
Incremental Kernel PCA for Efficient
Non-linear Feature Extraction

Tat-Jun Chin David Suter
Institute for Vision Systems Engineering
Monash University, Victoria, Australia.

{tat.chin | d.suter}@eng.monash.edu.au

Abstract

The Kernel Principal Component Analysis (KPCA) has been effectively ap-
plied as an unsupervised non-linear feature extractor in many machine learn-
ing applications. However, with a time complexity ofO(n3), the practicality
of KPCA on large datasets is minimal. In this paper, we propose an approxi-
mate incremental KPCA algorithm which allows efficient processing of large
datasets. We extend a linear PCA updating algorithm to the non-linear case
by utilizing the kernel trick, and apply a reduced set construction method to
compress expressions for the derived KPCA basis at each update. In addition,
we show how multiple feature space vectors can be compressed efficiently,
and how approximated KPCA bases can be re-orthogonalized using the ker-
nel trick. The proposed method is justified through experimental validations.

1 Introduction

The KPCA method [9] can be applied as an unsupervised non-linear feature extractor in
domains where linear PCA is effective but has somewhat reached a performance barrier
due to linear assumptions of the underlying generative phenomena. KPCA allows es-
timation of non-linear kernel principal components (KPCs) which are more suitable to
describe highly complex and non-linear data distributions such as face images, handwrit-
ten digits and natural images. In applications where comparisons have been done, KPCA
almost always outperforms PCA.

However, in order to obtain accurate non-linear principal components from complex
data distributions, large training datasets are required, especially for data embedded in
a high-dimensional space. This presents a difficulty for KPCA since it has to store and
manipulate all data at once. Secondly, the resulting KPCs have to be defined implicitly
by linear expansions of the training data, thus all data must be saved after training. For
massive datasets, this means high costs for storage resources and computational load dur-
ing utilization of KPCs. Furthermore, for applications that require online data processing,
KPCA is impracticable since it is computable in a batch manner only. The problem of
batch KPCA training on large datasets is contingent upon the storage and processing of
the kernel matrixM. Given ann-vector training dataset, the size ofM is n2. Secondly,
invoking an eigendecomposition onM to perform KPCA involves a time complexity of
O(n3). This can severely handicap KPCA training on large datasets.

1

To solve this problem, we propose an approximate incremental KPCA algorithm.
Our idea involves kernelizing anexact linear PCA updating algorithm and applying a
reduced set (RS) construction method [9] at each iteration so as to maintain constant
processing speed and memory usage. We show how to efficiently compress multiple
feature space vectors via RS construction, and how approximated KPCA bases can be
re-orthogonalized. Experimental results demonstrate the effectiveness of the method.

2 Related Work

The work most similar inobjectiveto this paper is [5], where an approximate incremental
KPCA solution was proposed. The method involves mapping the training data via the
Empirical Kernel Map [9] with the intended kernel and performing a PCA updating al-
gorithm on the mapping results. A major drawback of their approach is that novel data
cannotbe incorporated. Hence, it is incremental only in the sense that not all data have
to be considered at once, butall data must be available initially to define the Empirical
Kernel Map (this means the methodcannotbe applied for online computations). Addi-
tionally, a few methods (e.g. Nyström method, Greedy KPCA [9]) have been proposed to
tackle the computational complexity problem of KPCA. Our solution differs from these
in that not only it reduces computational time complexity, it has the capability ofupdat-
ing with novel data unavailable initially in a way that maintains non-increasing memory
usage and update duration. This is crucial for real-time applications.

In [6], the Kernel Hebbian Algorithm (KHA) was proposed as an iterative KPCA al-
gorithm. Essentially, the method involves kernalizing the Generalized Hebbian Algorithm
(GHA) which is an online computation procedure for linear PCA. Similar in operational
characteristics to single-layer feedforward neural networks, the KHA outputs converge
towards KPCs byiterating the algorithm using the intended training data overmultiple
passes. Our work differs in that we seek anincrementalcomputation algorithm for KPCA
such that it is unnecessary to consider all available data more than once.

