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Statistical Integrated Circuit Design 
Stephen W. Director, Fellow, IEEE, Peter Feldmann, Member, IEEE, and Kannan Krishna, Student Member, IEEE 

Abstract-IC manufacturers have become increasingly inter- 
ested in maximizing yield as a way to maximize profits. As a 
result, there has recently been renewed interest in computer 
aids for maximizing yield. While statistical design methods for 
maximizing circuit yield have been available for more than two 
decades, it is only recently that such methods have become 
practical. In this paper, we review some of these methods and 
illustrate the usefulness of one of these, the boundary integral 
method, with several examples. 

I. INTRODUCTION 

RADITIONAL or deterministic design focuses on finding T a set of circuit parameter values such that all circuit 
performance specifications are met. It is usually assumed that 
this set of values can be accurately realized when the circuit 
is built. Unfortunately, this assumption is not realistic for 
mass-produced integrated circuits where fluctuations in the 
manufacturing process cause deviations in the actual values 
of the parameters from their nominal values. The statistical 
variability of the circuit parameters, in tum, causes the circuit 
performances to show a spread of values. Thus, if an amplifier 
was designed for a nominal dc gain of 50 dB, we could 
expect to see a distribution of actual gains for a population of 
manufactured chips to be similar to the one shown in Fig. 1. 

The ratio of the number of chips that meet specifications 
to the number of chips that are manufactured is referred to 
as the yield. Yield of less than 100% is due to two types 
of disturbances: local and global. Local disturbances, caused 
by spot defects in the manufacturing process, are the primary 
cause of catastrophic failures or functional failures which often 
cause a change in the basic functionality of the circuit. Global 
disturbances, primarily caused by phenomena that affect most 
devices on a chip (e.g., mask misalignment, variations in 
diffusion temperatures, or implant doses), are the primary 
cause of parametric failures. Parametric failures result when 
the chip is “functional” but specifications on such quantities 
as speed and power are not met. 

Because of the close correlation between high yield and 
high profits, IC manufacturers strive to maximize yield. As 
the complexity of VLSI designs continues to increase, the 
need for computer aids for maximizing yield becomes more 
important. While statistical design methods for maximizing 
the circuit yield have been an active area of research for 
more than two decades, it is only relatively recently that 
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Fig. 1. Distribution of manufactured performances. 

such methods have been taken seriously by the IC design 
community. Among the reasons for this situation are that a 
number of practical yield maximization methods specific to 
integrated circuits have recently been developed. Second, it 
is only relatively recently that computers powerful enough 
to use these methods in a reasonable amount of time have 
appeared. Finally, the economics of chip manufacture are such 
that maximization of yield, rather than merely optimization of 
performance, has become of prime importance. 

In this paper, we review several statistical design methods 
that have been developed to minimize the effects of IC 
manufacturing process disturbances on circuit performance. 
We also illustrate the effectiveness of the most recent of 
these, the boundary integral method, with several circuit design 
examples. 

11. PARAMETRIC CIRCUIT YIELD MAXIMIZATION 
In this section, we will formally define “parametric yield” 

and formulate the “parametric yield maximization problem” 
for integrated circuits. 

A circuit to be designed is characterized in terms of a set 
of nP performances, which are the components of the nP- 
dimensional vector cp = ( c p l , . . .  ,cp,,). For example, the 
performances of interest, for the circuit shown in Fig. 2,  are 
the dc gain, the unity gain frequency, and the phase margin. 

These performances are determined by a set of param- 
eters that is denoted by the np-dimensional vector p = 
( P I .  . . .  . p n p ) .  Note that cp = cp(p). For VLSI circuits, there 
are two categories of parameters comprising p that affect 
circuit performances: process-related parameters like the oxide 
thicknesses and length reduction of MOS devices, and circuit- 
related parameters such as device sizes and their placement. 
During the normal design process, nominal values are assumed 
for the parameters po. During manufacture, however, inherent 
process disturbances cause the actual parameter values to 
deviate randomly from their nominal values causing actual 

0018-9200/93$03.00 0 1993 IEEE 



194 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 28, NO. 3, MARCH 1993 

of the jpdf of E .  One frequently made assumption is that the 
components of the random vector I ,  which model variations 
of controlling parameters at successive fabrication steps, are, 
at least to first order, mutually independent. A different ap- 
proach to the modeling of disturbances is to use statistical 
techniques on data collected from the fabrication line. These 
techniques, such as principal factor analysis [20], model the 
highly dependent set of random variables as functions of 
a smaller set of independent random variables. While these 
independent factors may not necessarily be related to any 
physical quantities, they can be used to model the circuit 
parameter variations. 

