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The resistance between two arbitrary nodes in an infinite square lattice of identical resistors is
calculated. The method is generalized to infinite triangular and hexagonal lattices in two
dimensions, and also to infinite cubic and hypercubic lattices in three and more dimensions. ©1999

American Association of Physics Teachers.
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I. INTRODUCTION

The resistance between two arbitrary nodes in an infi
lattice made of identical resistors is calculated. The met
was introduced by Venezian,1 and works by superposing th
potentials and currents corresponding to two configurat
in each of which only one finite node carries a current fr
outside the lattice. The currents in such a uniterminal cir
enjoy the full symmetry of the lattice, whereas the curre
of the diterminal circuit that is actually of interest have low
symmetry. Use of a similar higher symmetry was ana
gously made in a recent treatment of the resistance betw
the vertices of regular polyhedra constructed from ident
resistors.2

Despite the emphasis on the high symmetry of a uniter
nal lattice, the method proceeds, oddly enough, through
imposition of an ansatz that does not possess the full s
metry in a manifest manner. By using complex Fourier tra
forms we illuminate the method of Venezian and genera
it from the original square lattice in two dimensions to cu
and hypercubic lattices in higher dimensions, as well a
triangular and hexagonal lattices in two dimensions.

The final result for the resistance between two node
expressed as an integral transform, and it does not seem
sible to express this as a known higher transcendental f
tion, like a generalized hypergeometric function, for e
ample. Nevertheless, for specific choices of the lattice, an
the nodes, it turns out to be possible to evaluate the integ
algebraically, in terms ofp and of the square roots of inte
gers. It was within the capacity of Mathematica 3.0 to eva
ate sample results for two-dimensional lattices, yielding
act answers in place of the numerical approximations gi
in Venezian’s paper.

Special cases of the results obtained in this paper h
been published before. The resistance between adjacent
points in the square lattice was derived by Aitchison,3 while
Bartis4 treated adjacent mesh points in more general t
dimensional lattices. Purcell5 gives the resistance betwee
diagonally opposedmesh points of the square lattice witho
proof, while a proof of this result is provided by Lavatell6

who emphasizes how the resistive net can be thought of
discrete approximation to a continuous resistive medi
Trier7 obtains adouble integral representation for the resi
tances in the case of the square lattice, together with a t
of exact results; this work was further evaluated
Cameron,8 who considered carefully the conditions for t
existence and uniqueness of Trier’s solution. In the pre
work we tacitly obtain uniqueness by requiring that the c
rents at infinity vanish, and this condition accords with o
of Cameron’s criteria. Finally, the work of Zemanian9 should
be noted: he also considers the uniqueness problem, as
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as the double integral representation for the square lat
and analogous expressions for uniform and nonuniform
tices in more than two dimensions.

II. TWO-DIMENSIONAL SQUARE LATTICE

Consider an infinite square lattice formed from equal
sistors, and let~n,p! be the node that isn lattice units in the
horizontal, andp units in the vertical direction from an arbi
trarily chosen origin. It is supposed that a current ofI np A
can enter the~n,p! node from a source outside the lattice~see
Fig. 1!.

If the potential at this node is denoted byVnp V, we have,
by a combination of Ohm’s and Kirchhoff’s laws,

I np5~Vnp2Vn11,p!1~Vnp2Vn21,p!1~Vnp2Vn,p11!

1~Vnp2Vn,p21!

54Vnp2Vn11,p2Vn21,p2Vn,p112Vn,p21 ,

where, without essential loss of generality, we have ta
each resistor to be of 1V. In general, a current may b
injected at every node from the outside.

We shall seek an integral representation for the potentia
the node~n,p! in the form

Vnp5E
0

2p

dbF~b!vnp~b!,

with

vnp~b!5ei unua1 ipb, ~1!

wherea is a function ofb that will be specified shortly. The
representation is a~modified! Fourier transform: the reaso
for the modulus signs aroundn will soon be clear.

For n.0, we have

4vnp~b!2vn11,p~b!2vn21,p~b!2vn,p11~b!2vn,p21~b!