In [2], an incremental kernel SVD (KSVD) algorithm was proposed which involves
kernelizing incremental linear SVD. This does not imply incremental KPCA is solved,
since incremental KSVD does not require adaptive centering of temporal data and its ef-
fect on KPCs. Here, our work kernelizes adifferentunderlying linear algorithm. Note that
KPCA and KSVD return vastly different results on the same dataset. Secondly, their RS
compression scheme is poor causing severe subspace drift. Thirdly, their approximated
KSVD basis is not re-orthogonalized, exacerbating drift. Here, we demonstrate a superior
compression strategy and a kernel subspace re-orthogonalization scheme.

In [8], KPCA was used to obtain feature descriptors from multiple images for ap-
plication in mobile robot navigation and localization. RS expansions are constructed to
compress the KPCA-derived bases to reduce computational load during KPC utilization.
However, no method was proposed to incrementally update the principal components as
more features become available. Hence, their’s is not an incremental KPCA solution.

3 The Kernel PCA

We first establish the meaning of commonly used symbols. Given a matrixM, the symbol
Ma:b,c:d defines the submatrix that contains the elements ofM within the intersection of

2

thea-th row till the b-row and thec-th column till thed-th column. If the row or column
specifiers are omitted, e.g.M:,c:d, take all available rows or columns.

We begin by obtaining a data matrixa = [x1 · · · xn] ∈ Rm×n, with xi ∈ Rm being the
i-th input data. For KPCA, we non-linearly mapa to a higher dimensional spaceF using
the functionφ : Rm −→ F and perform PCA inF. The mapφ is induced by a kernel
functionk(· , ·) that evaluates inner products inF:

k(x, z) = φ(x) ·φ(z) , with x, z∈ Rm . (1)

If k(· , ·) is an appropriately chosenMercer kernel, thenφ belongs to a function space
that has the structure of a so-calledReproducing Kernel Hilbert Space(RKHS). See [9, 3]
for more details. Usingφ , we transforma into A = [φ(x1) · · · φ(xn)]. We centerA by
subtracting the meanµA from A. The mean and mean-adjusted data are respectively

µA = A

(
1
n

1n,1

)
:= Aν and Â = A (In−ν 11,n) := Aν ′ . (2)

In indicates an identity matrix of sizen× n while 1r,c represents a matrix of ones of
size r × c. ConsiderM = ÂT Â = (ν ′)TATAν ′ and its eigenvalue decompositionM =
Q∆QT . By using the kernel function,ATA can be evaluated without having to perform
the mappingφ . Via kernel singular value decomposition(KSVD) [3], the rank-r singular
value factorization of̂A is

Âr =
[
ÂQr(∆r)−

1
2

][
(∆r)

1
2

][
(Qr)T]≡U rΣr(Vr)T , (3)

whereQr = Q:,1:r and∆r = ∆1:r,1:r . Refer to [3] for proofs.ATA (and henceM) is positive
semi-definite if it is constructed using a Mercer kernel. The columns ofU r are the first-r
PCs ofA (i.e. the KPCs ofa) ranked according to

√
∆r . Observe that the PCs are defined

implicitly by linear expansions of mapped input data:

U r = Aν ′Qr(∆r)−
1
2 := Aα . (4)

Given a pointφ(z) in F corresponding to mapped input dataz, we center and project it
ontoU r via

(U r)T(φ(z)−µA) = (α)TAT [
A φ(z)

][−ν
1

]
, (5)

whereAT [A φ(z)] can be evaluated using the kernel function since it contains dot prod-
ucts between feature space vectors. The projection components are considered extracted
non-linear features. For an alternative but equivalent interpretation of the process of car-
rying out KPCA, refer to [9].

