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Process Variations in Nanometer Manufacturing
Random fluctuations in process conditions changes physical 
properties of parameters on a chip
– What you design ≠ what you get

Huge impact on design optimization and signoff
– Timing analysis (timing yield) affected by 20% [Orshansky, DAC02]

– Leakage power analysis (power yield) affected by 25% [Rao, DAC04]

– Circuit tuning: 20% area difference, 17% power difference 
[Choi, DAC04], [Mani DAC05]

Random dopantsOxide thickness
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Process Variation Classification
Systematic vs random variation
– Systematic variation has a clear trend/pattern (deterministic variation [Nassif, 

ISQED00]) 
• Possible to correct (e.g., OPC, dummy fill)

– Random variation is a  stochastic phenomenon without clear patterns
• Statistical nature statistical treatment of design

Inter-die vs intra-die variation
– Inter-die variation: same devices at different dies are manufactured differently
– Intra-die (spatial) variation: same devices at different locations of the same die 

are manufactured differently

Inter-die variation Intra-die 
variation



4

Spatial Variation Exhibits Spatial Correlation
Correlation of device parameters depends on spatial locations
– The closer devices the higher probability they are similar

Impact of spatial correlation
– Considering vs not considering 30% difference in timing [Chang ICCAD03]

– Spatial variation is very important: 40~65% of total variation [Nassif, ISQED00]

Leff highly 
correlated

Leff almost 
independent

Leff slightly 
correlated

Signals’ AT vary little

Signals’ AT vary significantly
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A Missing Link
Previous statistical analysis/optimization work modeled spatial correlation as 
a correlation matrix known a priori
– [Chang ICCAD 03, Su LPED 03, Rao DAC04, Choi DAC 04, Zhang DATE05, Mani DAC05, Guthaus ICCAD 05]

Process variation has to be characterized from silicon measurement
– Measurement has inevitable noises
– Measured correlation matrix may not be valid (positive semidefinite)

Missing link: technique to extract a valid spatial correlation model
– Correlate with silicon measurement
– Easy to use for both analysis and design optimization

Silicon Measurement Statistical Design & Optimization
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Modeling of Process Variation

0 rF f F= +
0 1 2 , 3 , 2 2 , 4 ,( ) ( ) ( ) ( )D D sys WID sys D D rnd WID rnd rF h h Z h Z h Z h Z X= + + + + +

f0 is the mean value with the systematic variation considered
– h0: nominal value without process variation
– ZD2D,sys: die-to-die systematic variation (e.g., depend on locations at wafers)
– ZWID,sys: within-die systematic variation (e.g., depend on layout patterns at dies)
– Extracted by averaging measurements across many chips

• [Orshansky TCAD02, Cain SPIE03]

Fr models the random variation with zero mean
– ZD2D,rnd: inter-chip random variation Xg

– ZWID,rnd: within-chip spatial variation Xs with spatial correlation ρ�
– Xr: Residual uncorrelated random variation

How to extract Fr focus of this work
– Simply averaging across dies will not work
– Assume variation is Gaussian [Le DAC04]
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Process Variation Characterization via Correlation Matrix
Characterized by variance of individual component + a positive semidefinite 
spatial correlation matrix for M points of interests
– In practice, superpose fixed grids on a chip and assume no spatial variation 

within a grid

Require a technique to extract a valid spatial correlation matrix
– Useful as most existing SSTA approaches assumed such a valid matrix

But correlation matrix based on grids may be still too complex
– Spatial resolution is limited points can’t be too close (accuracy)
– Measurement is expensive can’t afford measurement for all points
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Process Variation Characterization via Correlation Function
A more flexible model is through a correlation function
– If variation follows a homogeneous and isotropic random (HIR) field 

spatial correlation described by a valid correlation function ρ(v) 
• Dependent on their distance only
• Independent of directions and absolute locations 
• Correlation matrices generated from ρ(v) are always positive semidefinite

– Suitable for a matured manufacturing process

2 2cov( , ) ( )i j G SF F vσ ρ σ= +
Spatial  covariance
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Overall Process Correlation without Measurement Noise
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Die-scale Silicon Measurement [Doh et al., SISPAD 05]

Samsung 130nm CMOS technology
4x5 test modules, with each module containing
– 40 patterns of ring oscillators
– 16 patterns of NMOS/PMOS

Model spatial correlation as a first-order decreasing polynomial 
function

Correlation between measured NMOS saturation current

Measurement 
error prevails
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Wafer-scale Silicon Measurement [Friedberg et al., ISQED 05]

UC Berkeley Micro-fabrication Lab’s 130nm 
technology

23 die/wafer, 308 module/die, 3 patterns/module
– Die size: 28x22mm2

Average measurements for critical dimension 

Model spatial correlation as a decreasing PWL 
function
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Limitations of Previous Work
Both modeled spatial correlation as monotonically decreasing functions (i.e., 
first-order polynomial or PWL) 
– Devices close by are more likely correlated than those far away

But not all monotonically decreasing functions are valid 
– For example, ρ(v)=-v2+1 is monotonically decreasing on [0,21/2]