T- 

111. VLSI CIRCUIT OPTIMIZATION 

A manufactured circuit will be considered acceptable if all 
of its actual performances fall within acceptable limits, i.e., if 

cpk 5 cpk 5 cp;. IC = l:..,n,. (1) Fig. 2. Fully differential folded-cascode amplifier. 

performances to vary as well. In particular, the actual layout 
geometries are affected by effects such as mask misalignment, 
lateral diffusion, and over (under) etching, while process- 
related parameters are primarily dependent on effects such as 
variations in diffusion times, temperatures, energies, doses of 
implants, etc. 

If the random ne-dimensional vector E denotes process 
disturbances, the vector p represents actual values for the 
parameters with nominal values po, subjected to the distur- 
bances E .  Mathematically, the actual parameter values can 
be expressed as functions of their nominal values and of the 
disturbances: p = p(po,  E ) .  Note that the number of parameters 
is, in general, not related to the number of disturbances, i.e., a 
single process disturbance can simultaneously affect multiple 
integrated circuit parameters and a circuit parameter may be 
affected by multiple disturbances. The nominal values of the 
process-related parameters are not under the direct control of 
the circuit designer, who can only specify parameters such 
as device sizes and layout. Therefore, only a subset of the 
nominal parameter values po are truly designable in the circuit 
design phase. For the purpose of yield maximization, it is 
convenient to express circuit performances as functions of the 
deterministic nominal parameter values p ,  and the random 
vector 6: 'p = 'p(po, I ) .  For the circuit in Fig. 2,  the designable 
parameters are the device geometries and the bias current. Al- 
though there are 24 transistors and consequently 48 widths and 
lengths that are designable, only 12 of the widths and lengths 
are independent designables, due to matching constraints, e.g., 
M1 and M 2  should have identical dimensions. The designable 
part of the po vector of this circuit therefore has 13 elements: 
12 widths and lengths and a bias current. 

The random variables that characterize the disturbances, 
I = (51, . . . , In, ), may represent physically based effects 
at the process level. These variables, such as variations of 
temperatures, impurity diffusivities, etc., mimic the random 
variations that occur in a manufacturing line. A process and 
device simulator [l] can be used to predict their effect on 
circuit parameters. We can make reasonable approximations 

In the case of our amplifier circuit in Fig. 2,  acceptable 
performances might be expressed as 

dc gain 2 55 dB, 
unity gain frequency 2 45 MHz, 
phase margin 2 30". 

The system of inequalities, (I), defines a region of accept- 
ability, denoted by A,,  in the a,-dimensional performance 
space, which is a Cartesian space spanned by the n, perfor- 
mances pZ.i = l , . . . . n ,  . 

We can now formally state the yield of a design as the prob- 
ability that a manufactured circuit has acceptable performance, 
i.e., that the vector cp belongs to the acceptability region A ,  : 

y = Prob {cp E A91 = f , ( P o ,  'p) dcp. J,, 
where f p ( p O ,  cp) is the joint probability density function (jpdf) 
of the circuit performances that constitute the vector cp. The 
j p d f  is clearly dependent on the nominal parameter values 
po.  Yield maximization is performed by determining a set 
of nominal values of the designable parameters, po. that 
maximizes the probability mass of the random performances 
that lies within A,. Consequently, the yield maximization 
problem, in the performance space, is formulated as 

IIlaX { Y = s,, f & O ,  cp) d i }  
PO 

It is important to observe that the j p d f  f,(po, 'p) is not 
explicitly available to us and, in general, no easy means is 
available for obtaining it. Therefore, employing (2) as a basis 
for maximizing yield is difficult and we are motivated to 
consider alternative formulations to the yield maximization 
problem. 