4 Incremental Kernel PCA

In this section we propose an approximate KPCA updating scheme. An ingenious method
for updating linear PCA with incremental data was proposed by [7]. Essentially it utilizes
an incremental SVD computation procedure coupled with a shift of the overall sample
mean in consideration of new data to update a previous basis produced via PCA. We ex-
tend their algorithm to enable KPCA updating. Note that although the following deriva-
tions make references to feature space vectors, their explicit existence is never required
and the mappingφ is always avoided.

3

4.1 Updating a Previous Factorization

To begin, assume we have dataa∈Rm×n with r KPCsU r and meanµA. These are defined
as linear expansions of mapped input data (refer to Section 3):

U r = Aα , µA = Aν , (6)

with A = φ(a). Assume that the corresponding singular valuesΣr and right singular
vectorsVr obtained during KSVD are available as well. We defineȦr as the reconstruction
of A using the first-r PCs i.e.Ȧr = Âr + µA.

Given new datab∈ Rm×c, the PCA of the overall dataD = [Ȧr B] is sought, where
B = φ(b). The mean ofB is

µB = Bω , with ω =
1
c

1c,1 . (7)

The mean of the overall dataD can be updated as

µD =
n

n+c
Aν +

c
n+c

Bω := Āν̄ , with Ā = [A B] and ν̄ =
1

n+c

[
nν
cω

]
. (8)

Following Equation (2),B is centered with regards to its own meanµB as

B̂ = B (I c−ω 11,c) := Bω ′ . (9)

At this stage, we use these intermediate results to construct matrixẼ which is defined as

Ẽ =
[

B̂
√

nc
n+c(µA−µB)

]
= [A B]

[[0n,c
ω ′

] √
nc

n+c

[ν
−ω

]]
:= Āγ , (10)

with 0n,c indicating ann× c matrix of zeroes. We can see thatµD and Ẽ are linearly
expanded from mapped input dataA andB.

To perform PCA onD, we can centerD with regards to its own meanµD and invoke
the SVD. However, this would correspond to a batch PCA since bothȦr andB have to be
utilized. For incremental PCA computation, we would not want to accessȦr . To this end,
it was algebraically proven in [7] that the scatter matrix corresponding toD is

SD = D̂D̂T = [Âr Ẽ][Âr Ẽ]T , (11)

whereD̂ = D−µD. In other words, to perform PCA onD, it is sufficient to carry out an
SVD on[Âr Ẽ]. At this stage, we apply incremental SVD procedures to updateU r using
Ẽ to avoid accessinĝAr . Given the previous factorization̂Ar =U rΣr(Vr)T , we decompose
[Âr Ẽ] as

[
Âr Ẽ

]
=

[
U r J

][
Σr L

0c+1, r K

][
Vr 0n,c+1

0c+1, r Ic+1

]T

, (12)

with L = (U r)T Ẽ, H = Ẽ−U rL andJK
QR←− H. Let E, F andGT be respectively defined

as the left, middle and right matrix of the right-hand-side of (12). We can diagonalizeF
by invoking the SVD, i.e.F =U ′Σ′ (V ′)T , and substitute it into (12), yielding the updated
SVD: [

Âr Ẽ
]
= U ′′Σ′(V ′′)T , (13)

with U ′′ = EU′ andV ′′ = GV′. The firstr PCs can be updated viaU r ←−U ′′
:,1:r . Note

that this is achieved without involvinĝAr or Ȧr and is dependent only oñE, U r andΣr .
Vr can be discarded for applications that do not make use of it. See [1] for details of
incremental SVD.

