Infinite resistive lattices
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The resistance between two arbitrary nodes in an infinite square lattice of identical resistors is
calculated. The method is generalized to infinite triangular and hexagonal lattices in two
dimensions, and also to infinite cubic and hypercubic lattices in three and more dimensioremg ©
American Association of Physics Teachers.

[. INTRODUCTION as the double integral representation for the square lattice,
and analogous expressions for uniform and nonuniform lat-

The resistance between two arbitrary nodes in an infinitdices in more than two dimensions.
lattice made of identical resistors is calculated. The method
was introduced by Venezidnand works by superposing the ||. TWO-DIMENSIONAL SQUARE LATTICE
potentials and currents corresponding to two configurations
in each of which only one finite node carries a current from Consider an infinite square lattice formed from equal re-
outside the lattice. The currents in such a uniterminal circuisistors, and letn,p) be the node that is lattice units in the
enjoy the full symmetry of the lattice, whereas the currenthorizontal, and units in the vertical direction from an arbi-
of the diterminal circuit that is actually of interest have lower trarily chosen origin. It is supposed that a current gf A
symmetry. Use of a similar higher symmetry was analo-can enter thén,p) node from a source outside the lattisee
gously made in a recent treatment of the resistance betwedrg. 1).
the vertices of regular polyhedra constructed from identical If the potential at this node is denoted Wy, V, we have,

resistors’ by a combination of Ohm’s and Kirchhoff's laws,
Despite the emphasis on the high symmetry of a unitermi- _ _ _ _

nal lattice, the method proceeds, oddly enough, through the Inp=(Vnp= Vit 1p) + (Vip=Vn-1p) + (Vnp=Vi,ps1)

imposition of an ansatz that does not possess the full sym- +(Vnp—Vnp-1)

metry in a manifest manner. By using complex Fourier trans-

forms we illuminate the method of Venezian and generalize =4Vap~Vir1p~™Vo-1p~ Vapr1~ Vip-1s

it from the Original square lattice in two dimensions to CUbiCWhere, without essential loss of genera"ty, we have taken
and hyperCUbiC lattices in hlgher dimenSionS, as well as t(éach resistor to be of 0. In generaL a current may be
triangular and hexagonal lattices in two dimensions. injected at every node from the outside.

The final result for the resistance between two nodes is We shall seek an integral representation for the potential at
expressed as an integral transform, and it does not seem page node(n,p) in the form
sible to express this as a known higher transcendental func-
tion, like a generalized hypergeometric function, for ex- =fzwdﬂ|:(,3)v (B)
ample. Nevertheless, for specific choices of the lattice, and of " "P L
the nodes, it turns out to be possible to evaluate the integrals.
algebraically, in terms ofr and of the square roots of inte- with
gers. It was within the capacity of Mathematica 3.0 to evalu-  y, (8)=¢llna+iPA, (1)

ate sample results for two-dimensional lattices, yielding ex- . . . -
P S Y 9 yvherea is a function off3 that will be specified shortly. The

representation is énodified Fourier transform: the reason

in Venezian's paper. ; .
Special cases of the results obtained in this paper ha/@" the modulus signs aroundwill soon be clear.

been published before. The resistance between adjacent mesH 0" n=>0, we have

points in the square lattice was derived by AitchiSomhile 4, (B)=Vns10(B)~Vn-10(B)~Vnos1(B)—Vno_1(B)
Bartis' treated adjacent mesh points in more general two- R TR e e P
dimensional lattices. Purcgligives the resistance between — =€"*"PP[4—e '*—el*—e ' —e'F]

diagonally opposednesh points of the square lattice without oinati

proof, while a proof of this result is provided by Lavatélli, =2e PA[2~ cosa—cosp].
who emphasizes how the resistive net can be thought of as\We now requirea to be such that

discrete approximation to a continuous resistive medium. _

Trier’ obtains adoubleintegral representation for the resis- cosa+Cosp=2, 2
tances in the case of the square lattice, together with a tabk that the above combination % vanishes. Similarly, we
of exact results; this work was further evaluated byfind zero for this combination ih<0. Thus for any inte-
Camerorf, who considered carefully the conditions for the rableF(B), 1,,=0, unlessn=0.

