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Abstract 
 

The resistance between two arbitrary points in an infinite triangle and hexagonal 
lattice networks of identical resistor are calculated using Fourier series. For 
hexagonal networks, I discover a new method of calculating the resistance directly 
from the networks instead of using Y−∆   transformation, which is commonly used. 
The result are compared numerically to other authors that utilizing separation 
variable [1,2] or Green function [3]. 
 

1. Introduction 
  
Problem of calculating resistance between two arbitrary lattices points in the 
infinite lattice of networks has been revive recently. Several methods have 
been introduced to solve the problem. We could find the old of this efforts 
and cited paper related with this topic in Zemanian paper [4]. One of the 
relatively new approaches is developed by Giulio Vanezian [1]. Vanezian 
used a superposition method and explicating the symmetry of the grid. The 
mathematical problem involves the solution of an infinite set of linear, 
inhomogeneous difference equations, which are solved by the method of 
separation variables. This method is developed further by D. Atkinson and 
F.J. van Steewijk [2]  to calculate the resistance between two arbitrary nodes in 
infinite triangular and hexagonal lattices in two dimensions. In addition, for 
hexagonal lattices they used Y−∆  transformation of triangular lattices. Doyle 
and Snell presented the method to calculate the infinite electric networks 
using the random walks, though they did not show explicitly and 
numerically of the results [5]. Later on Jozsef Cserti used the lattice Green 
function to calculate the resistance of infinite networks of resistors [3]. 
 
In this paper I present the alternative approach, which was introduced by 
Krzysztof Giaro [6] who calculated the resistance between any two points in 
the infinite square lattice networks that utilizes the basic properties of Fourier 
series. The method has been extended for the infinite cubic lattice networks 



by Agus Wirawan [7]. I use this method to calculate the resistance between 
any two points in the infinite triangle and hexagonal lattices networks. For 
the hexagonal lattice, we use two methods: First, Y−∆  transformation and 
secondly the use of the Fourier series directly from the hexagonal networks. 
In the analysis, we use an orthogonal Cartesian coordinate system (one axis 
is horizontal and other is vertical) instead of a hexagonal or triangle 
coordinate system (one axis in horizontal and the other is inclined at 1200) 
that often used in the triangle or hexagonal lattice analysis [2,3]. To some 
extent, the orthogonal Cartesian coordinate system is easier to follow both for 
triangular and hexagonal lattice compared to the other coordinate systems. 
The result are written in a double integral formulas equation (18), (36) and 
(43). These formulas look different from the formula derived by some 
authors [2,3]. However, I prove numerically that both results are actually 
same.  
 
The paper is divided into two sections. In the first section, I will perform 
analysis of the triangle infinite networks of resistor to calculate the resistance 
between any two points in the networks, and in the second section, I will do 
the analysis for the hexagonal infinite networks of resistor.  
 
2. Infinite triangle lattice networks of identical resistor 
 
Consider an infinite triangle lattice formed from equal resistors. Let (j,k) be 
the node (point) that is j unit in the horizontal, and k is in the vertical 
direction from an arbitrarily chosen origin. The point has six nearest 
neighboring points, which is the small part of infinite triangle lattice 
(networks of resistors). The coordinate of these points are shown in Fig. 1. It 
is assumed that a current of I amperes enter the (0,0) node from a source 
outside the lattice and leaves at (m,n). 
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Figure.1. Infinite triangle lattice networks of identical resistor 
 



 
 
Let the potential at the point (j,k) is denoted by Vj,k volts, and Vj,k tends to 
zero at branch point very far from (0,0) and (m,n). By a combination of 
Kirchoff’s first rule and Ohm’s laws, we have, 
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Let kj,Φ  be any scalar function define on all vertices of our network. I will 
denote Λ  a linear operator satisfying the following equation, 
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In the term of Λ , equation (1) can be written as following, 
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The next step is to solve this equation by assuming that Vj,k tends to zero at 
infinity. The resistance between point (0,0) and (m,n) can be calculated by the 
following formula,  
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It has been proved by Giaro [1] that the following equation has a unique 
solution (at most one solution) and the solution tends to zero at infinity 
(for 10 ≤< α ). 
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Furthermore, we are going to solve this equation, then for a fixed α , we will 
calculate the value of V00-Vjk and take the limit for α −→ 1  to obtain the 
desired equivalent resistance formula.  
 