We can also formulate the yield optimization problem in 
the space of independent statistical disturbances, viz., the 
disturbance space. The disturbance space is a Cartesian space 
in which the axes correspond to independent statistical distur- 
bances. The region of acceptability in the disturbance space, 
denoted by Ac(po):  consists of all possible combinations of 
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Fig. 3. Yield optimization by moving the acceptability region boundary. 

disturbances that can occur in the manufacturing of a circuit, 
which, for specific nominal parameter values, do not result in 
unacceptable performance. It is given by 

(3) 

In the disturbance space, the acceptability region is the inverse 
image of the parametrized mapping E -+ cp which depends on 
the nominal parameter values pO.  

Parametric yield can be expressed in the disturbance space 
as the probability of occurrence of a combination of acceptable 
disturbance values and can be formalized as 

AS(P0) = mL 5 Cp(P0,E) I C P U > .  

Y = Prob (5 E A<(po)} = .i,,,,, f E ( 0  dE. (4) 

Thus, the resulting optimization problem is 

( 5 )  

Yield optimization is, therefore, performed by modifying the 
acceptability region in a way so as to increase the coverage 
of a fixed probability distribution. This is illustrated in Fig. 3 
for a two-dimensional disturbance space. 

For the case of the differential amplifier in Fig. 2 ,  we 
assumed that the processing variations were adequately mod- 
eled by the variations in length and width of the n- and 
p-type devices, flat-band voltage variation of the n- and p- 
type devices, and the variation in oxide thickness. Thus, we 
have a seven-dimensional disturbance space. 

We have found that the disturbance space formulation is the 
most adequate formulation for the case of integrated circuits 
where different components and devices are subject to vari- 
ations caused by the same random disturbances. Some other 
statistical design methods that assume a different formulation 
cannot easily accommodate this type of situation. 

Iv. STATISTICAL DESIGN ISSUES 

A. Alternate Optimization Formulations 

So far, we have considered only the adjustment of nominal 
parameter values as a means for optimizing yield. Another 

possible way to improve yield is to adjust component tol- 
erances. For the case of VLSI circuits, reducing tolerances 
means tighter control of the process, thereby minimizing the 
spread in the device parameter values. This can be achieved 
by applying statistical design techniques at the process level 
and through the use of more precise, and, in most cases, 
more expensive manufacturing equipment. Since tightening 
tolerances is likely to increase the cost of production, it is 
desirable to identify the components, device parameters, and 
processing steps, for which better tolerances result in savings 
that offset the cost. Alternatively, one can identify parameters 
for which relaxing the tolerance has only minor effects on the 
variability of performances. This may allow the use of a less 
expensive processing step, or a simpler circuit topology, thus 
reducing manufacturing cost. 

Mathematically, tolerances can be modeled as parameters, 
pf, that control some measure of spread, such as variances, 
of the statistical distributions, f e  (5, pf ), of disturbances. Let 
C(pf) be a function that models the manufacturing cost 
associated with a given set of tolerances. The tolerancing 
problem can then be formulated as 

such that C(pf) < C,,,. (6) 

The tolerancing problem can also be formulated as a cost 
minimization problem with a minimum yield constraint: 

Such a formulation may be more appropriate in some cases. 
Sometimes a low yield results from very stringent specifi- 

cations. In many cases, especially when designing a subcom- 
ponent of a larger design, specifications may be negotiable. 
It may be the case that one or several specifications can be 
relaxed and compensated for by other subcomponents at a 
much lower cost. The problem here is to identify specification 
constraints responsible for significant yield loss and to predict 
to what extent yield can be improved by relaxing them. Of 
course, such an exercise is not possible when specifications 
result from standards or published specification sheets. 

Specifications can be modeled, mathematically, as deter- 
ministic parameters that control the acceptability region. If the 
function C(,pB) quantifies the cost, on the entire system, of 
modifying the specifications p B ,  which represent lower or up- 
per bounds on circuit or device performances, the specification 
assignment problem becomes 

such that C ( @ )  < C,,,. (7) 

As in the case of the tolerancing problem, this can also be 
formulated as a cost minimization problem with a minimum 
yield constraint. 
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Finally, while parametric yield is the most frequently used 
measure of statistical behavior of mass produced circuits, other 
measures such as quality loss or signal-to-noise ratios [IO], 
[26] are sometimes more accurate measures of performance 
variability. Several statistical design methodologies [lo], [ 171 
use these as the objective for optimization. 

