{h_4(Z_{WID,rnd})}{F_r} + \frac{K_r}{F_r}$$

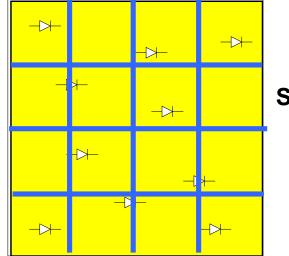
- f₀ is the mean value with the systematic variation considered
 - h₀: nominal value without process variation
 - Z_{D2D,sys}: die-to-die systematic variation (e.g., depend on locations at wafers)
 - Z_{WID,sys}: within-die systematic variation (e.g., depend on layout patterns at dies)
 - Extracted by averaging measurements across many chips
 - [Orshansky TCAD02, Cain SPIE03]
- F_r models the random variation with zero mean
 - $Z_{D2D,rnd}$: inter-chip random variation $\rightarrow X_g$
 - $Z_{WID,rnd}$: within-chip spatial variation $\rightarrow X_s$ with spatial correlation ρ
 - X_r: Residual uncorrelated random variation

$$F_r = X_g + X_s + X_r$$

- How to extract $F_r \rightarrow$ focus of this work
 - Simply averaging across dies will not work
- 7 Assume variation is Gaussian [Le DAC04]

Process Variation Characterization via Correlation Matrix

- Characterized by variance of individual component + a positive semidefinite spatial correlation matrix for M points of interests
 - In practice, superpose fixed grids on a chip and assume no spatial variation within a grid
- Require a technique to extract a valid spatial correlation matrix
 - Useful as most existing SSTA approaches assumed such a valid matrix
- But correlation matrix based on grids may be still too complex
 - Spatial resolution is limited \rightarrow points can't be too close (accuracy)
 - Measurement is expensive \rightarrow can't afford measurement for all points



Overall variance
$$\sigma_F^2 = \sigma_G^2 + \sigma_S^2 + \sigma_R^2$$

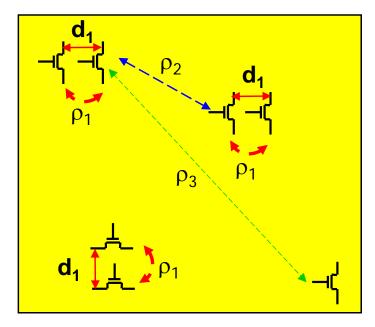
Spatial correlation matrix

$$\Omega = \begin{pmatrix} 1 & \dots & \rho_{1,M} \\ \vdots & \ddots & \vdots \\ \rho_{1,M} & \dots & 1 \end{pmatrix}$$
Global variance
Spatial variance
Random variance

Process Variation Characterization via Correlation Function

A more flexible model is through a correlation function

- If variation follows a homogeneous and isotropic random (HIR) field \rightarrow spatial correlation described by a valid correlation function $\rho(v)$
 - Dependent on their distance only
 - Independent of directions and absolute locations
 - Correlation matrices generated from $\rho(v)$ are always positive semidefinite
- Suitable for a matured manufacturing process