4

4.2 Applying the Kernel Trick

The task now is to computeJ, K andL without having to access feature space vectors
directly. MatrixL is defined as

L = (U r)T Ẽ = αTAT Āγ (14)

with L ∈ Rr×(c+1). L is computable by using the kernel function for inner products be-
tween the columns ofA andĀ. We can define matrixH subsequently as:

H = Ẽ−U rL = [A B]
[

γ1:n,:−αL
γ(n+1):(n+c),:

]
:= Āβ . (15)

Again,H is expressible as linear combinations of mapped input data withβ ∈R(n+c)×(c+1)

containing the expansion coefficients. Instead of using the QR decomposition to obtain
an orthonormal basisJ for H, we derive an equivalent orthonormal basis by performing
a KSVD onH and retain all left singular vectors to formJ. We can compute the kernel
matrix forH as

MH = β T ĀT Āβ = β TM̄β , (16)

with MH ∈R(c+1)×(c+1). M̄ can be evaluated using the kernel function on input data from
A andB. Hence,M̄ will be positive semi-definite and this will ensure the positive semi-
definiteness ofMH as well. In addition, the rank ofMH is equal to the rank ofH. Let
the eigenvalue decomposition ofMH = QH∆HQT

H . From Equation (3), the matrixJ and
K would then be

J = Āβ QH ∆−
1
2

H := ĀΩ , K = ∆
1
2
H QT

H , (17)

with Ω ∈ R(n+c)×(c+1) andK ∈ R(c+1)×(c+1). Note thatH can be rank deficient due to
the lack of novel information inB. In fact, H is always rank deficient by at least 1 due
to data centering ofB. Thus, the eigenvectors with zero eigenvalue should be ignored
since they do not contribute towards describing span(H). To do this, retain only the first
rank(MH) columns ofΩ and rank(MH) rows ofK. Matrix F is then constructed as shown
in Equation (12) and diagonalized to result inF = U ′Σ′(V ′)T . The left singular vectors of
the matrix[Âr Ẽ] are

U ′′ =
[

Aα ĀΩ
]

U ′ := ĀΨ , (18)

with Ψ =
[

α
0c, r

]
U ′

1:r,: +ΩU ′
(r+1):(r+rank(MH)),: .

The firstr KPCs ofa are then revised asU r ←− Āᾱ, whereᾱ = Ψ:,1:r . Along with the
overall data meanµD, this is the updated KPCA.

5 Compressing Feature Space Vector Expansions

Up to this stage our incremental KPCA computation is still exact, but observe that in this
procedure it is unavoidable that the updated KPCA basis and data mean are expanded
from old and new mapped image vectors. Thus, although we are spared from computing
a batch KPCA at every iteration, we still have to store all seen data. This is detrimental
towards maintaining constant update speed and memory usage. To solve this problem, we
compress the feature vector representations by constructing reduced set (RS) expansions.
To this end, various approaches (see [9]) can be applied, but here we use the “iterated pre-
images” method. The following provides a generic description of the underlying idea.

5

5.1 Constructing RS Expansions

Suppose we have a feature space vectoru∈ F (e.g. KPCs, data mean) linearly expanded
from n mapped input data{x1, · · · , xn} ∈ Rm:

u =
n

∑
i=1

αi φ(xi) . (19)

Here,φ : Rm→ F denotes the mapping induced by a kernel function andαi are the ex-
pansion coefficients. We seek apre-imagey∈ Rm so thatu = φ(y). Most likely an exact
pre-image will not exist (see [9]), and we will have to approximateu with a series of
approximate pre-images:

u≈
n′

∑
i=1

α ′
i φ(yi) , (20)

wheren′ < n andα ′
i are the new expansion coefficients. The intricacies on how to con-

struct this RS expansion are beyond the scope of this paper, but note that the largern′ is
the smaller the discrepancy of the approximation. Refer to [9] for details.

5.2 Compressing Several Feature Space Vectors Simultaneously

At each iteration, we haver + 1 feature space vectors (r KPCs and one data mean) ex-
panded from a library ofn mapped input data. By building RS expansions, we com-
press the representation of the feature space vectors. Note that RS expansions need to
be constructed for each vector individually. The current library ofn expansion vectors is
overwritten with(r + 1)n′ pre-images which will be used for future updates. Naturally,
compression is worthwhile only ifn > (r + 1)n′. For each feature space vector, coeffi-
cients for unrelated pre-images can be set to zero. See Figure 1(a).