B .  Analytical Models 

The statistical design problem can be formulated as an 
optimization problem in which the objective function and/or 
constraint functions contain statistical averages, such as yield 
or another measure of performance variability. Optimization 
uf a function is an iterative process that requires several 
eva!uatiol;s of the objective and constraint functions and 
tnci; giadients. Since statistical objective functions are, in 
general, very expensive to evaluate, it is important to choose 
an optimization strategy that requires a minimum number 
of objective function evaluations. State-of-the-art gradient- 
based optimization algorithms, such as [4], can significantly 
reduce the number of required iterations. Therefore, it is very 
important to be able to compute both the statistical objective 
function and its gradient efficiently. 

In general, to determine if a circuit satisfies a given spec- 
ification, a circuit simulation must be performed. Circuit 
simulation, especially of large circuits, is computationally 
expensive and has, consequently, been the bane of practical use 
of yield maximization strategies. Fortunately, techniques have 
been developed to overcome this bottleneck through the use 
of analytical approximations of performances. The efficiency 
of these techniques is determined by the cost of building 
sufficiently accurate approximations. These techniques require 
that some number of circuit simulations be performed on a 
sample of circuits according to some experimental plan [24], 
[25]. From these simulations, the analytical approximations 
are determined using either response surface or interpolation 
techniques. 

Response surface models are constructed by computing the 
coefficients of linear or quadratic polynomials through linear 
regression from the simulation results at the experimental 
points. This requires a number of simulations that is larger than 
the number of coefficients to be computed, the extra degrees 
of freedom being used to estimate the modeling error. For 
quadratic polynomials, the number of coefficients increases as 
the square of the number of model parameters and, therefore, 
may quickly become prohibitively large. In order to reduce the 
number of coefficients that need to be computed, techniques 
such as parameter screening or stepwise regression [23] can 
be used. Some researchers have gone so far as to ignore 
all quadratic cross-products. This is, however, not a good 
compromise since the effect of this would be to neglect all 
interactions among parameters, information that is crucial for 
variability reduction [ 191. 

A different way of generating simple analytic expressions 
for performances as a function of their parameters is through 
interpolation. In contrast to response surfaces, interpolation 
models pass exactly through all the experimental points, but 
provide no means for estimating the resulting modeling error 

Interpolation methods used in statistical design methodolo- 
gies range from simple linear interpolation [6], [7] to more 
complicated techniques such as maximally flat interpolation 
[ 151. A method that combines the maximally flat interpolation 
with regression-based approximation was presented in [ 161. 
A particularly interesting interpolation approach has been 
proposed in [31]. 

v. YIELD MAXIMIZATION METHODOLOGIES FOR IC’s 

As mentioned above, a large number of circuit yield max- 
imization methodologies have been developed for discrete 
circuits. Integrated circuit yield optimization is fundamentally 
different from discrete circuit yield optimization in that for 
IC’s a, typically small, number of disturbances affect a large 
number of devices causing variations in the devices to be 
highly dependent on each other. Here we discuss some im- 
portant methodologies that are suitable for integrated circuit 
yield optimization. 

A. The Method of Random Perturbations 

One category of methods for IC yield optimization is 
based on stochastic approximation. Stochastic approximation 
is a general method for dealing with optimization of regres- 
sion functions, E[h(p)] (E[ . ]  denotes expectation), where only 
noise corrupted observations of h ( p )  can be obtained. Several 
stochastic approximation methods have been developed for 
both unconstrained and constrained statistical optimization 
problems. 

Yield can be expressed as the expectation of the acceptabil- 
ity region indicator function 

with respect to the j p d f  of the statistical variables. 
r r 

Stochastic approximation methods can, therefore, be used for 
maximization of the yield function. 

Styblinski and Ruszczynski [28] use a variant of the sim- 
plest stochastic approximation algorithm which is akin to the 
steepest ascent method. The main feature of this method is 
the fact that the Monte Carlo estimation of yield gradient 
is blended within the optimization algorithm. The expensive 
Monte Carlo analysis is not performed at every iteration to 
determine the yield gradient. The estimate of the gradient used 
in the stochastic approximation approach can be based on a 
very small number of samples, even one, and the direction of 
movement of the designable variables, at any iteration, is a 
convex combination of that of the previous iteration and the 
gradient determined during the current iteration. The rate of 
convergence is, however, dependent on the accuracy of the 
yield estimate. 