Let assume that there are exists a function of two real variables 
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Expanding this function in a double Fourier series with the Fourier 
coefficient equal to the value of Vj,k gives, 
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Using equation (6) and (7) we have, 
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After operating Λ , we will get, 
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Since Ij,k has a value (=I) only at (0,0) and (m,n) then, 
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Using equation (11) and some properties of summation ∑  (change indices), 
we have: 
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Simplifying the above equation by a trigonometry identity θθθ cos2=+ − ii ee  
gives, 
 

( ) ( )( ) ( )( )

( )( ) ( )( )

( )( ) ( ) ( )yxFyyxe
rI

yyxeVe
rI

yyeyeeVe
rI

yxF

nymxi

kj

kyjxi
kj

nymxi

kj

ixixkyjxi
kj

nymxi

,2cos2coscos4
6

1
6

2cos2coscos4
6

1
6

2cos2cos2cos2
6

1
6

,

,
,

,
,

++−=

++−=

+++−=

+

++

+−++

∑

∑

α

α

α

 [13] 

  
Solve this equation for F(x,y) to get, 
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It is easy to notice that the function F is continuous, differentiable, and 
bounded. Consequently, it can be expressed in terms of Fourier component 
Vj,k. 
 
From equation (8), the coefficient of the double Fourier series V00 and Vmn can 
be written as the following, 
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And 
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Therefore, 
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If −→1α  then the above formula gives the difference of Vjk satisfying the 
equation (4) at the points (0,0) and (m,n). Then the resistance between those 
points can be evaluated by using equation (5). The results is, 
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The results for several (m,n) are given in table 1. 
Table 1. The equivalent resistance between points with coordinates (m,n) of 
triangle infinite networks of resistor. 
 
No Coordinates(m,n) Resistance/R(m,n) No Coordinates(m,n) Resistance/R(m,n) 

1 [-3,-7] 0,604 21 [-1,5] 0.513 
2 [-3,-5] 0.57 22 [0,0] 0 
3 [-3,-3] 0.536 23 [0,2] 0.333 
4 [-3,-1] 0.513 24 [0,4] 0.461 
5 [-3,1] 0.513 25 [0,6] 0.536 
6 [-3,3] 0.536 26 [1,-7] 0.57 
7 [-3,5] 0.57 27 [1,-5] 0.513 
8 [-2,-6] 0.536 28 [1,-3] 0.436 
9 [-2,-4] 0.513 29 [1,-1] 0.333 

10 [-2,-2] 0.461 30 [1,1] 0.333 
11 [-2,0] 0.436 31 [1,3] 0.436 
12 [-2,2] 0.461 32 [1,5] 0.513 
13 [-2,4] 0.513 33 [2,-6] 0.563 
14 [-2,6] 0.563 34 [2,-4] 0.513 
15 [-1,-7] 0.57 35 [2,-2] 0.461 
16 [-1,-5] 0.513 36 [2,0] 0.436 
17 [-1,-3] 0.436 37 [2,2] 0.461 
18 [-1,-1] 0.333 38 [2,4] 0.513 
19 [-1,1] 0.333 39 [2,6] 0.563 
20 [-1,3] 0.436 40 [3,-7] 0.605 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Discussion  
 
Atkinson and Steenwijk [2] used separation variable method and Cserti [3] 

utilized Green function method, found that the formula for resistance in the 
triangle case is the following, 
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They used a hexagonal coordinate system and the definition of (m’,n’) is 
shown in the Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To see whether equation (18) and equation (19), we calculate numerically for 
several points (we have to make sure the compared points are at the same 
points). Table 2 shows that both formulas give exactly the same results. 
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Figure 2. Coordinates in the hexagonal/triangle coordinate system [2,3] 
 