Figure 1: Each block represents the matrix of linear expansion coefficients of a set of pre-
images estimated for RS expansions ofr +1 feature space vectors. Each square within a
block indicates one coefficient, with grey squares representing non-zero coefficients and
white otherwise. (a) Pre-images are inefficiently used. (b) Pre-images of a vector are used
to aid in spanning a subsequent vector. (c) Second pass allows full use of pre-images.

The previous approach tends to be wasteful, since the mapped pre-images in the ap-
proximation of one feature space vector will unlikely be orthogonal to the other vectors
in feature spaceF, and can be used essentially for free to aid in approximating the other
vectors [9]. This means that ifu2 is compressed afteru1, these feature space vectors will

6

have the form

u1 ≈
n′

∑
i=1

α ′
i φ(yi) , u2 ≈

n′

∑
i=1

β ′i φ(yi)+
n′

∑
i=1

γ ′i φ(zi) , (21)

whereβ ′i are determined foryi with respect to approximatingu2, while new pre-images
zi with coefficientsγ ′i are estimated to further improve the approximation accuracy. The
pre-image set(yi , zi) is then used to assist in compressingu3. Figure 1(b) illustrates this.

This paper extends this concept further to incorporate a second pass of coefficient
estimation. After the first stage of sequential compression, an extra boost of approxima-
tion accuracy is achievable if we re-estimate the coefficients for each feature space vector
expansion with regards to the overall pre-image set constructed during the first stage of
compression. Although without theoretical guarantee, in practice, an improvement over
the first pass is almost always obtained. This is despite most of the pre-images not being
specifically tailored to span a particular feature space vector. See Figure 1(c).

5.3 Re-Orthogonalizing the KPCA Basis

Most likely a RS-expanded basis̃U r = A′α ′ of an original KPCA basisU r = Aα is non-
orthogonal due to approximation errors. To re-orthogonalizeŨ r we can use KSVD again,
with

Mo = α ′TA′TA′α ′ = QoDoQT
o (22)

as the kernel matrix on which we invoke an eigenvector decomposition. The orthogonal-

ized basis is thenA′α ′QoD
− 1

2
o on which we project the approximated basis via

P = (α ′QoD
− 1

2
o)T(A′)TA′α ′ . (23)

Thus, the approximated basis is expanded using the orthogonal basis as

Ũ r
o = A′α ′QoD

− 1
2

o P := A′π . (24)

To normalize the basis vectors, the columns ofP are normalized. To express the singular
values corresponding to the new basis, project the original singular values onto this basis:

S= (Ũ r
o)TU rΣr = πT(A′)TAαΣr . (25)

The singular values associated with the new basis isΣ̃r = diag(S). The non-zero off-
diagonal elements ofSdiscarded due to the diag(·) operation correspond to the approx-
imation errors of the RS approximation. Note that the process does not require explicit
evaluations ofφ since only dot products between feature space vectors are required.

6 Experimental Results

We define IKPCA as an acronym of the proposed incremental KPCA algorithm with RS
constructions. 2D synthetic problems were considered first. The problems were generated
in the following way (see Figure 2):x-values have uniform distribution in[−1, 1], y-
values are generated fromy = x2 + ξ , whereξ is normal noise with standard deviation
0.2. From Figure 2, no visually discernible differences can be observed in the results of

7

batch KPCA and IKPCA where the RBF kernel withσ = 1 was used. Table 1 depicts
training durations of KPCA, IKPCA and KHA1 (using 2nd degree polynomial kernel) on
synthetic problems of various sizes. As expected, batch KPCA scales with complexity
O(n3). In contrast, IKPCA scales almost linearly, while KHA appears to scale badly. All
programs were run on Matlab on a 2.8Ghz Pentium 4 machine with 512MB of memory.

Figure 2: A 3100-vector 2D synthetic
problem. Contour lines show constant val-
ues of projection onto KPCs.