Yield in expression (8) can be estimated through Monte 
Carlo using a sample of points in the disturbance space, pro- 
duced by a random number generator that mimics the j p d f f c  . 
However, since designable parameters appear in hc, which is 
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not differentiable, there is no straightforward expression for 
the Monte Carlo estimate of the yield gradient. The method of 
random perturbation is used to cope with this situation. 

This method involves perturbing the original problem by 
adding a random component 77 to the deterministic parameters 
po. The variance of this random component is controlled 
by a parameter P. As P is decreased to 0, the random 
component 77 becomes a deterministic zero vector and the 
parameters become deterministic again. One of the possible 
choices for the distribution, f q ( q , P ) ,  to be assigned to these 
perturbation parameters is a multivariate normal distribution 
with its covariance matrix scaled by P. With this random 
perturbation all parameters become statistical and can be 
decomposed into the sum of a deterministic vector (which is 
partially designable) and a random vector. 

P =  [pgn] + [;] = @ , + I .  (9) 

Using the indicator function h (similar to the one introduced 
before), the “perturbed yield” can be expressed as 

Jcz. 

where f&(,P) = f ,(q.P)ft(<). By performing a simple 
change of variables C = Po + i7 the designable parameters 
appear only in the j p d f ,  which is differentiable. 

(1 1) 

In this formulation the gradient of the perturbed yield can be 
estimated using a Monte Carlo procedure. For the stochastic 
approximation algorithm, however, only one or a few samples 
are used at every iteration. During the course of optimization 
/3 is also swept to 0, therefore, at convergence the “perturbed 
yield” becomes the original yield. 

This method was used in a system for production yield op- 
timization with respect to fundamental fabrication parameters 
and mask layout dimensions. A statistical process simulator 
(FABRICS [I]) is run in conjunction with a circuit simulator 
(SPICE [ 2 ] )  to determine the effect of fabrication process 
variations on circuit performance. 

The main drawback of this method is the fact that the 
optimization algorithm is stochastic and may require a very 
large number of iterations to achieve convergence. Since 
simulations must be performed at each iteration, stochastic 
approximation may turn out to be prohibitively expensive. 
Analytic models can be employed to reduce the cost of 
simulation. The approximation must be done, however, in 
terms of both deterministic and statistical variables over the 
entire space of interest, and therefore the cost of modeling can 
increase rapidly as the circuit size increases. 

B .  The Texas Instruments Method 

Researchers at Texas Instruments have proposed a yield 
optimization method tailored for digital MOS circuits. They 
have observed that both current and capacitance in MOS 
FET’s are primarily sensitive to four variables [5]-[7]: width 

reduction, length reduction, oxide capacitance, and flat-band 
voltage (for both n-channel and p-channel devices for the case 
of CMOS). Effects of variables such as doping profile have 
been found to be significantly smaller. Since these parameters 
are determined by different steps in the manufacturing process, 
they can, to first order, be assumed to be independent of 
each other. All circuit variations are, therefore, assumed to 
be caused by the variations of these statistical variables. The 
aforementioned variables define the disturbance space. 

To reduce the cost of circuit simulation, circuit performances 
are approximated as linear functions of the four statistical 
variables. A linear interpolation model for each performance 
is constructed from five (six for the case of CMOS circuits) 
circuit simulations. Performance constraints resulting from 
specifications applied to these interpolation models define 
a polytope in the disturbance space that approximates the 
acceptability region. Yield is defined as the integral of the 
disturbance j p d f  over this approximation to the acceptability 
region. It can easily be estimated by Monte Carlo. 

Having a means for evaluating yield, the next step is to have 
some means for optimizing it with respect to the designables. 
Two yield optimization strategies are proposed. The gradient- 
based approach involves computation of the yield gradient. 
The other is a geometric approach. 

The gradient-based approach involves the computation of 
the yield and the yield gradient by multidimensional inte- 
gration. Yield can be evaluated by quadrature techniques, 
by integrating the j p d f  of the statistical variables over the 
approximating polytope. The gradient can be evaluated in a 
similar way, only that the integration is performed over the 
facets of the approximated acceptability region. A gradient- 
based algorithm using a quasi-Newton procedure is then used 
to optimize the circuit yield. 