existence and uniqueness of Trier's solution. In the presen% For 0<,8<25r, there is no real solution of Ed2), but

work we tacitly obtain uniqueness by requiring that the curere is a complex one, indeed a purely imaginary one
rents at infinity vanish, and this condition accords with Onenamely ' '

of Cameron’s criteria. Finally, the work of Zemaniashould
be noted: he also considers the uniqueness problem, as well a=i log[2—cosB+ \/3—4 cosB+cos B]. 3
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The potential difference between the origin and the node
(n,p) is Vgo— Vyp. This is not quite the resistance between
these two points; it is rather one-half of that resistance. To
see this, imagine for a moment that we injdcA into the
node (n,p) instead of(0,0), allowing it to leave at infinity.
\ The new potential atn,p) will now be what we called/,
/X and the new potential 40,0 will, by symmetry, be what we
(n,p) calledV,,. Evidently the new potential difference between
the origin and(n,p) is just minus the old potential difference.
If we choose to extracl A from the node(n,p) instead of
injecting it, all the potentials will be simply reversed in sign,
so that now the potential difference between the origin and
the node(n,p) is againVyo—V,p, just as it was in the origi-
nal configuration in which the current was injected@0).
Fig. 1. Infinite square lattice in two dimensions. The final step is to exploit the linearity of Ohm'’s law and
superpose all the currents and potentials appertaining to the
configuration in whib 1 A enters af0,0) and that in which
1 A leaves at(n,p). The potential difference in this case is

2m . _ 2[Voo— Vnpl, and that is therefore equal ®,,. Thus
lop=|_ dBF(B)e'PP[4—2e'*—2 cosp] oo e P

I,,, amperes

Consider now the case=0. We find

i (27 dB : .
_ _ pilnlatips
2m - _ Rap 277J'0 sina 17 ® 1 ®)
=2| dBF(B)ePP[cosa—e'" . .

0 BF(Betr cosa ] Although the expressiofb) does not look symmetric under
) interchange oh andp, we know from the symmetry of the
Y ”dBF(B)Sinaeipﬁ lattice that it must be so. A formal proof th&,,=R,, can

0 ' be found in Appendix A.

These currents may be construed as the coefficients of the We may transform Eq(5) into the manifestly real form

Fourier series 1Jw dg

Sl Iy P [
np= OSinH04[1 e "“cospp]. (6)

1 < .
—2i ina= — —ipB
2IF(B)sina 27 p:z_w lope ’ In Table | we give the results of an evaluation of the expres-

. ) sion (6), by means of Mathematica, for all valuesroéindp
and we may choose the coefficients as we like, thereby speQijetween 0 and 5. The program can be found in Appendix B.
fying —2iF (B)sina. Letlgp=5pp, i-€.,100=1 andloy=0  The method and results of this section may be seen as a
if p# 0. This corresponds to the situation in winit A enters  streamlining of the technique introduced in the appendix of
at (0,00 and leaves at infinity, since no currents leave theRef. 1. This is the formalism that readily lends itself to gen-

lattice at any other finite node. With this choice, eralization, as we now proceed to show.
i
FB)= 1 sina’ Ill. THREE DIMENSIONS AND MORE
and so A cubic infinite lattice of unit resistors in three dimensions
i ror dp can be treated in analogous fashion. There are now three
n :_f T gilnle+ipg (4) indices, and the current entering trgpg) node is related to
P 47 Jo sina the potentials by

Table I. Resistanc®,, in infinite square lattice.