 
Table 2. Comparison results from equation (18) and equation (19) 
 

Resistance( rRmn / ) No 
Equation (18) Coordinate System Equation (19) Coordinates System 

1 [1,1] = 0.333 [0,1] = 
3
1  

2 [0,2] = 0.436 [1,2] = 
π

32
3
2

+−   

3 [3,1] = 0.513 [1,3] = 
π

310
5 +−  

4 [2,2] = 0.461 
 [0,2] = 

π
34

3
8

−  

5 [3,3] = 0.536 [0,3] = 
π

348
27 −  

 
 

3. Infinite hexagonal lattice networks of identical resistors 
(honeycomb lattice) 

 
In this section, I the resistance between any two points in the infinite 
hexagonal lattices networks of identical resistor. Atkinson and Steenwijk [4] 
have showed it and that the hexagonal lattice could to be constructing from 
the triangular lattice by the application of the so-called Y∆  transformation 
showed it has.  
 
We are going to calculate the resistance using two approaches: 1) Using Y∆  
transformation and the result from triangle case; 2) Using a direct calculation 
from the hexagonal lattices. We will show that both calculations give the 
same results. 
 
3.2.1 Method 1: Y∆  transformation 
 
A triangle made out of three r ohm resistors, can be transformed into Y form 
made out of three r/3 resistor, in the sense that the external currents, I1, I2, 
and I3, and the peripheral potential V1,`V2 and V3 are the same. In the Y form 



of potential in the mid point is V0 = (V1+V2+V3)/3 on condition that no current 
enters or leaves the circuit at this point from the outside. 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
Figure 4 show how to produce a hexagonal 
lattice by using Y∆ transformation 
repeatedly applied to triangular lattices. 
Note that the equivalent resistors in this 
case are all r/3, so we will need to multiply 
the final answer for Rmn by 3 in order to 
renormalize to the desired case of a 
hexagonal lattice of r ohm resistor. In figure  

 
 
4 , I retain the same coordinates for the points that are common to the 
triangular lattice and have assigned the relevant fractional m and n values to 
the new lattice points, the middle of Y’s.  
 
Assume that a current I entering the node (0,0) and leaving the node (m,n) as 
we have in triangular case. The potentials at the node of hexagonal (not at the 
node of triangle are given by 
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Figure 3 Y∆ transformation 

Figure 4 infinite hexagonal lattice 



The potential difference between the origin and the node (m,n) is Vmn-V00 but 
since we applies to a hexagonal lattice of 1/3 ohm resistors, the final results 
for a lattice of 1 ohm resistors is 3 times of this value, 
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Table 3 shows the resistances calculated from equation (21) and the results 
quoted from Atkinson and Steenwijk [2]. 
 
Table 3 Resistance between points (0,0) and point (m,n) in hexagonal lattice 
networks of identical resistors 
 
No From Equation (21) 

 
Reference [2] 

 

1 R0,1 = R0,-1= R1,0= 0,667 r 
3/2r  

 

2 R1,-1= R1,1= R-1,1= R-1,-1 = r r  
 

3 R-1,0= R1,2= 1,103 r r
π

32  

4 R-1,-2= R-1,2= R2,-1= R2,1 = 1,231 r r
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6 R-2,2= R -2,-2= R2,2= R2,-2 = 1,385 r r
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7 R2,-3= R2,3= R-1,1= R-1,-1 = 1,411 r r
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8 R-1,-4= R-1,4 = 1,463 r r
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3.2.1 Method 2: Double Fourier series method 
 
Consider a current of I amperes enter the (0,0) node from a source outside the 
hexagonal lattices and leaves at (m,n). To simplify let I draw the infinite 
hexagonal network in the form as shown in Fig. 5.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Using Kirchoff’s first rule and Ohm’s law at point A, we have, 
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Figure 5. Infinite “modified” hexagonal network 



However, equation (23) will slightly change f we take B as point (j,k) 
 

( )
( )kjB

kj
kjkjkjjk

rI
VVVV

,

,
,11,1, 3 








+++= −−+       [24] 

 
From equation (23) and (24) we conclude that the potential will depend on 
whether (j+k) is even or odd. We will use equation (23) for (j+k) is even and 
equation (24) for (j+k) is odd. 
 