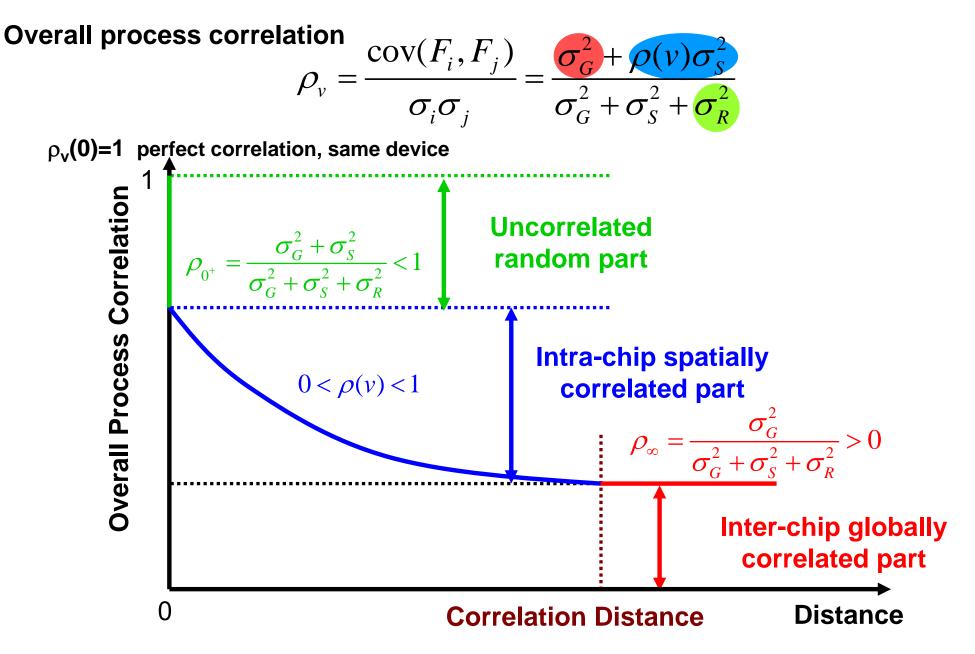
Spatial covariance

$$\operatorname{cov}(F_i, F_j) = \sigma_G^2 + \rho(v)\sigma_S^2$$

Overall process correlation

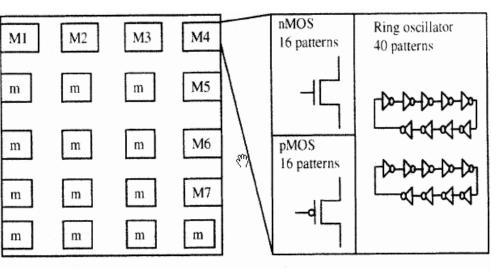
$$\rho_{v} = \frac{\operatorname{cov}(F_{i}, F_{j})}{\sigma_{i}\sigma_{j}} = \frac{\sigma_{G}^{2} + \rho(v)\sigma_{S}^{2}}{\sigma_{G}^{2} + \sigma_{S}^{2} + \sigma_{R}^{2}}$$

Overall Process Correlation without Measurement Noise



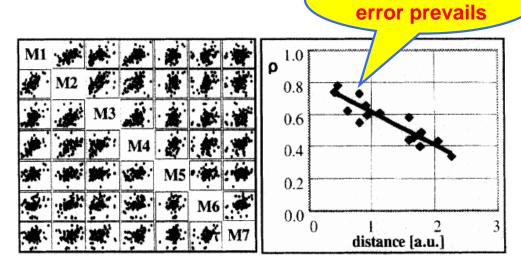
Die-scale Silicon Measurement [Doh et al., SISPAD 05]

- Samsung 130nm CMOS technology
- 4x5 test modules, with each module containing
 - 40 patterns of ring oscillators
 - 16 patterns of NMOS/PMOS
- Model spatial correlation as a first-order decreasing polynomial function



Test chip (20mm x 20mm)

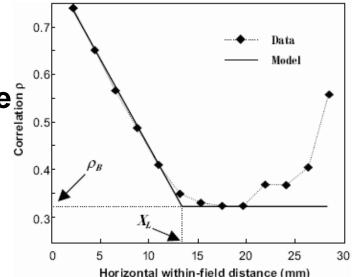
Test module (1200um x 600um)

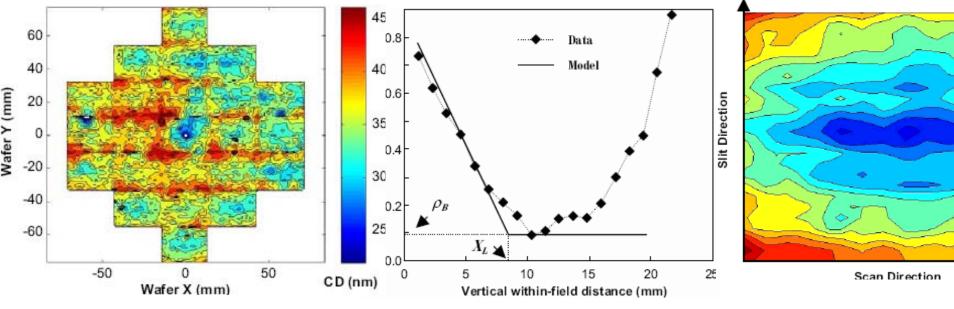


Correlation between measured NMOS saturation current

Wafer-scale Silicon Measurement [Friedberg et al., ISQED 05]

- UC Berkeley Micro-fabrication Lab's 130nm technology
- 23 die/wafer, 308 module/die, 3 patterns/module
 Die size: 28x22mm²
- Average measurements for critical dimension
- Model spatial correlation as a decreasing PWL function





Limitations of Previous Work

- Both modeled spatial correlation as monotonically decreasing functions (i.e., first-order polynomial or PWL)
 - Devices close by are more likely correlated than those far away
- But not all monotonically decreasing functions are valid
 - For example, $\rho(v)$ =-v²+1 is monotonically decreasing on [0,2^{1/2}]