p
n 0 1 2 3 4 5
0 0 1 17 24 368 401 1880
= 2—— - — 40— — —_— =
2 2 3 2 3
1 1 2 _i 46 4 807 49 66467 140
2 ™ 27 37 T 2 15
4 1 4 8 1 4 236 97 2236
2 2—— -+ = — S+ - -
2 3 2 37 157 2 157
3 17_ 24 46_4 1 N 4 46 24_ 1 998_
2 7 37 2" 3w 157 57 2 357
368 80 49 236 24 1 352 1 40
4 40— — - - — = — S+ s
37 T 2 157 57 2 1057+ 2 2w
401 1880 6646 97 2236 998 1 40 1126
S —_— = ———140 — s=——8 =+ = —_—
2 3 157 2 157 35 2 2w 3157
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I npq— 6V, pq— Vst 1p.q— Vi 1p.q— Vn,p+ 19— Vn,pf 19 R100= Ro10= Roo1= %1
- Vn’p’q+ 1 Vn,p,qf 1- Rlloz R101: R011: 039507915,
We set R;1,=0.41830531, R,,,=0.46015929,
2 27 _
Vong= f dg [T dyE (B Yvnnd By, @ Ry1,=0.43359881, etc.
0 0 The further generalization to four and more dimensions is
where straightforward. One can simulate a four-dimensional lattice

_ ilnla+ipg+iay by means of an infinite set of three-dimensional lattices, such
Unp(B¥) =€ , that corresponding vertices of the different lattices are linked
with by one ohm wires. In principle, the same can be done in five
or even more dimensions: the fact that we only seem to have

cosa+cospB+cosy=3, 8 three physical spatial dimensions does not limit the dimen-
i.e., a=cos Y3—cosB—cosy). sionality of physically simulable lattices. In ad{1)-
It is easy to prove that, fon#0, dimensional hypercubic lattice, the resistance between the
) ) origin and the g, pl,...,pd) node is
|npq=2f dB | dyF(B,y)elnatirstiay 2r  (2rdBy--dBy
° ° Ropy++py = af f sina
X[3—cosa—cosB—cosy]|=0,
[ “ A i x[l_e'|“|a+'P1ﬁ1+'”+'Pdﬂd], (11
whereas
. where
|0pq=—2iJ'0 d,3 dyF(B,y)sina cospB cosqy. COSa +CO0SBq++--+cosBy=d. (12

As a direction of further generalization, consider the cubic

lattice with different resistances in the three directions: say 1
1 o Q in the x direction, 1A Q in they direction, and 14 (2 in

—2iF(B,y)sina= szm qzx lopg€ PP, the z direction. The current entering tfapg node is now

npq 2(1+ At /“)Vnpq_Vn+l,p,q_vn—l,p,q_ )\Vn,p+1,q

The inverse of this is the double Fourier series

and we chooségy=1 andlq,q=0 unlessp and g both

vanish. This gives “AVnp-147#Vnpar1™ #Vnpg-1s
i and the resistandg, is still given by Eq.(10), but with
F(B,y)=g—=, _
(B.Y)= gZsina a=c0S Y(1+\+u—\ coSB— u COSY).

which can be substituted into E¢?) to yield the potential With A\=1=u we recover the symmetric cubic lattice, while

Vipq- As before, we can compute the resistance corresponde=1 and 4=0 gives the square lattice of the previous sec-

ing to the situation in whiec 1 A enters at the origin and tion. EvidentlyA#1 and u=0 corresponds to a “rectangu-

leaves at the nodépg). It is lar” lattice, i.e., a square lattice with unequal resistances in
the two coordinate directions.

2 Zﬂdﬂd’y " )
Ripg= mj f sing (1 €MTPATL @)y TRIANGULAR LATTICE

We return to two dimensions and consider in this section a
?riangular lattice. The first question is the choice of the co-
ordinate axes. In Fig. 2 we illustrate our convention: one axis
is horizontal, and the other is inclined at 120°, as is indicated

dpdy Inal by a number of coordinate assignments in the figure. Topo-
Rnpa= f fo sinfja |[1 e "“lcospBcosqy].  (10) |ogically, the triangular lattice is equivalent to the square
lattice with one, but not both diagonals connected, as can
This has been integrated numericalsee Appendix B for also be seen in Fig. 2.
the program Some typical results are given below: We again seek a representation

This expression is symmetric under any permutation of th
indices, although the symmetries are not manifesicept
that under exchange @fandq). A manifestly real form is
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Iz I < Iz ia I3 Fig. 3. A=Y transformation.
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©

o .
—4iF(,8)sin§cosE= — Inne ™ M.