5eina1 ipb@42e2 ia2eia2e2 ib2eib#

52eina1 ipb@22cosa2cosb#.

We now requirea to be such that

cosa1cosb52, ~2!

so that the above combination ofv ’s vanishes. Similarly, we
find zero for this combination ifn,0. Thus for any inte-
grableF(b), I np50, unlessn50.

For 0,b,2p, there is no real solution of Eq.~2!, but
there is a complex one, indeed a purely imaginary o
namely

a5 i log@22cosb1A324 cosb1cos2 b#. ~3!
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Consider now the casen50. We find

I 0p5E
0

2p

dbF~b!eipb@422eia22 cosb#

52E
0

2p

dbF~b!eipb@cosa2eia#

522i E
0

2p

dbF~b!sinaeipb.

These currents may be construed as the coefficients o
Fourier series

22iF ~b!sina5
1

2p (
p52`

`

I 0pe2 ipb,

and we may choose the coefficients as we like, thereby sp
fying 22iF (b)sina. Let I 0p5d0p , i.e., I 0051 and I 0p50
if pÞ0. This corresponds to the situation in which 1 A enters
at ~0,0! and leaves at infinity, since no currents leave t
lattice at any other finite node. With this choice,

F~b!5
i

4p sina
,

and so

Vnp5
i

4p E
0

2p db

sina
ei unua1 ipb. ~4!

Fig. 1. Infinite square lattice in two dimensions.
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The potential difference between the origin and the no
~n,p! is V002Vnp . This is not quite the resistance betwe
these two points; it is rather one-half of that resistance.
see this, imagine for a moment that we inject 1 A into the
node ~n,p! instead of~0,0!, allowing it to leave at infinity.
The new potential at~n,p! will now be what we calledV00
and the new potential at~0,0! will, by symmetry, be what we
called Vnp . Evidently the new potential difference betwee
the origin and~n,p! is just minus the old potential difference
If we choose to extract 1 A from the node~n,p! instead of
injecting it, all the potentials will be simply reversed in sig
so that now the potential difference between the origin a
the node~n,p! is againV002Vnp , just as it was in the origi-
nal configuration in which the current was injected at~0,0!.
The final step is to exploit the linearity of Ohm’s law an
superpose all the currents and potentials appertaining to
configuration in which 1 A enters at~0,0! and that in which
1 A leaves at~n,p!. The potential difference in this case
2@V002Vnp#, and that is therefore equal toRnp . Thus

Rnp5
i

2p E
0

2p db

sina
@12ei unua1 ipb#. ~5!

Although the expression~5! does not look symmetric unde
interchange ofn andp, we know from the symmetry of the
lattice that it must be so. A formal proof thatRnp5Rpn can
be found in Appendix A.

We may transform Eq.~5! into the manifestly real form

Rnp5
1

p E
0

p db

sinhuau @12e2unau cospb#. ~6!

In Table I we give the results of an evaluation of the expr
sion ~6!, by means of Mathematica, for all values ofn andp
between 0 and 5. The program can be found in Appendix
The method and results of this section may be seen a
streamlining of the technique introduced in the appendix
Ref. 1. This is the formalism that readily lends itself to ge
eralization, as we now proceed to show.

III. THREE DIMENSIONS AND MORE

A cubic infinite lattice of unit resistors in three dimensio
can be treated in analogous fashion. There are now th
indices, and the current entering the~npq! node is related to
the potentials by
Table I. ResistanceRnp in infinite square lattice.

p
n 0 1 2 3 4 5

0 0 1
2

22
4
p

17
2

2
24
p

402
368
3p

401
2

2
1880
3p

1 1
2

2
p

2
1
2

1
4
p

46
3p

24
80
p

2
49
2

6646
15p

2140

2 22
4
p

2
1
2

1
4
p

8
3p

1
2

1
4

3p
62

236
15p

97
2

2
2236
15p

3 17
2

2
24
p

46
3p

24
1
2

1
4

3p

46
15p

24
5p

2
1
2

998
35p

28

4 402
368
3p

80
p

2
49
2

62
236
15p

24
5p

2
1
2

352
105p

1
2

1
40

21p

5 401
2

2
1880
3p

6646
15p

2140
97
2

2
2236
15p

998
35p

28
1
2

1
40

21p

1126
315p
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Fig. 2. Triangular lattice.
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I npq56Vnpq2Vn11,p,q2Vn21,p,q2Vn,p11,q2Vn,p21,q

2Vn,p,q112Vn,p,q21 .