A3 ρ(**v)** A1 d1 - When d1=31/32, d2=1/2, d3=1/2, it results in a non-positive definite matrix $\Omega = \begin{pmatrix} 1 & \rho(d_1) & \rho(d_3) \\ \rho(d_1) & 1 & \rho(d_2) \\ \rho(d_3) & \rho(d_2) & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0.0615 & 0.75 \\ 0.0615 & 1 & 0.75 \\ 0.75 & 0.75 & 1 \end{pmatrix}$ Smallest eigenvalue is -0.0303

Theoretic Foundation from Random Field Theory

- Theorem: a necessary and sufficient condition for the function ρ(v) to be a valid spatial correlation function [Yaglom, 1957]
 - For a HIR field, $\rho(v)$ is valid iff it can be represented in the form of

$$\rho(v) = \int_0^\infty J_0(\omega v) d(\Phi(w))$$

- where $J_0(t)$ is the Bessel function of order zero
- $\Phi(\omega)$ is a real nondecreasing function such that for some non-negative p

$$\int_0^\infty \frac{d(\Phi(w))}{\left(1+w^2\right)^p} < \infty$$

- For example:

$$\Phi(w) = 1 - (1 + w^2 / b^2)^{-0.5} \longrightarrow \rho(v) = \exp(-bv)$$

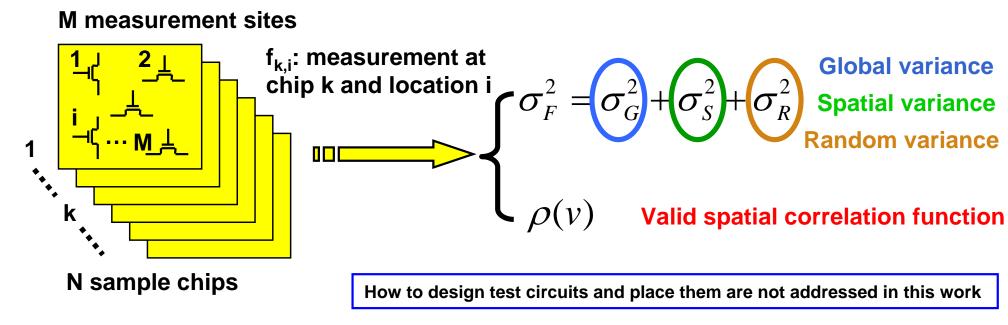
 We cannot show whether decreasing polynomial or PWL functions belong to this valid function category → but there are many that we can

Agenda

- Motivations
- Process Variation Modeling
- Robust Extraction of Valid Spatial Correlation Function
 - Robust = immune to measurement noise
- Robust Extraction of Valid Spatial Correlation Matrix
- Conclusion

Robust Extraction of Spatial Correlation Function

- Given: noisy measurement data for the parameter of interest with possible inconsistency
- Extract: global variance σ_{g}^2 , spatial variance σ_{s}^2 , random variance σ_{R}^2 , and spatial correlation function $\rho(v)$
- Such that: σ_G², σ_S², σ_R² capture the underlying variation model, and ρ(v) is always valid



Extraction Individual Variation Components

Variance of the overall chip variation

$$\sigma_F^2 \approx \sigma_f^2 = \frac{1}{MN - 1} \left(\sum_i \sum_k f_{k,i}^2 - \frac{(\sum_i \sum_k f_{k,i})^2}{MN}\right)$$

Unbiased Sample Variance [Hogg and Craig, 95]

Variance of the global variation

$$\sigma_G^2 \approx \sigma_g^2 = \sigma_f^2 - \sigma_{f_c}^2 = \sigma_f^2 - \frac{1}{M-1} (\sum_i f_{k,i}^2 - \frac{(\sum_i f_{k,i})^2}{M})$$

Spatial covariance

$$cov(F_i, F_j) = cov(v) \approx \frac{\sum_k f_{k,i} f_{k,j}}{N-1} - \frac{\sum_k f_{k,i} \sum_k f_{k,j}}{N(N-1)}$$

 We obtain the product of spatial variance σ_{s²} and spatial correlation function ρ(v)

$$\sigma_S^2 \cdot \rho(v) = cov(F_i, F_j) - \sigma_G^2 \approx cov(v) - \sigma_g^2$$

- Need to separately extract σ_s^2 and $\rho(v)$
- $-\rho(v)$ has to be a valid spatial correlation function

Robust Extraction of Spatial Correlation

Solved by forming a constrained non-linear optimization problem

$$\min_{\sigma_s^2,\rho(v)} \left\| \sigma_s^2 \cdot \rho(v) - \operatorname{cov}(v) + \sigma_g^2 \right\|$$

