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 Abstract

In this paper we present an automatic, Arnoldi-based

model order reduction of a 3D electro-thermal model for a

novel sensor device. Model order reduction is essential for

achieving quickly evaluable, yet still accurate macromodel

of the device, needed for system-level simulation. We

present below numerical simulation results of the full-

scale finite element model and the compact-reduced order

model, and show how the nonlinearities in the input func-

tion can be treated even with linear reduction algorithm.

 1. Introduction

Presented device is a novel metal oxide low power

microhotplate gas sensor array [1]. In order to simultane-

ously assure a robust design and excellent thermal isola-

tion of the membrane from the surrounding wafer, the

silicon microhotplate platform is supported by glass pillars

emanating from a glass cap above the silicon wafer Fig. 1.

Glass (Pyrex #7740) was chosen for its low thermal con-

ductivity and anodic bondability to silicon.

Designing a microhotplate gas sensor thermal manage-

ment is of crucial importance. Hereby several points have

to be considered, such as the homogenous temperature dis-

tribution over the gas sensitive regions, and the good ther-

mal decoupling between hotplate and silicon rim. The

quality of this thermal decoupling correlates with the

power consumption and in conjunction with the thermal

mass of the hotplate with the heating time. Due to the

glass structure, direct measurements of the temperature

distribution on the sensor platform are not possible. Thus

modelling and simulation are the only way to evaluate

these parameters.

The heat conduction within the hotplate is described

through the following governing equations:

(1)

where is the thermal conductivity, is the specific

heat capacity, is the mass density, is the temperature

distribution, is the heat generation rate (Joule heating is

taken as the dominant heating mechanism), is the spa-

tially varying electric current density vector and is the

specific electric conductivity. Assuming that the heat gen-

eration is uniformly distributed within the heating area

(lumped resistor), and that the system matrices are temper-

ature independent around the working point, the finite ele-

ment based spatial discretization of (1) leads to a large

linear ODEs system of the form:

(2)

where are the global heat conductivity
and heat capacity matrix, are the temper-
ature (state), the load and the output vector respectively
and is the dimension of the system. The elec-
tric power , which is assumed to be completely trans-
formed into the heating power is the input to the system.
As the above number of equations is too high for subse-

quent system-level simulation, model reduction is neces-

sary. In the following we present numerical simulation

results of the finite element model which are in good

agreement with the results of a reduced model. Further-

more, we explain in more details how the resistor’s depen-

dence on temperature was considered. In chapter 2 and 3

the finite element model of the device and the model order

reduction via Arnoldi algorithm explained. Chapter 4

shows in detail how this linear reduction algorithm can be

used for limited nonlinear systems. In chapter 5 and 6 the

results and conclusion are presented.

 2. Finite Element Model

The finite element (FE) model contains the three main

components silicon rim, silicon hotplates and glass struc-

ture as well as the platinum heater and the thermal cou-
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Fig. 1 Micromashined metal oxide gas sensor array; Bot-

tom view (left), top view (right).
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pling between hotplate and silicon rim via the platinum

electrodes and the dielectric passivism layer. The thermal

coupling via the ambient air was considered in the model

too. Fig. 2 shows the FE model without the ambient air.

Numerical simulation result of the temperature distribu-

tion over the chip and on the hotplate are shown in Fig. 3

and Fig. 4.

Main results of the simulations are, that the heater and

the electrodes do not essentially influence the maximal

temperature of the hotplate, but rather its temperature dis-

tribution.

It is also important to mention, that for this device a

dynamic thermal behavior is of special interest when tem-

perature pulsed gas measurement is required. Such mea-

surement has two main advantages: First, more data

information can be received, since measurements are done

at different operation temperatures and second, the energy

consume is lower.

 3. Dynamic Compact Thermal Modeling via
Moment Matching

In the last years many papers have been devoted to the

generation of dynamic compact thermal models. An exten-

sive review can be found in [2]. A large set of approaches

is based on fitting an RC ladder network on the observed

system response using a suitable optimization algorithm

[3]. Such a non-automatic approach requires the designer

to choose the right number and position of the RC ladder

elements without strict guidelines, and to perform a time-

consuming parametrization and simulation of the full-

scale model. Another, more automatic way to proceed, is

to perform mathematical order reduction of the ODE-sys-

tem (2). Into this group belongs, for example a commer-

cially available modal reduction approach [4], based on

neglecting a number of non-relevant eigenvalues. The

main disadvantage of this approach is that there is again no

guideline how to chose the relevant modes. A related

approach that we propose here is a moment matching tech-

nique via Arnoldi algorithm [5], which can be described as

follows.

Goal is to transform the equation system (2) into the simi-

lar system:

(3)

with much smaller dimension . Here can be seen

as a projection of the -dimensional temperature vector to

-dimensional subspace, subjected to some error :

(4)

and is those linear combination of the

reduced states which corresponds to the required states y
in equation (2).

The matrix in (4) is composed from -dimensional

vectors that form a basis for the reduced subspace. When

the subspace is found the whole equation (2) is projected

onto it (by applying (4) and then multiplying (2) from the

left side by ), and this projection process produces a

reduced order system (3) according to the Pade or Pade-

type approximation [6]:

Fig. 2 Finite element model of the gas sensor.

Fig. 3 Temperature distribution over the chip for applied constant
heating power of 340mW.