Now, let I introduce two double Fourier series, 
 

( ) ( )∑
=+

+=
evenkj

kyjxi
jkeVyxF ,1         [25] 

 
And 
 

( ) ( )∑
=+

+=
oddkj

kyjxi
jk eVyxF ,1         [26]  

 
The F1(x,y) is for (j+k) even and F2(x,y) is for (j+k) odd. 
 
Since the potentials depend on the oddness or evenness (j+k) then we have to 
split our analysis: a) Case 1 when (m+n) even and b) Case 2 when (m+n) odd 
 
3.2.1  Case 1: (m+n) is even 
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Since Ij,k equal to I at (0,0) and –I at (m,n) then, 
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Using equation (27) and the properties of ∑ (change the indices), yields, 
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Now let’s work for F2(x,y) 
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Since the current is 0 for (j+k) odd, and by changing the indices, we get, 
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Replacing F2(x,y) in equation (29) by equation (31) will give, 
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Solve this equation to get F1(x,y) 
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The resistance Rmn can be calculated as following, 
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After a little algebra and a small trigonometry manipulation, we will get 
 

( )( )
( )∫ ∫

− − +−
+−=

π

π

π

ππ
dxdy

xyy
nymxrRmn coscoscos24

cos1
4
3

2
 (for (m+n) even)   [36] 

 
3.2.2. Case: (m+n) is odd 
 
Here we have to be careful in treating F1(x,y) and F2(x,y). The current term in 
equation (27) will give 
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Solving these two equations gives 
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Given these two Fourier function, we can determine voltage at any point that 
is:  
For (j+k) is even 
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And for (j+k) odd 
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The resistance Rmn can be calculated from
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Since 0+0 is even we use equation (41) to calculate V00 and equation (42) to 
calculate Vmn (remember that we are working for case m+n is odd) 
 
After some algebra and trigonometry tricks, finally we could find Rmn as 
follows, 
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π

π
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1coscoscos23

4 2 (For (m+n) odd) 

 [43] 
 
 
 
 
 



Numerical result 
 
It would be very interesting to investigate if I could calculate the integral 
analytically. I tried Maple 9 to carry out the calculation, however it will take 
very long time to get the result especially when the points are separated far 
away (m,n>>1). 
 
I also try to calculate the integration numerically. I started by using 
Simpson’s method with n equal spacing for each dimensions of integration. 
For two-dimensional integration, the number of interval to calculate is n2. 
Therefore, the computational time will increase even faster as I increase the 
number of intervals n order to improve the accuracy. This problem become 
especially significant if I want to calculate equivalent resistance between 
points that separate far away (m,n>>1). The other problem is cos (mx+ny)  
oscillates rapidly and thus requires more sampling point to give reasonable 
accurate result. To solve this problem, I implement Gaussian quadrature 
integration. The fundamental theorem of Gaussian quadrature states that the 
optimal abscissas of the m-point Gaussian quadrature formulas are precisely 
the roots of orthogonal polynomial for the same interval and weighting 
function. Gaussian quadrature is optimal because it fits all polynomials up to 
degree 2m exactly. This type of numerical of integration is more efficient 
since it requires much fewer sampling point to obtain the same accuracy. The 
numerical routine is implementation in MATLAB, which is powerful to do 
many intensive calculations. In carrying out the integration, one has to be 
pay attention to the singular point in the integrand. I could avoid this 
singular point by choosing the right sampling point in the integration. This is 
another advantage of Gaussian quadrature. 
 
The numerical value of the equivalent resistance between points with 
coordinates (m,n) are given in table 4 for (m+n) is odd and in table 5 for (m+n) 
is even. 
 