Vectors KPCA IKPCA KHA

520 7.23s 29.05s 93.75s

1000 44.10s 60.23s 198.73s

1510 161.23s 93.14s 381.92s

2020 413.05s 127.45s 695.31s

2530 990.29s 141.28s 990.86s

3100 1394.91s 165.29s 1569.02s

Table 1: Training durations on synthetic
problems of various sizes. Note that what
is compared here is the empirical time
complexity, i.e. the rate of growth of train-
ing duration with increase of problem size.

Next, popular datasets2 for manifold learning algorithms were considered. In partic-
ular, the perforated Swiss-roll (Figure 3(a)), rotating Teapot (Figure 3(b)) and the Frey
Face video sequence (Figure 3(c)) were trained using IKPCA. The eigenspectrum of the
datasets induced by the respective choice of kernels (see Figure 3(d)) show that none of
the datasets (except Swiss-roll) occupy an inherently low-dimensional subspace of their
corresponding feature space. Hence, during training the number of KPCs is selected to
encompass as much variance as possible (to prevent severe KPC drift) while maintain-
ing reasonable training speed. After training, each dataset is projected onto the first-10
KPCs. The same process is repeated for batch KPCA. Figures 4(a), 4(b) and 4(c) de-
pict the results which show that no critical differences are observable from the projection
components of the KPCs trained separately using batch KPCA and IKPCA.

(a)

dimension

(d)

si
ng

ul
ar

 v
al

ue
s

(b) (c)

Figure 3: (a) The 800-vector perforated Swiss-roll dataset. (b) Several samples of the
400-image Teapot dataset. (c) Several samples of the Frey Face dataset which contains
1965 sequential frames of a face from a video. (d) Eigenspectrum of the datasets. Red:
Swiss-roll (RBF kernel withσ = 1), Green: Teapot (2nd degree polynomial kernel), Blue:
Frey Face (2nd degree polynomial kernel).

1Code obtained from http://www.kyb.tuebingen.mpg.de/˜mof. The RBF kernel is not supported by the code.
2http://www.seas.upenn.edu/˜kilianw/sde/datasets.htm

8

KPC #1

K
P

C
 #

2
KPCA

KPC #1

IKPCA

KPC #3

K
P

C
 #

4

KPC #3

KPC #5

K
P

C
 #

6

KPC #5

KPC #7

K
P

C
 #

8

KPC #7

KPC #9

K
P

C
 #

10

KPC #9

(a) Swiss-roll

KPC #1

K
P

C
 #

2

KPCA

KPC #1

IKPCA

KPC #3

K
P

C
 #

4

KPC #3

KPC #5
K

P
C

 #
6

KPC #5

KPC #7

K
P

C
 #

8

KPC #7

KPC #9

K
P

C
 #

10

KPC #9

(b) Teapot

KPC #1

K
P

C
 #

2

KPCA

KPC #1

IKPCA

KPC #3

K
P

C
 #

4

KPC #3

KPC #5

K
P

C
 #

6

KPC #5

KPC #7

K
P

C
 #

8

KPC #7

KPC #9

K
P

C
 #

10

KPC #9

(c) Frey Face

Figure 4: The first-10 KPC projection components for the manifold learning datasets. For
each subfigure, the left column is the KPCA result, while the right is IKPCA. Each point
is assigned a colour to facilitate visual comparison, and smooth colour changes represent
continuous progression on the manifold. The figures are best viewed in colour.