Fig. 4 Temperature distribution on the hotplate for applied con-
stant heating power of 340mW.
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(5)

It can be shown that the transfer functions of the systems

(2) and (3) when developed into Maclaurin expansion:

(6)

where is called the ith
moment, match the first r moments.

For the large linear systems a transformation matrix

can be effectively computed as an orthogonal basis for the

Krylov subspace of the dimension r.

(7)

with . This matrix is a direct

output of Arnoldi algorithm. Furthermore, in [5] we have

shown, that for the linear (in sense of temperature inde-

pendent system matrices) dynamic thermal models, the

Single-Input-Single-Output setup for the Arnoldi algo-

rithm is sufficient to approximate not only a single output

response but also the transient thermal response in all the

finite element nodes of the device. Hence, for thermal

problems it functions even when E is a unit matrix of the
dimension . Our new software tool mor4ansys [7] con-

structs the equation system (2) directly out of ANSYS

binary element matrix file, and performs Arnoldi algo-

rithm (as described above) to create a low dimensional

system.

 4. Nonlinearities in the Input Function

By designing a heater it is necessary to calculate it’s elec-

trical resistivity . Under the assumption that the electric

power is completely transformed into the heating power

we can set:

(8)

where is applied voltage. Hereby, the heaters resis-

tivity is a function of temperature itself:

(9)

where is resistivity at , and and are the tem-

perature coefficients. For a platinum sensor’s heater it is

enough to assume linear temperature dependence in range

from  to , i. e.  can be neglected.

In order to be able to control heaters resistivity, and so the

temperature of the hotplate, equation (9) must be taken

into account. Hence, a linear equation system (2) changes

into the weak nonlinear system:

(10)

Dependence of the heaters resistivity on temperature and

consequent dependence of the heating power on tempera-

ture are shown in Fig. 5 and Fig. 6.

The main question is now: can we reduce the equation

system (10) by using the same linear Arnoldi, as described

above? The answer is yes [8], because due to the fact, that

the nonlinear input term doesn’t take part in the

model order reduction, it is possible to overtake it into the

reduced system, which will then be of the form:

(11)

or, by applying a projection (4):

(12)

The implementation of (10) and (12) will be discussed in

the next chapter.

 5. Results

5.1 Linear Model

In Fig. 7 and Fig. 8 the transient solution and error

between the full-scale and the reduced model in case of

constant heating power of 340mW are shown. In this case,
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Fig. 5 Heaters resistivity as a function of temperature.

Fig. 6 Heating power as a function of temperature, mea-

sured for the constant input voltage of 14V.
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a purely thermal system was implemented (using heat gen-

eration rate as a load in ANSYS7.0) and reduced. Hence,

the equations (2) and (3) were integrated for

. The frequency responses of the original

model and three reduced order models are shown in Fig. 9.

It testifies a well agreement between the transfer function

of the full-scale and of the reduced model in low-fre-

quency domain, as granted through the development

around  in equation (6).

Lastly, through model order reduction the computation

time was reduced by a factor of 10, including the time

needed for the very reduction of the equation system

Fig. 10.

5.2 Nonlinear Model

In Fig. 11 and Fig. 12 the transient solution and error

between the full-scale and the reduced model in case of

temperature dependant heating power (according to the

Fig. 6) are shown. Also in this case, a purely thermal sys-

tem was implemented (using the nonlinear heat generation

rate as a table load in ANSYS7.0) and reduced. A temper-

ature of the meander was however approximated through a

single node temperature, say , so that the heating

power could be expressed as:

(13)

Hence, the equations (10) and (12) were integrated, by

using those linear combination of reduced states in

(12), which corresponds to .

As expected, the reached steady-state of nonlinear

thermal model differs from the one for linear thermal

model.

5.3 HDL Model

Nonlinearities in the input function can further be

treated within a system level model. Fig. 13 shows a struc-

Fig. 7 Solution of the full 73. 955 order system and of the re-
duced order-50 system in a central hotplate node, for constant
heating power of 340mW.

Fig. 8 Difference between the full-scale and the reduced

solution, corresponding to results in Fig. 7.

Fig. 9 Frequency response.
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Fig. 10 Computational times for a full-scale model (ANSYS)
and the reduced model (MOR) showing a decrease by a factor of
10 (computation done with Ultra SPARC 10).

Fig. 11 Solution of the full 73. 955 order system and of the re-
duced order-50 system in a central hotplate node, for temperature
dependant heating power according to Fig. 6.
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ture of a HDL model for gas sensor. It contains a reduced

order model in a form of an equation system (this is sup-

ported by e. g. SABER simulator) with a back coupled

heaters resistance dependant again on a particular linear

combination of reduced states . Basically, there is no

difference between this implementation and the imple-

mentation in chapter 5.2.

 6. Conclusion

We have shown that by means of model order reduc-

tion via Arnoldi an accurate dynamic compact thermal

model of the microhotplate gas sensor can be generated. It

has been further shown, that this linear reduction algo-

rithm can be well used for limited nonlinear systems, in

case when the nonlinearities appear only within the input

function. For a gas sensor, this the case with temperature

dependence of the heaters resistivity or heating power. The

nonlinearities within the input function can also be treated

during the system level simulation.
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Fig. 12 Difference between the full-scale and the reduced

solution, corresponding to results in Fig. 11.

Fig. 13 HDL model structure containing linear reduced model
and back coupled temperature dependant heater.
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