 
 
 
 
 
 



Table 4. The resistance for (m+n) is odd (multiply by r) 
 
[-5,-4]=1.89727 
[-5,-2]=1.86245 
[-5,-0]=1.84972 
[-5,2]=1.86243 
[-5,4]=1.89725 
[-4,-5]=1.83619 
[-4,-3]=1.77581 
[-4,-1]=1.73995 
[-4,1]=1.73995 
[-4,3]=1.7758 
[-4,5]=1.83616 
[-3,-4]=1.69758 
[-3,-2]=1.62143 
[-3,0]=1.59098 
[-3,2]=1.62142 
[-3,4]= 1.69756 
[-2,-5]=1.648 
[-2,-3]=1.51238 
[-2,-1]=1.41185 

[-2,1]=1.4118 
[-2,3]=1.51238 
[-2,5]=1.64799 
[-1,-4]=1.46381 
[-1,-2]=1.23163 
[-1,0]=1.1034 
[-1,2]=1.23163 
[-1,4]=1.46381 
[0,-5]=1.51181 
[0,-3]=1.23134 
[0,-1]=0.66702 
[0,1]=0.667016 
[0,3]=1.23134 
[0,5]=1.5118 
[1,-4]=1.41158 
[1,-2]=1.10332 
[1,0]=0.667122 
[1,2]=1.10333 
[1,4]=1.41158 

[2,-5]=1.59089 
[2,-3]=1.41187 
[2,-1]=1.2316 
[2,1]=1.2316 
[2,3]=1.41187 
[2,5]=1.5909 
[3,-4]=1.62141 
[3,-2]=1.51238 
[3,0]=1.46389 
[3,2]=1.51239 
[3,4]=1.62142 
[4,-5]=1.7758 
[4,-3]=1.69756 
[4,-1]=1.64797 
[4,1]=1.64797 
[4,3]=1.69757 
[4,5]=1.77582 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 5. The resistance for (m+n) is even (multiply by r) 
 
[-5,-5]=1.89352 
[-5,-3]=1.84518 
[-5,-1]=1.81737 
[-5,1]=1.81737 
[-5,3]=1.84516 
[-5,5]=1.89349 
[-4,-4]=1.76986 
[-4,-2]=1.7214 
[-4,0]=1.6901 
[-4,2]=1.71239 
[-4,4]=1.76984 
[-3,-5]=1.71241 
[-3,-3]=1.61046 
[-3,-1]=1.54142 
[-3,1]=1.54141 
[-3,3]= 1.61045 
[-3,5]=1.71239 
[-2,-2]=1.38529 

[-2,0]=1.30884 
[-2,2]=1.38528 
[-2,4]=1.54139 
[-1,-5]=1.54111 
[-1,-3]=1.30893 
[-1,-1]=1.00068 
[-1,1]=1.00068 
[-1,3]=1.30892 
[-1,5]=1.5411 
[0,-4]=1.38471 
[0,-2]=1.00037 
[0,0]=0 
[0,2]=1.00037 
[0,4]=1.38471 
[1,-5]=1.5411 
[1,-3]=1.30892 
[1,-1]=1.00068 
[1,1]=1.00068 

[1,3]=1.30893 
[1,5]=1.54111 
[2,-4]=1.54139 
[2,-2]=1.38528 
[2,0]=1.30884 
[2,2]=1.38529 
[2,4]=1.5414 
[3,-5]=1.71239 
[3,-3]=1.61045 
[3,-1]=1.54141 
[3,1]=1.54142 
[3,3]=1.61046 
[3,5]=1.71241 
[4,-4]=1.76984 
[4,-2]=1.71239 
[4,0]=1.6901 
[4,2]=1.7124 
[4,4]=1.76986 

 
 
Discussion  
 
It is interesting to compare the results above with the results that we get from 
the Y∆ transformation or the Atkinson and Steewijk’s [2]. We can check easily 
that from table 3 and 4 or 5 will be more accurate if we use more Gauss 
points in the numerical calculation. 
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