As a practical application, we use IKPCA in the Kernel Eigenfaces [10] method for
face recognition. The Yale Face Database B [4] which contains 5760 images of 10 sub-
jects was used in the experiments. Each subject has 9 poses, and each pose is captured
under 64 distinct lighting conditions. See Figure 5. The images were cropped and resized
to 20x20 pixels. The dataset was then randomly partitioned into two disjoint subsets: Set
1 contained 5000 training images, and Set 2 contained 760 test images. By training Set 1
with IKPCA, we avoided storing a massive 5000x5000 kernel matrix for KPCA. By using
r = 36, n = 10 andc = 30, the intermediate matricesL (36x31),β (40x31),MH (31x31),
Ω (40x31) andK (31x31) of IKPCA (see Section 4.2) are relatively tiny. For compar-
isons, a subset of Set 1 with 1000 images was trained using KPCA and IKPCA. The 2nd
order polynomial kernel and the RBF kernel withσ = 1 were used since they gave the
best results in [10]. For classification, the training and test images were projected onto
the first-36 Kernel Eigenfaces (KPCs) and thek-nearest neighbour rule withk = 10 was
evaluated. The results in Table 2 show that by being able to process more exemplars, the
Kernel Eigenfaces obtained using IKPCA from Set 1 managed to outperform those esti-
mated via batch KPCA on the 1000-vector subset of Set 1. Moreover, the performances of
IKPCA and KPCA were almost identical given the same 1000-vector subset. Despite the
modest accuracy compared to other face recognition methods, what is demonstrated here
is the benefit of being able to process large datasets. In [10], Kernel Eigenfaces yielded a
similar error rate of27.27%(45/165) on the much smaller Yale Face Database3.

3http://cvc.yale.edu/projects/yalefaces/yalefaces.html

9

Figure 5: Face image samples.

Algorithm Vectors Kernel Error rate (%)

KPCA 1000 rbf, σ = 1 65.92 (501/760)

IKPCA 1000 rbf, σ = 1 66.84 (508/760)

KPCA 1000 poly, d = 2 49.61 (377/760)

IKPCA 1000 poly, d = 2 50.26 (382/760)

IKPCA 5000 rbf, σ = 1 46.58 (354/760)

IKPCA 5000 poly, d = 2 26.97 (205/760)

Table 2: Kernel Eigenfaces classification results.

7 Conclusion

In this paper, we proposed an incremental algorithm for performing non-linear (kernel)
PCA. This is achieved by kernelizing an exact linear PCA updating algorithm and using
RS expansions to maintain constant update speed and memory usage. We showed how
multiple KPCs can be accurately and efficiently compressed and how orthogonality of the
approximated KPCA basis can be enforced. Through several experiments, we showed the
accuracy and good scaling properties of the proposed algorithm. Finally, a face recogni-
tion task was demonstrated as practical application of the proposed method.

References

[1] M. Brand. Incremental singular value decomposition of uncertain data with missing
value. InECCV, pages 707–720, 2002.

[2] T.-J. Chin, K. Schindler, and D. Suter. Incremental kernel SVD for face recognition
with image sets. InIEEE FGR, 2006.

[3] N. Cristianini and J. Shawe-Taylor.Kernel methods for pattern analysis. Cambridge
University Press, 2004.

[4] A. S. Georghiades et al. From few to many: Illumination cone models for face
recognition under variable lighting and pose.IEEE PAMI, 23(6):643–660, 2001.

[5] Byung-Joo Kim. Active visual learning and recognition using incremental kernel
pca. InAustralian Conference on Artificial Intelligence, pages 585–592, 2005.

[6] K. I. Kim, M. O. Franz, and B. Scḧolkopf. Iterative kernel principal component
analysis for image modeling.IEEE PAMI, 27(9):1351–1366, 2005.

[7] J. Lim, D. Ross, R.-S. Lin, and M.-H. Yang. Incremental learning for visual tracking.
In Advances in NIPS, pages 793–800, 2004.

[8] J. Meltzer, M.-H. Yang, R. Gupta, and S. Soatto. Multiple view feature descriptors
from image sequences via kernel pca. InECCV, pages 215–227, 2004.

[9] B. Scḧolkopf and A. Smola.Learning with kernels. The MIT press, 2002.

[10] M.-H. Yang. Kernel Eigenfaces vs. Kernel Fisherfaces: Face recognition using ker-
nel methods. InIEEE FGR, pages 215–220, 2002.

10