- Difficult to solve \rightarrow impossible to enumerate all possible valid functions
- In practice, we can narrow ρ(v) down to a subset of functions
 - Versatile enough for the purpose of modeling
- One such a function family is given by [Bras and Iturbe, 1985]

$$\rho(v) = 2\left(\frac{b \cdot v}{2}\right)^{s-1} \cdot K_{s-1}(b \cdot v) \cdot \Gamma(s-1)^{-1}$$

- K is the modified Bessel function of the second kind
- Γ is the gamma function
- Real numbers b and s are two parameters for the function family
- More tractable → enumerate all possible values for b and s

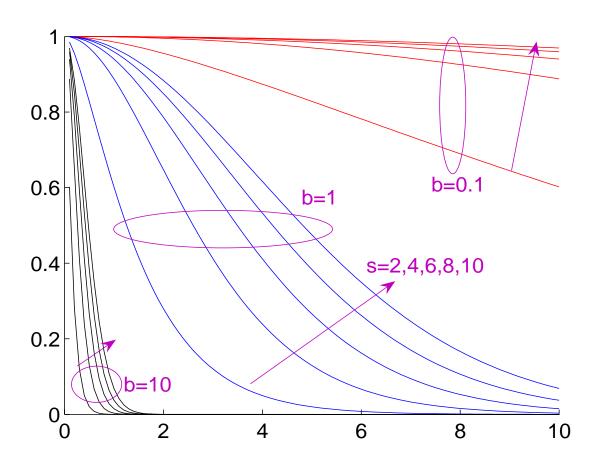
Robust Extraction of Spatial Correlation

Reformulate another constrained non-linear optimization problem

$$\min_{\sigma_s^2,b,s} \sum \left[2\sigma_s^2 \cdot \left(\frac{b \cdot v}{2}\right)^{s-1} \cdot K_{s-1}(b \cdot v) \cdot \Gamma(s-1)^{-1} - \operatorname{cov}(v) + \sigma_g^2 \right]^2$$

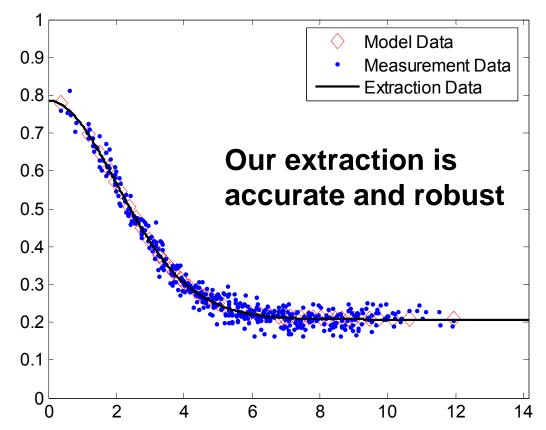
Different choices of b and s \rightarrow different shapes of the function \rightarrow each function is a valid spatial correlation function

s.t.: $\sigma_s^2 \leq \sigma_{fc}^2$



Experimental Setup based on Monte Carlo Model

- Monte Carlo model = different variation amount (inter-chip vs spatial vs random) + different measurement noise levels
 - Easy to model various variation scenarios
 - Impossible to obtain from real measurement
- Confidence in applying our technique to real wafer data



Results on Extraction Accuracy

Chip #	Site #	Noise level	Error(σ _g)	Error(σ _s)	Error(ρ(v))
2000	60	10%	0.40%	-1.90%	2.00%
		50%	0.30%	-2.80%	2.70%
		100%	0.30%	-2.60%	3.70%
1000	60	10%	7.50%	1.20%	1.00%
		50%	7.20%	1.00%	1.00%
		100%	6.90%	1.40%	1.00%
	50	10%	6.50%	0.80%	2.80%
		50%	5.70%	-0.40%	3.00%
		100%	5.10%	-3.00%	3.50%
	40	10%	8.60%	-4.10%	6.50%
		50%	8.70%	-3.90%	7.00%
		100%	8.90%	-2.30%	8.40%

■ More measurement data (Chip# x site #) → more accurate extraction

More expensive

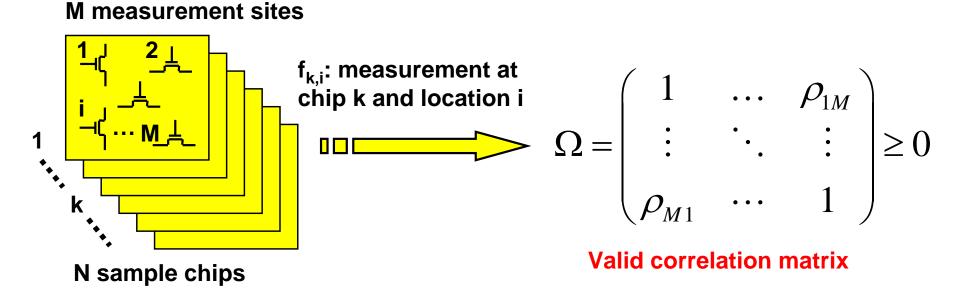
- Guidance in choosing minimum measurements with desired confidence level