2
Vo= [ aBF (BB, 2" 2m

but we now set The choicel ,,= 8, yields

v <ﬁ>=exp[iln—pla i(n+p)B i
p 2 2 | F(B)= galsin(ai2) [Lcos BI2)]"
where g is a real number lying in the intervad,2m), bute 444 hence

will again turn out to be complex. The reason for choosing

this form, rather than Edq1), is that with our convention the N dg
triangular lattice is invariant under a change of signnof "8 o [Sin(a/Z)][COS(,B/Z)]U
—p, but not under a simple change of the sigmoThis can _ o
be readily seen from the second of the diagrams in Fig. 2. The resistance between the poinp) and the origin is

np(B)- (15

We see that the current entering the nd¢dgop) from out-
side is related to the potentials by

Inp=6Vnp=Vir1p~Va-1p= Vap+1=Vap-1
~Vhns1p+1~ Vn-1p-1-
Forn—p>0, we have
6Unp(B) = Un+1p(B) ~Un-1p(B) ~Vnp+1(B) ~vnp-1(B)
“Un+ 1,p+1(:8) - Un—l,p—l(ﬁ)
a—pf

3 a+ B
COS 2 COS 2

—cospf

:Zvnp(ﬂ)

and this vanishes if

a B
2 cos Cos7 +C0sB=3, (13

that is, if a satisfies

a=2cos 1( 2 secg— cos§> , (14

so that under this condition,,,=0 if n>p. Similarly, the

currents vanish ih<p; and so we are left to consider the

casen=p. We find

6—2 exp@

o= [ "dBF(p)E
0

-2 exp@— 2 cosB

2

=2 . dBF(B)e"?

a—p
+cos
2

a+ B
COS
2

i
—exp—-cos

. 27 in .« ﬁ
=—4i fo dBF(B)e 53|n§cos§.

R

0 (2 dp
”p_Ejo [sin(a/2)][coq B/2)]
iln—pla i(n+p)B
l—ex;< >+t ” (16)

Settingy = 8/2 andx=| «|/2= cosh }(2 secy—cosy), we ob-
tain the following real integral:

R _1[#/2 dy
" Jo sinhxcosy

X

[1—e I"PXcogn+p)y]. a7

The program for this case is also to be found in Appendix B.
It yields

Ri0=Ro1=Ry1= %,

8 4v3
Rog=Rp=Roo=5— 7,
2 2vV3
Riz=Ry=—3+—,

10v3
Ri3=R31=Ry3=Rgp=—5+ e

48v3
R30: R03: R33: 27— T .

V. HEXAGONAL LATTICE

The hexagonal lattice may be constructed from the trian-
gular one by an application of the so-callel—Y
transformatiort® The symmetric form that we need is illus-
trated in Fig. 3.

The triangle, made out of three(1 resistors, is equivalent
to the Y form, made out of threg () resistors, in the sense
that the external currents;, 1,, andl, and the peripheral
potentials,V,, V,, andV3, are the same: thus one circuit
may be replaced by the other, so far as the distribution of
currents and potentials in the rest of the lattice is concerned.

The currentd ,, are the coefficients of the Fourier series In the Y form, the potential at the middle point M,
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leaves at infinity; and in this case no currents enter or leave
at any other finite nodes, in particular not a-+3,p+ 3).
This allows us to calculat¥oo— V1 213p+ 13, @nd that is all
we need to complete the calculation®Rf,; 535+ 1/3-
Typical results are

_ _ _2
R_13157= Ro1/3-23= Roz 5= 3
Ri0=Ro1=R11= R—l,oz 1,

2V3
Ros3,-23= Roz ai5= o

7 2v3

R5/3,1/3= R5/3,4/3= §_ _ﬂ_ )

Fig. 4. Hexagonal lattice.