We set

Vnpq5E
0

2p

dbE
0

2p

dgF~b,g!vnpq~b,g!, ~7!

where

vnpq~b,g!5ei unua1 ipb1 iqg,

with

cosa1cosb1cosg53, ~8!

i.e., a5cos21(32cosb2cosg).
It is easy to prove that, fornÞ0,

I npq52E
0

2p

dbE
0

2p

dgF~b,g!ei unua1 ipb1 iqg

3@32cosa2cosb2cosg#50,

whereas

I 0pq522i E
0

2p

dbE
0

2p

dgF~b,g!sina cospb cosqg.

The inverse of this is the double Fourier series

22iF ~b,g!sina5
1

4p2 (
p52`

`

(
q52`

`

I 0pqe
2 ipb2 iqg,

and we chooseI 00051 and I 0pq50 unlessp and q both
vanish. This gives

F~b,g!5
i

8p2 sina
,

which can be substituted into Eq.~7! to yield the potential
Vnpq . As before, we can compute the resistance correspo
ing to the situation in which 1 A enters at the origin and
leaves at the node~npq!. It is

Rnpq5
i

4p2 E
0

2pE
0

2p dbdg

sina
@12ei unua1 ipb1 iqg#. ~9!

This expression is symmetric under any permutation of
indices, although the symmetries are not manifest~except
that under exchange ofp andq!. A manifestly real form is

Rnpq5
1

p2 E
0

pE
0

p dbdg

sinhuau @12e2unau cospb cosqg#. ~10!

This has been integrated numerically~see Appendix B for
the program!. Some typical results are given below:
488 Am. J. Phys., Vol. 67, No. 6, June 1999
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R1005R0105R0015
1
3,

R1105R1015R01150.39507915,

R11150.41830531, R22250.46015929,

R01250.43359881, etc.

The further generalization to four and more dimensions
straightforward. One can simulate a four-dimensional latt
by means of an infinite set of three-dimensional lattices, s
that corresponding vertices of the different lattices are link
by one ohm wires. In principle, the same can be done in
or even more dimensions: the fact that we only seem to h
three physical spatial dimensions does not limit the dim
sionality of physically simulable lattices. In a (d11)-
dimensional hypercubic lattice, the resistance between
origin and the (n,p1 ,...,pd) node is

Rnp1¯pd
5

i

~2p!d E
0

2p

¯E
0

2p db1¯dbd

sina

3@12ei unua1 ip1b11¯1 ipdbd#, ~11!

where

cosa1cosb11¯1cosbd5d. ~12!

As a direction of further generalization, consider the cu
lattice with different resistances in the three directions: sa
V in the x direction, 1/l V in the y direction, and 1/m V in
the z direction. The current entering the~npq! node is now

I npq52~11l1m!Vnpq2Vn11,p,q2Vn21,p,q2lVn,p11,q

2lVn,p21,q2mVn,p,q112mVn,p,q21 ,

and the resistanceRnpq is still given by Eq.~10!, but with

a5cos21~11l1m2l cosb2m cosg!.

With l515m we recover the symmetric cubic lattice, whi
l51 andm50 gives the square lattice of the previous se
tion. EvidentlylÞ1 andm50 corresponds to a ‘‘rectangu
lar’’ lattice, i.e., a square lattice with unequal resistances
the two coordinate directions.