Agenda

- Motivations
- Process Variation Modeling
- Robust Extraction of Valid Spatial Correlation Function
- Robust Extraction of Valid Spatial Correlation Matrix
- Conclusion

Robust Extraction of Spatial Correlation Matrix

- Given: noisy measurement data at M number of points on a chip
- Extract: the valid correlation matrix Ω that is always positive semidefinite
- Useful when spatial correlation cannot be modeled as a HIR field
 - Spatial correlation function does not exist
 - SSTA based on PCA requires Ω to be valid for EVD



Extract Correlation Matrix from Measurement

Spatial covariance between two locations

$$cov(F_i, F_j) \approx \frac{\sum_k f_{k,i} f_{k,j}}{N-1} - \frac{\sum_k f_{k,i} \sum_k f_{k,j}}{N(N-1)}$$

Variance of measurement at each location

$$\sigma_{F_i}^2 \approx \frac{1}{N-1} (\sum_k f_{k,i}^2 - \frac{(\sum_k f_{k,i})^2}{N})$$

Measured spatial correlation

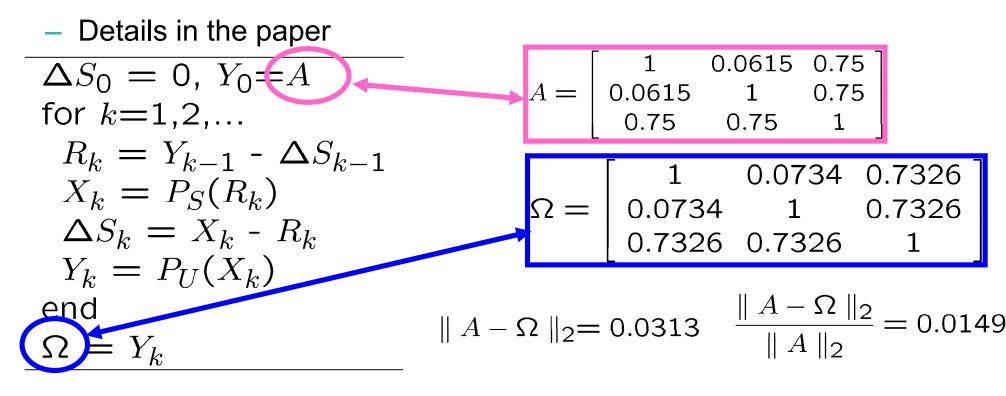
Assemble all p_{ii} into one measured spatial correlation matrix A

- But A may not be a valid because of inevitable measurement noise

Robust Extraction of Correlation Matrix

$$\begin{array}{ll} \min: & \parallel A - \Omega \parallel \ s.t.: & \Omega \in correlation \ matrix. \end{array}$$

- Find a closest correlation matrix Ω to the measured matrix A
- Convex optimization problem [Higham 02, Boyd 05]
- Solved via an alternative projection algorithm [Higham 02]



Results on Correlation Matrix Extraction

Sites	50	100	150	200
$\lambda(\mathbf{A})_{\text{least}}$	-0.83	-1.43	-1.84	-2.38
$\lambda(\Omega)_{\text{least}}$	0	0	0	0
Α- Ω	2.09	4.35	6.85	9.39
Α- Ω / Α	5.2%	5.9%	6.6%	7.3%

- A is the measured spatial correlation matrix
- Ω is the extracted spatial correlation matrix
- λ is the smallest eigenvalue of the matrix
- Original matrix A is not positive, as λ is negative
- Extracted matrix Ω is always valid, as λ is always positive

Conclusion and Future Work

- Robust extraction of statistical characteristics of process parameters is crucial
 - In order to achieve the benefits provided by SSTA and robust circuit optimization
- Developed two novel techniques to robustly extract process variation from noisy measurements
 - Extraction of spatial correlation matrix + spatial correlation function
 - Validity is guaranteed with minimum error

Provided theoretical foundations to support the techniques

- Future work
 - Apply this technique to real wafer data
 - Use the model for robust mixed signal circuit tuning with consideration of correlated process variations

Questions?