6v3
Rip=Ry = =2+ —,
=3 V,+V,+Vs], on condition that no current enters or leaves m
the circuit at this point from or to the outside. 123

In Fig. 4 we see how the triangular lattice of the previous ~ Rao=Roz=Rp;=8———,

section(dotted line$ may be replaced by a hexagonal lattice
(full lines) by a repeated application of the—Y transfor- 8v3
mation. Note that the equivalent resistors in the latter case Rz37/5= Rs;37/5=Rsj3—23= =3+ —,

are all3 2, so we will need to multiply the final answer for T
Rnp by 3 in order to renormalize to the desired case of a 32 23
hexagonal lattice of 1) resistors. In Fig. 4, we have retained Reya 513~ — ER
the same coordinates for the nodes that are common to the
triangular lattice, and have assigned the relevant fractional 74 4/3
and p values to the new lattice points, the middle points of Re/s, 5= R8/3,7/3=§— P
the Y’s.

At the integral coordinate nodes of the hexagonal lattice, 144/3
the distribution of potentials that corresponds to a current of ~ Rso=Roz=R33=81— ——,
1 A entering the nod¢0,0), and leaving at infinity, is equal
to the distribution corresponding to the same situation for the 30v3
triangular lattice, namely th¥,,, of Eq. (15). The potentials R13=R31=Ry3=Rgy=— 15+ —
at the fractional coordinate nodes are given by

Vii2ip+ 1= 3 Vapt Vs 1pF Vs 1p+1]- (18)  APPENDIX A

The potential difference between the origin and the node
(n,p) is Voo—Vyp, and, as before, this is one-half of the
resistance betwegi®,0) and(n,p), but since this applies to a
hexagonal lattice of Q) resistors, the final result for a lattice

We shall give a proof thaR,,=R,, for non-negativen
andp: this is sufficient, since from Ed6) we see thaR,, is
invariant under the changes— —n and/orp— —p. Forn

of 1 Q resistors is three times this value, i.e., =0 we can write
RanG[VOO_Vnp]v :i_J?ﬂ- dB _ Ai(na+pp)
Rnp 2w Jo Sina[l € Ik (19

whereV,, is as in Eq.(15). This means that, for integral

coordinate nodes, the resistances in the hexagonal lattice aggom Eq.(2) we see that

thrice the corresponding resistances in the triangular lattice.

For the fractional coordinates, we have dg _ da 20
in ing’

Rn+23p+13=6[Voo= Vit 23p+1/3] sine sing

=2[(Voo=Vnp) + (Voo= Vit 1p)
i 27 da .
+ (Voo Va+1p+1)] R f ——[1—¢e(atpA)] (21)

. 27 Jo sing
= §[Rnp+ Rn+1,p+Rn+1,p+1]- . .
. . . . we shall have completed our demonstration, since by renam-
That is, the resistance from the origin to one of the fractionaj,q as 8 and 8 as a, we regain the form of Eq(19)

coordinate nodes is the average of the resistances to the thrg cepting only thah andp are interchanged.
adjacent integral coordinate nodes. At first sight, one might | view of Eq. (20), it only remains to show that the inte-

Objegt thalt, since the current that enters(@Q) leaves at gration domain 6<8<2x can be transformed into the do-
(n+3,p+3), we have violated the requirement that no cur-pin oo~ ,~0. To do this, let us change the integration
rent should enter or leave the lattice at the middle point of Qariable from to '

Y circuit. However, this objection is unfounded, since, in the .
original configuration, a currentfd A enters at(0,0) and w=¢P,

and if we can prove that
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w_ 1

Fig. 5. Original contour in thes-plane.

in terms of which

. 10 —
sina=i——\Jw*—6w+1.
2w
The integral in Eq(19) is now a contour integral around the
unit circle in thew-plane, fromw=1+ie to w=1—i¢, de-
scribed in the positive sengsee Fig. 5. The square root in
Eq. (22) produces a culp _<w<w,, with

w+=3F2V2.