IV. TRIANGULAR LATTICE

We return to two dimensions and consider in this sectio
triangular lattice. The first question is the choice of the c
ordinate axes. In Fig. 2 we illustrate our convention: one a
is horizontal, and the other is inclined at 120°, as is indica
by a number of coordinate assignments in the figure. To
logically, the triangular lattice is equivalent to the squa
lattice with one, but not both diagonals connected, as
also be seen in Fig. 2.

We again seek a representation
488D. Atkinson and F. J. van Steenwijk



Fig. 3. D2Y transformation.
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Vnp5E
0

2p

dbF~b!vnp~b!,

but we now set

vnp~b!5expF i un2pua
2

1
i ~n1p!b

2 G ,
whereb is a real number lying in the interval~0,2p!, but a
will again turn out to be complex. The reason for choos
this form, rather than Eq.~1!, is that with our convention the
triangular lattice is invariant under a change of sign on
2p, but not under a simple change of the sign ofn. This can
be readily seen from the second of the diagrams in Fig.

We see that the current entering the node~n,p! from out-
side is related to the potentials by

I np56Vnp2Vn11,p2Vn21,p2Vn,p112Vn,p21

2Vn11,p112Vn21,p21 .

For n2p.0, we have

6vnp~b!2vn11,p~b!2vn21,p~b!2vn,p11~b!2vn,p21~b!

2vn11,p11~b!2vn21,p21~b!

52vnp~b!F32cos
a1b

2
2cos

a2b

2
2cosb G ,

and this vanishes if

2 cos
a

2
cos

b

2
1cosb53, ~13!

that is, if a satisfies

a52 cos21S 2 sec
b

2
2cos

b

2 D , ~14!

so that under this condition,I np50 if n.p. Similarly, the
currents vanish ifn,p; and so we are left to consider th
casen5p. We find

I nn5E
0

2p

dbF~b!einbF622 exp
i ~a1b!

2

22 exp
i ~a2b!

2
22 cosb G

52E
0

2p

dbF~b!einbFcos
a1b

2
1cos

a2b

2

2exp
ia

2
cos

b

2G
524i E

0

2p

dbF~b!einb sin
a

2
cos

b

2
.

The currentsI nn are the coefficients of the Fourier serie
489 Am. J. Phys., Vol. 67, No. 6, June 1999
g

.

24iF ~b!sin
a

2
cos

b

2
5

1

2p (
n52`

`

I nne
2 inb.

The choiceI nn5dn0 yields

F~b!5
i

8p@sin~a/2!#@cos~b/2!#
,

and hence

Vnp5
i

8p E
0

2p db

@sin~a/2!#@cos~b/2!#
vnp~b!. ~15!

The resistance between the point~np! and the origin is

Rnp5
i

4p E
0

2p db

@sin~a/2!#@cos~b/2!#

3F12expS i un2pua
2

1
i ~n1p!b

2 D G . ~16!

Settingy5b/2 andx5uau/25cosh21(2 secy2cosy), we ob-
tain the following real integral:

Rnp5
1

p E
0

p/2 dy

sinhx cosy
@12e2un2pux cos~n1p!y#. ~17!

The program for this case is also to be found in Appendix
It yields

R105R015R115
1
3,

R205R025R225
8

3
2

4)

p
,

R125R2152
2

3
1

2)

p
,

R135R315R235R325251
10)

p
,

R305R035R335272
48)

p
.

V. HEXAGONAL LATTICE

The hexagonal lattice may be constructed from the tri
gular one by an application of the so-calledD2Y
transformation.10 The symmetric form that we need is illus
trated in Fig. 3.

The triangle, made out of three 1V resistors, is equivalen
to the Y form, made out of three13 V resistors, in the sens
that the external currents,I 1 , I 2 , andI 3 , and the periphera
potentials,V1 , V2 , and V3 , are the same: thus one circu
may be replaced by the other, so far as the distribution
currents and potentials in the rest of the lattice is concern
In the Y form, the potential at the middle point isV0
489D. Atkinson and F. J. van Steenwijk
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51
3@V11V21V3#, on condition that no current enters or leav

the circuit at this point from or to the outside.
In Fig. 4 we see how the triangular lattice of the previo

section~dotted lines! may be replaced by a hexagonal lattic
~full lines! by a repeated application of theD2Y transfor-
mation. Note that the equivalent resistors in the latter c
are all 1

3 V, so we will need to multiply the final answer fo
Rnp by 3 in order to renormalize to the desired case o
hexagonal lattice of 1V resistors. In Fig. 4, we have retaine
the same coordinates for the nodes that are common to
triangular lattice, and have assigned the relevant fractionn
and p values to the new lattice points, the middle points
the Y’s.