The geometric approach solves the problem in which the 
minimum distance of the mean point of the disturbance j p d f  
(the projection of the nominal point from the parameter space 
onto the disturbance space) from the acceptability region 
boundaries is maximized, i.e., the boundaries are pushed as 
far as possible from the center of the j p d f  (Fig. 4). It uses 
an iterative approach to solve this problem in which, at each 
iteration, the distance functions, to the approximated accept- 
ability region boundaries, are linearized. A linear programming 
problem is then formulated and solved with this linearization. 

The main features of this method are approximation of 
the acceptability region boundaries by hyperplanes and yield 
maximization, done both directly with the yield and yield 
gradient and, indirectly, using a geometric approach. 

The method described above makes use of a number of 
good ideas, such as the choice to compute yield in the 
disturbance space, the use of a small number of statistical 
variables to account for most of the performance variability, 
and the computation of the yield gradient as surface integrals. 
However, the method uses some algorithms and assumptions 
that restrict its application as a general yield optimization 
strategy. The method builds linear models for the performances 
in terms of the statistical variables which may not be accurate 
enough in other processes. Other aspects of the method, 
for example, using quadrature integration to determine the 
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Fig. 4. Moving the acceptability region boundaries to improve parametric Fig. 5. Generation on points on acceptability region boundary in the bound- 
yield. ary integral method. 

yield gradient, can be applied only to acceptability regions 
determined by such linear models and even then only if the 
number of statistical variables is restricted to about four or 
five. Therefore, this methodology is limited in its application 
to the particular class of digital MOSFET circuits described 
by the authors. 

C. The Boundary Integral Method 
The boundary integral method [8]-[ll], which may be 

viewed as a generalization of the Texas Instruments approach, 
uses a formulation of yield involving the acceptability region 
in the space of independent statistical disturbances. However, 
the boundary integral method is unique in the sense that 
through the application of Stokes' theorem it reformulates 
yield itself as a surface integral on the boundary of the 
acceptability region in this disturbance space. The advantages 
of this reformulation is that yield and derivatives of yield, with 
respect to deterministic nominal parameters, parameters of the 
disturbance distribution, and performance constraints, can all 
be expressed as surface integrals on the acceptability region 
boundary, and can be computed through Monte Carlo based 
on the same set of sample points. This sample is obtained 
by generating points within the acceptability region and then 
projecting them onto the acceptability region boundaries, as 
illustrated in Fig. 5. 

Suppose we generate such a sample of points on the ac- 
ceptability region boundary. s = { < ( k ) } k , l ,  . . . ,NC.  According 
to the boundary integral method the Monte Carlo estimate of 
yield is 

The expression for the derivative of the yield with respect 
to a designable circuit parameter, say z;, is 

where pa is the performance that determines the boundary at 
point Q k ) .  

Similarly, the expression for the derivative of the yield with 
respect to a specification constraint, cp;, (pa - (p,B 2 0) is 

where the terms correspond the subset of the boundary points 
st = { < ( k ) } k = l , . . , , N B  for which the constraint is active. The 
derivative values areb&e sensitivities of the yield to various 
constraint specifications. 

In addition, expressions can be obtained for derivatives of 
yield with respect to parameters of the disturbance distribution. 
The sensitivity of the yield with respect to a parameter p that 
may affect the distribution of more than one disturbance is 
given by 

This expression can be used to determine the effect of the 
variances or spreads of different process disturbances on the 
performance of the circuit. This expression is also used to 
obtain the yield gradient component contributed by distur- 
bances that have distributions dependent on the designable 
parameters. Although a yield optimization procedure will only 
make use of the information regarding the gradient of the yield 
with respect to the designable parameters, the aforementioned 
sensitivities can provide valuable information about the circuit 
being designed. 