Note thatw=w_ corresponds precisely @= .

(22

Fig. 6. Deformed contour in the-plane.

which goes from 1 abb=1 to —1 atw= w_ . Moreover, we
can cast Eq(22) into the form
) 1w

sina=+——
the — sign applying above and the sign below the cut.
Thus on the new contougy begins with the value 0 ab
=1—ie, progresses tae= 7 atw=w_, and then continues
up to =27 at w=1+ie, above the cut, where sinis
negative. Since we have traversed the contour in the sense
opposedo the arrow, we have accounted for the minus sign
in Eq. (20), and have thereby completed the proof.

V(o —o)(0-o), (23

APPENDIX B

We now deform the contour of integration from the open The resistance in the square latti€®,, of Eq. (6), is pro-

unit circle so that it wraps around part of the ¢see Fig. 6.

gramed below as a Mathematica functi®equ[n,p] . The

The end points remain where they were, but now the inteintegral is performed symbolically, the answer being exact.

gration goes from unity down te_, along the top of the
cut, and then underneath, back up to unity.

On the new contourg is real, since
(1-w)?
20 '

cosa=1-—

Similarly, Rtri[n,p] is the resistance for the triangular
lattice, as given in Eq(17). The functionRcub[n,p,q] is

the corresponding expression for the cubic lattice in three
dimensiongsee Eq(9)], but in this case we have been con-
tent with numerical integration. The resistances in the hex-
agonal lattice can be readily obtained frdrtri[n,p]

Mathematica Functions for Infinite Lattices

(* Square lattice in 2 Dimemsions *)
alphas[beta _] :=Log[2—-Cos[beta]+Sqrt[3+Cos[beta]

Rsqu[n _,p _] :=Simplify[(1/Pi)
Cosl[p *beta])/Sinh[alphas[beta]],

(* Triangular lattice in 2 Dimensions *)
alphat[beta  _] :=ArcCosh[2/Cos[beta]-Cos[beta]];

Rtriln  _,p _] :=Simplify[1/(Pi) *Integrate[

(1-Exp[-Abs[n-p]  *alphat[beta]] *Cos[(n+p)

/(Cos[beta]  *Sinh[alphat[beta]]), {beta,0,Pi/2
(* Cubic lattice in 3 Dimensions *)
alphac[beta
Rcub[n _,p _,q _] :=(1/Pi"2)  *NIntegrate[NIntegrate[
(1-Exp[-n =+alphac[beta,gamma]]
/Sinh[alphac[beta,gamma]],

*Integrate[(1-Exp[-Abs[n]

*(Cos[beta]-4)]];
*alphas[betal]] *

{beta,0,Pi }]I;

*peta])

HIH

_,gamma_] :=ArcCosh[3-Cos[beta]-Cos[gamma]];

*Cos[p *beta] *Cos[q *gamma])
{gamma,0,Pi }], {beta,0,Pi
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USEFUL KNOWLEDGE

If useful knowledge is, as we agreed provisionally to say, knowledge which is likely, now or in
the comparatively near future, to contribute to the material comfort of mankind, so that mere
intellectual satisfaction is irrelevant, then the great bulk of higher mathematics is useless. Modern
geometry and algebra, the theory of numbers, the theory of aggregates and functions, relgativity,
quantum mechanics—no one of them stands the test much better than another, and there ig no real
mathematician whose life can be justified on this ground. If this be the test, then Abel, Riemann,
and Poincarevasted their lives; their contribution to human comfort was negligible, and the wporld
would have been as happy a place without them.

G. H. Hardy,A Mathematician’s ApologyCambridge University Press, 1969; reprint of 1940 edjtigp. 135-136.
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