At the integral coordinate nodes of the hexagonal latti
the distribution of potentials that corresponds to a curren
1 A entering the node~0,0!, and leaving at infinity, is equa
to the distribution corresponding to the same situation for
triangular lattice, namely theVnp of Eq. ~15!. The potentials
at the fractional coordinate nodes are given by

Vn12/3,p11/35
1
3@Vnp1Vn11,p1Vn11,p11#. ~18!

The potential difference between the origin and the no
~n,p! is V002Vnp , and, as before, this is one-half of th
resistance between~0,0! and~n,p!, but since this applies to a
hexagonal lattice of13 V resistors, the final result for a lattic
of 1 V resistors is three times this value, i.e.,

Rnp56@V002Vnp#,

where Vnp is as in Eq.~15!. This means that, for integra
coordinate nodes, the resistances in the hexagonal lattice
thrice the corresponding resistances in the triangular latt
For the fractional coordinates, we have

Rn12/3,p11/356@V002Vn12/3,p11/3#

52@~V002Vnp!1~V002Vn11,p!

1~V002Vn11,p11!#

5 1
3@Rnp1Rn11,p1Rn11,p11#.

That is, the resistance from the origin to one of the fractio
coordinate nodes is the average of the resistances to the
adjacent integral coordinate nodes. At first sight, one mi
object that, since the current that enters at~0,0! leaves at
(n1 2

3,p1 1
3), we have violated the requirement that no cu

rent should enter or leave the lattice at the middle point o
Y circuit. However, this objection is unfounded, since, in t
original configuration, a current of 1 A enters at~0,0! and

Fig. 4. Hexagonal lattice.
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leaves at infinity; and in this case no currents enter or le
at any other finite nodes, in particular not at (n1 2

3,p1 1
3).

This allows us to calculateV002Vn12/3,p11/3, and that is all
we need to complete the calculation ofRn12/3,p11/3.

Typical results are

R21/3,1/35R21/3,22/35R2/3,1/35
2
3,

R105R015R115R21,051,

R2/3,22/35R2/3,4/35
2)

p
,

R5/3,1/35R5/3,4/35
7

3
2

2)

p
,

R125R215221
6)

p
,

R205R025R22582
12)

p
,

R2/3,7/35R5/3,7/35R5/3,22/35231
8)

p
,

R8/3,5/352
32

3
1

22)

p
,

R8/3,1/35R8/3,7/35
74

3
2

42)

p
,

R305R035R335812
144)

p
,

R135R315R235R3252151
30)

p
.

APPENDIX A

We shall give a proof thatRnp5Rpn for non-negativen
andp: this is sufficient, since from Eq.~6! we see thatRnp is
invariant under the changesn→2n and/orp→2p. For n
>0 we can write

Rnp5
i

2p E
0

2p db

sina
@12ei ~na1pb!#. ~19!

From Eq.~2! we see that

db

sina
52

da

sinb
, ~20!

and if we can prove that

Rnp5
i

2p E
0

2p da

sinb
@12ei ~na1pb!#, ~21!

we shall have completed our demonstration, since by ren
ing a as b and b as a, we regain the form of Eq.~19!,
excepting only thatn andp are interchanged.

In view of Eq. ~20!, it only remains to show that the inte
gration domain 0,b,2p can be transformed into the do
main 2p.a.0. To do this, let us change the integratio
variable fromb to

v5eib,
490D. Atkinson and F. J. van Steenwijk
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sina5 i
12v

2v
Av226v11. ~22!