AT, 

nN k = l  
y = - ' S k F ( , q ( t q ) ( = p )  (12)  

where n is the dimensionality of the disturbance space, N is 
the number of original Monte Carlo points, q is the projection 
direction used to generate point < ( k ) l  F<,,(t,) is the marginal 
probability function corresponding the qth component of <(') , 
and S k  is a sign factor. 
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The boundary integral method provides a way to estimate 
yield, yield gradients, and sensitivities that is completely 
decoupled from the larger statistical optimization problem. 
Yield, its gradient with respect to the designable parameter 
vector, and its derivatives with respect to performance 600 

specifications, disturbance distribution parameters, etc. can 
be computed without any reference to the kind of 2 

optimization that needs to be performed. One is not tied $ 
down to any one particular optimization formulation and E 4oo 

the choice of an optimization algorithm is completely 

The same orthogonality applies to the choice of the 
analytic approximation method. In [8]-[ll], in order to 
save on the cost of performance evaluation by circuit 

orthogonal. z 
200 

simulation at every Monte Carlo point, the performances 
of the circuit are approximated by macromodels (response 
surfaces) that are quadratic in the disturbance variables. 
However, one can even choose to estimate performance 
employing a smaller number of boundary points obtained 

01 40 

after optimiratioii 

before optinuzation 

50 60 7 0  BC 

Unity Gain Frequency (in MHz) 

7 
90 

directly through line searches and avoid approximations 
altogether. 

The advantages of using the surface integral formulation 

Fig. 6. Distributions of ugf (in megahertz) in a population of 2500 samples 
before and after optimization. 

of yield are multiple. First, the computation involved in 
determining separate sets of Monte Carlo points for the 
yield and the yield gradient is avoided. Most importantly, 
though, the Monte Carlo estimate of the surface integral 
yield expression is consistent with the Monte Carlo estimate 

surface integral Monte Carlo estimate of the yield is I 

the Monte Carlo estimate of the yield gradient. This 
consistency is absent if the yield is estimated as a volume 
integral based on a different sample. As a consequence 
of the consistency a gradient-based optimization using very 
poor estimates, even based on a few points, will still 
converge. 

'Ow 

of the yield gradient integral, i.e., the gradient of the after optimization 

E ,ooo 

3 

VI. CIRCUIT OPTIMIZATION EXAMPLES 
WITH BOUNDARY INTEGRALS 

We now illustrate the effectiveness of the boundary integral 
method by several examples. As a first example, we used the 0 2 0  30 40 5 0  

boundary integral method to maximize the yield of the differ- Phase Margm (in degrees) 
0 

entia1 amplifier example shown in Fig. 2 .  The specifications, 
disturbances, and designables were as described earlier. The 
circuit yield improved from 39% to 100%. Figs. 6, 7, and 8 
show distributions of the three performances of interest before 
and after optimization. 

These figures show the trade-off that has been achieved 
between the gain and unity gain frequency (ugf) specs, and 
the phase margin spec. The final spreads of all three perfor- 
mance measures have been reduced. However, the nominal 
gain and the nominal ugf have been reduced and a cor- 
responding increase in the nominal phase margin has been 
obtained. 

The boundary integral method affords us an efficient way 
to compute circuit yield and its gradient. Traditionally, yield 
maximization examples tend to focus on improving circuit 
yield using this gradient information. However, as we have 

Fig. 7. Distributions of phase margin (in degrees) in a population of 2500 
samples before and after optimization. 

discussed in Section IV, statistical design need not restrict 
itself to maximizing yield. In this example we illustrate how 
we can increase a performance specification while maintaining 
a minimum yield specification. The problem formulation is of 
the form 

max spec 

spec Po 
such that Y(p,, spec) 2 Ymin. 

We chose to maximize the ugf specification (spec) while 
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Fig. 8. Distributions of gain (in decibels) in a population of 2500 samples 
before and after optimization. 

TABLE I 
MARGINAL YIELDS AT INITIAL POINT 

Performance Marginal Yield (in%) 
Bandwidth 88 
DC gain 100 

Ripple 54 
Roll-off I O 0  

maintaining a minimum yield (Ymin) of 80%. The initial 
point had a yield of 100%. The final yield was decreased 
to 98% and the ugf spec was raised from 45 to 55 
MHz. 

Next consider the five-pole current mode filter described 
in [32]. The circuit has a total of 175 MOS transistors. The 
desired specifications for this circuit are 

dc gain 2 -1.5 dB, 
bandwidth 2 35 MHz, 
passband ripple 5 0.5 dB, 
rolloff 2 100 dB/decade. 