– When d1=31/32, d2=1/2, d3=1/2,  it results in a non-positive definite matrix
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Theoretic Foundation from Random Field Theory
Theorem: a necessary and sufficient condition for the function ρ(v) 
to be a valid spatial correlation function [Yaglom, 1957]

– For a HIR field, ρ(v) is valid iff it can be represented in the form of

• where J0(t) is the Bessel function of order zero
• Φ(ω) is a real nondecreasing function such that for some non-negative p

– For example:

– We cannot show whether decreasing polynomial or PWL functions 
belong to this valid function category but there are many that we 
can
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Robust Extraction of Spatial Correlation Function
Given: noisy measurement data for the parameter of interest with 
possible inconsistency

Extract: global variance σG
2, spatial variance σS

2, random variance 
σR

2, and spatial correlation function ρ(v) 

Such that: σG
2, σS

2, σR
2 capture the underlying variation model, 

and ρ(v) is always valid

N sample chips

M measurement sites

1

1

M

2 2 2 2
F G S Rσ σ σ σ= + +

Global variance
Spatial variance

Random variance

( )vρ Valid spatial correlation function

2

…

fk,i: measurement at 
chip k and location i 

i

k

How to design test circuits and place them are not addressed in this work 
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Variance of the overall chip variation

Variance of the global variation

Spatial covariance

We obtain the product of spatial variance σS
2 and spatial correlation 

function ρ(v) 

– Need to separately extract σS
2 and ρ(v) 

– ρ(v) has to be a valid spatial correlation function

Extraction Individual Variation Components

Unbiased Sample Variance
[Hogg and Craig, 95]
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Robust Extraction of Spatial Correlation
Solved by forming a constrained non-linear optimization problem

– Difficult to solve impossible to enumerate all possible valid functions

In practice, we can narrow ρ(v) down to a subset of functions
– Versatile enough for the purpose of modeling

One such a function family is given by [Bras and Iturbe, 1985]

– K is the modified Bessel function of the second kind
– Γ is the gamma function
– Real numbers b and s are two parameters for the function family

More tractable enumerate all possible values for b and s
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Robust Extraction of Spatial Correlation
Reformulate another constrained non-linear optimization problem

2
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Monte Carlo model = different variation amount (inter-chip vs
spatial vs random) + different measurement noise levels
– Easy to model various variation scenarios

– Impossible to obtain from real measurement

Confidence in applying our technique to real wafer data

Experimental Setup based on Monte Carlo Model

Our extraction is 
accurate and robust
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Results on Extraction Accuracy

More measurement data (Chip# x site #) more accurate extraction 
– More expensive
– Guidance in choosing minimum measurements with desired confidence level

8.40%-2.30%8.90%100%
7.00%-3.90%8.70%50%
6.50%-4.10%8.60%10%40

3.50%-3.00%5.10%100%
3.00%-0.40%5.70%50%
2.80%0.80%6.50%10%50

1.00%1.40%6.90%100%
1.00%1.00%7.20%50%
1.00%1.20%7.50%10%601000

3.70%-2.60%0.30%100%
2.70%-2.80%0.30%50%
2.00%-1.90%0.40%10%602000

Error(ρ(v))Error(σs)Error(σg)Noise levelSite #Chip #
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Robust Extraction of Spatial Correlation Matrix
Given: noisy measurement data at M number of points on a chip
Extract: the valid correlation matrix Ω that is always positive 
semidefinite
Useful when spatial correlation cannot be modeled as a HIR field
– Spatial correlation function does not exist
– SSTA based on PCA requires Ω to be valid for EVD

N sample chips

M measurement sites
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Valid correlation matrix
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…
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fk,i: measurement at 
chip k and location i 
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Extract Correlation Matrix from Measurement
Spatial covariance between two locations

Variance of measurement at each location   

Measured spatial correlation  

Assemble all ρij into one measured spatial correlation matrix A 
– But A may not be a valid because of inevitable measurement noise

ijA ρ
⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

L L L

L L

L L L
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Robust Extraction of Correlation Matrix

Find a closest correlation matrix Ω to the measured matrix A

Convex optimization problem [Higham 02, Boyd 05]

Solved via an alternative projection algorithm [Higham 02]

– Details in the paper
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Results on Correlation Matrix Extraction

A is the measured spatial correlation matrix

Ω is the extracted spatial correlation matrix

λ is the smallest eigenvalue of the matrix

Original matrix A is not positive, as λ is negative

Extracted matrix Ω is always valid, as λ is always positive

7.3% 6.6% 5.9% 5.2% ||A-Ω||/||A||

9.396.854.352.09||A-Ω||

0000λ(Ω)least

-2.38-1.84-1.43-0.83λ(A)least

20015010050Sites 
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Conclusion and Future Work
Robust extraction of statistical characteristics of process 
parameters is crucial
– In order to achieve the benefits provided by SSTA and robust circuit 

optimization

Developed two novel techniques to robustly extract process 
variation from noisy measurements
– Extraction of spatial correlation matrix + spatial correlation function

– Validity is guaranteed with minimum error

Provided theoretical foundations to support the techniques
Future work
– Apply this technique to real wafer data

– Use the model for robust mixed signal circuit tuning with consideration 
of correlated process variations
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Questions?