The integral in Eq.~19! is now a contour integral around th
unit circle in thev-plane, fromv511 i« to v512 i«, de-
scribed in the positive sense~see Fig. 5!. The square root in
Eq. ~22! produces a cut,v2,v,v1 , with

v65362&.

Note thatv5v2 corresponds precisely toa5p.

We now deform the contour of integration from the op
unit circle so that it wraps around part of the cut~see Fig. 6!.
The end points remain where they were, but now the in
gration goes from unity down tov2 , along the top of the
cut, and then underneath, back up to unity.

On the new contour,a is real, since

cosa512
~12v!2

2v
,

Fig. 5. Original contour in thev-plane.
. J

uc

491 Am. J. Phys., Vol. 67, No. 6, June 1999
-

which goes from 1 atv51 to 21 atv5v2 . Moreover, we
can cast Eq.~22! into the form

sina57
12v

2v
A~v12v!~v2v2!, ~23!

the 2 sign applying above and the1 sign below the cut.
Thus on the new contour,a begins with the value 0 atv
512 i e, progresses toa5p at v5v2 , and then continues
up to a52p at v511 i e, above the cut, where sina is
negative. Since we have traversed the contour in the se
opposedto the arrow, we have accounted for the minus s
in Eq. ~20!, and have thereby completed the proof.

APPENDIX B

The resistance in the square lattice,Rnp of Eq. ~6!, is pro-
gramed below as a Mathematica functionRsqu[n,p] . The
integral is performed symbolically, the answer being exa
Similarly, Rtri[n,p] is the resistance for the triangula
lattice, as given in Eq.~17!. The functionRcub[n,p,q] is
the corresponding expression for the cubic lattice in th
dimensions@see Eq.~9!#, but in this case we have been co
tent with numerical integration. The resistances in the h
agonal lattice can be readily obtained fromRtri[n,p] .

Fig. 6. Deformed contour in thev-plane.
Mathematica Functions for Infinite Lattices
( * Square lattice in 2 Dimemsions * )
alphas[beta –] ªLog[2−Cos[beta]+Sqrt[3+Cos[beta] * (Cos[beta]−4)]];

Rsqu[n –,p –] ªSimplify[(1/Pi) * Integrate[(1−Exp[−Abs[n] *alphas[beta]] *
Cos[p *beta])/Sinh[alphas[beta]], $beta,0,Pi %]];

( * Triangular lattice in 2 Dimensions * )
alphat[beta –] ªArcCosh[2/Cos[beta]−Cos[beta]];

Rtri[n –,p –] ªSimplify[1/(Pi) * Integrate[

(1−Exp[−Abs[n−p] *alphat[beta]] *Cos[(n+p) *beta])
/(Cos[beta] *Sinh[alphat[beta]]), $beta,0,Pi/2 %]];

( * Cubic lattice in 3 Dimensions * )
alphac[beta –,gamma–] ªArcCosh[3−Cos[beta]−Cos[gamma]];

Rcub[n –,p –,q –] ª(1/Piˆ2) *NIntegrate[NIntegrate[

(1−Exp[−n *alphac[beta,gamma]] *Cos[p *beta] *Cos[q *gamma])
/Sinh[alphac[beta,gamma]], $gamma,0,Pi %], $beta,0,Pi %];
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USEFUL KNOWLEDGE

If useful knowledge is, as we agreed provisionally to say, knowledge which is likely, now or in
the comparatively near future, to contribute to the material comfort of mankind, so that mere
intellectual satisfaction is irrelevant, then the great bulk of higher mathematics is useless. Modern
geometry and algebra, the theory of numbers, the theory of aggregates and functions, relativity,
quantum mechanics—no one of them stands the test much better than another, and there is no real
mathematician whose life can be justified on this ground. If this be the test, then Abel, Riemann,
and Poincare´ wasted their lives; their contribution to human comfort was negligible, and the world
would have been as happy a place without them.

G. H. Hardy,A Mathematician’s Apology~Cambridge University Press, 1969; reprint of 1940 edition!, pp. 135–136.
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