Disturbances include variations in the width, length, ox- 
ide thickness, and flat-band voltage of the n- and p-type 
devices. We found that linear macromodels in the distur- 
bance variables were sufficiently accurate for all four per- 
formances. The designables in this circuit were five inde- 
pendent transistor widths. The initial yield of the circuit was 
42%. 

The marginal yield of a certain circuit with respect to a 
particular performance is defined as the fraction of circuits 
that satisfies that particular performance specification. For this 
example, the marginal yields at the initial point are given in 
Table I. 

It is not entirely atypical for such a situation to occur 
with a design. In many cases the design is such that some 
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TABLE I1 
SENSITIVITIES OF YIELDS WITH RESPECT TO DISTURBANCE VARIANCES 

~~ ~ 

Disturbance 
n flat-band voltage vanation 

Sensitivity of yield wrt variance 
0.007466858 
-0.9938294 17 n-device r,, variation 
0.060 17 1695 n-device length variation 

n-device width variation -0.009230657 
flat-band voltage variation 0.030542683 

p-device tor variation -0.05841 lo00 
-0.059349247 p-device length variation 

p-device width variation 0.025970466 

TABLE 111 
PERCENTAGE CHANCE IN DESICNABLES 

% Change Width # 

1 21.54 
2 -23.55 
3 50.76 
4 2.21 
5 95.53 

performance specifications are comfortably satisfied and other 
performances are quite close to the specification. In other 
cases some performances that may nominally be well within 
the specification bounds are extremely sensitive to process 
variations and cause the circuit yield to be low. This, cou- 
pled with the fact that performances are usually competing 
against each other (e.g., an increase in gain usually causes 
an decrease in bandwidth), may cause the circuit to have 
low parametric yield even though it may seem to have good 
nominal performances and good marginal yields. Since the 
performances are not independent of each other, the overall 
parametric yield is not equal to the product of the marginal 
yields. 

For this particular circuit, at the initial point the sensitivity 
of the yield to the dc gain and rolloff performance specifi- 
cation was 0.0. This does not come as a surprise to us after 
considering that these specifications are comfortably satisfied 
at the initial point. The normalized sensitivities of the yield 
to the disturbance variances at the initial point are given in 
Table 11. 

We note that variance of the oxide thickness variation of 
the n-type devices has the most detrimental effect on the 
yield. Since the variance of a disturbance is a measure of 
its spread, we can determine which processing step needs to 
be controlled most stringently to ensure good circuit yield. 
While such control may require costly equipment or may 
not be possible for a particular circuit, we might find such 
information useful when designing newer processing equip- 
ment. 

Upon optimization, which required only 288 circuit 
simulations, the yield of this circuit was increased to 
98%. The designable parameters changed as given in Table 
111. 

These numbers indicate that the designable parameters may 
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TABLE IV 
FINAL MARGINAL YIELDS 

Performance Marginal Yield (in %) 

DC gain 100 
Bandwidth 99 

Ripple 99 
Roll-off 100 

undergo a significant percent change during optimization. A 
very small change is noticed in Width 4 whereas Width 5 
has almost doubled during the course of the optimization. 
The marginal yields at the final point were as given in Table 
IV. 

VII. CONCLUSIONS 
We have shown that statistical design problems can be ex- 

pressed as optimization problems in which either the objective 
function or the constraint functions depend on expectations 
of random variables. Traditionally, one of the deterrents to 
the use of statistical design methods has been the high cost 
of circuit/process/device simulation. With the advent of fast 
computers and the development of methods that work to 
minimize the cost of simulation, yield maximization meth- 
ods are gaining acceptance among the circuit design com- 
munity. In fact, the scaling down of device sizes without 
a corresponding scaling down of processing variations has 
made such tools invaluable for circuits designed for manu- 
facture . 

Except for an attempt to analyze several methods devel- 
oped to handle the case of discrete circuit yield optimization 
[30], no comparative performance studies exist on various 
IC circuit yield maximization methodologies. In the absence 
of objective data, we offer our, somewhat biased, conclu- 
sion. 

The boundary integral method offers the most flexible 
formulation of the IC statistical design problem. By decoupling 
the computation of the yield and its gradients with respect 
to a variety of parameters from the actual optimization for- 
mulation, it allows the flexibility of using the objective and 
constraint functions that are most suited for the problem at 
hand. 
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