
1

An Aggregation-based Algebraic Multigrid Method
for Power Grid Analysis

Yu-Min Lee, Member, IEEE, Huan-Yu Chou, and Pei-Yu Huang

I. ABSTRACT

This paper develops an aggregation-based algebraic multi-
grid (AbAMG) method to efficiently analyze the power grids.
Different from the conventional algebraic multigrid (AMG)
scheme, an innovative constructing method of global inter-
grid mapping operator is employed to not only enhance the
sparsity of coarse grid operator for reducing the computational
complexity but also solve the problem with better convergent
rate. The proposed method can solve the circuit with size over
two millions in 167.6 CPU seconds (including DC analysis,
and transient analysis with 50 time steps), and the maximum
error is less than 1%. The significant runtime improvement,
over 26X faster than the InductWise [1] and over 1.25X faster
than the conventional AMG method, and less memory usage,
40% of the memory usage in [1] are demonstrated.

II. INTRODUCTION

With the deep sub-micron technology, several features of
chips (such as larger number of transistors and lower supply
voltages) have made the quality of power delivery network
become a key factor of high performance designs [2]. Gener-
ally, the power delivery network contains enormous amounts
of circuit elements and efficient analyzers are necessary. Thus,
general circuit solvers, such as SPICE/HSPICE, by using
direct methods are not practicable for the power delivery
analysis. In the past years, various efficient methods have
been developed for the power distribution network analysis.
The preconditioned conjugate gradient method was applied
in [3], and the hierarchical methods were developed in [4]
[5]. Multigrid-like methods were developed in [6] [7] to
map the original problem to a reduced system by using
the geometric property of circuit. However, these geometric
multigrid techniques [6] [7] are hard to handle the coupling
effects of mutual inductances.

To deal with the coupling effects, an algebraic multigrid
(AMG) [9] based approach was developed in [8]. Generally,
the mapping operator of AMG method [9] is determined by
each row equation of Ae ≈ 0, where A is the system matrix
and e is the error vector of unknown variables. Although this
mapping operator doesn’t need the geometric information of
circuit, its quality strongly counts on the selection of coarse
grids and only contains the local information of A. Therefore,
it may lose several important error terms, and degrade the
convergent rate. To remedy this undesirable behavior, [8]
proposed an adaptive coarse grids choosing method. However,
its choosing strategy needs to reconstruct the mapping operator
at each time step and may boost the CPU time.

To solve above problems, we develop a global mapping
operator construction procedure based on aggregation AMG
methods [10] [11]. The idea of aggregation originates in
economics [12], where products in a large scale system are
aggregated to become a small system. This procedure can
significantly reduce the problem size, and still maintain the

accurate representation of overall behaviors. An algebraic
partition is performed to the fine grids and the system matrix is
partitioned into several aggregated sub-matrices. The mapping
operator is constructed from the global eigen-decomposition
property of system. Theoretically, the errors in the directions of
eigenvectors associated with larger eigenvalues can be rapidly
reduced by relaxation, and the reduction of error in the di-
rections of eigenvectors associated with smaller eigenvalues is
stalled as the eigenvalues close to 0 [13]. Hence, the mapping
operator P is composed by those eigenvectors associated with
smaller eigenvalues. The mapping operator can project the
system matrix to a reduced system matrix which is much
sparser than the transformed system of conventional AMG
method [8] and also achieves better convergent rate.

In Section V, we will present the resistance dominant
property of the system matrix of power delivery network as
determining aggregations. With this property, the dimension
of each aggregated sub-matrix is not greater than 4× 4, and,
hence, the eigenvectors of sub-matrices can be easily solved
by using the QR algorithm [14]. Furthermore, an innovative
matrix compensation algorithm with a global error estimation
procedure is developed to further improve the quality of map-
ping operator. Moreover, the mapping operator construction
procedure of AbAMG only needs to be performed once for all
time steps. With these characteristics, the AbAMG method can
construct a much better mapping operator than the traditional
AMG method and can achieve better performance.

The remainder of this paper is organized as follows. The
problem formulation, and the general AMG method are pre-
sented in Section III, and IV, respectively. Then, the key part
of AbAMG method, the global mapping operator construction,
is described in Section V. Finally, the experimental results, and
conclusion are given in Section VI, and VII, respectively.

III. PROBLEM FORMULATION

The power delivery network can be modeled as a RLKC
(resistance, inductance, susceptance, and capacitance) circuit,
and the devices connecting to the power delivery network
are viewed as time-varying current sources with gate capaci-
tances [5]. By using the modified nodal analysis (MNA) [15],
the circuit equation is[
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The vE(t), ũ(t), vn(t), and il(t) are the vectors of indepen-
dent voltage sources, independent current sources, unknown
nodal voltages, and branch currents flowing through inductors,
respectively. The Gn is the stamping matrix of resistors not
connecting to vE(t). The Cn, and L are the stamping matrices
of capacitors, and inductors, respectively, The Aln is the
coefficient matrix related to inductors not connecting to vE(t).



The B̃, GE , and LE are the coefficient matrices related to
ũ(t), the stamping of resistors between vn(t) and vE(t), and
the connecting of L and vE(t), respectively.

By applying the trapezoidal approximation with time step
h, Equation (1) becomes[
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The system matrix in Equation (2) is not symmetric positive
definite (SPD). Since AMG methods require the matrix to be
SPD [13], we first, split the variable vector into a nodal voltage
vector and a branch current vector. After using block matrix
operations, the system equations become to(
2Cn/h + Gn + hAT

ln
L−1Aln/2

)
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)
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il(t + h) = il(t)−
h

2
L−1Aln (vn(t + h) + vn(t)) + hL−1LEvE(t).(4)

Since Gn, Cn, and K ≡ L−1 are SPD, the system matrix
of Equation (3) is still SPD. The symmetric property can save
50% of the memory usage, and K [16] is much sparser than L.
Equation (3) is equivalent to solve Ax = b, where A is equal
to (2Cn/h+Gn+hAT

ln
L−1Aln/2), x is the unknown variable

vector vn(t + h), and b is a known vector. This problem can
be solved by the two-level AMG method [9]. After vn(t + h)
being solved, il(t + h) can be calculated by Equation (4).

IV. ALGEBRAIC MULTIGRID METHODS

A two-level AMG method [9] is stated as follows. Given
an Ax = b problem, where A is a N × N matrix, x is a
N × 1 unknown variable vector, and b is a N × 1 constant
vector, the relaxation is applied to eliminate the oscillatory
error components on those fine nodes (unknown variables)
with dimension N and the residual vector is r = b − Ax.
Then, the residual vector is restricted to a few of coarse
nodes with a smaller dimension M < N by rc = Rr, and
the reduced system matrix is constructed by Galerkin operator
Ac = RAP . Here, P is a N ×M matrix, and R = PT . On
the coarse nodes, the residual equation, Acec = rc, is solved
and the error correction vector ec is interpolated back to fine
nodes by e = Pec.

The smooth error components which are not eliminated
well by the relaxation on fine nodes can be eliminated by the
error correction vector ec. A complementary two-level solution
scheme can be constructed to overcome the stalling behavior
of smooth error components in general iterative methods [9].
The corrective solution is obtained by x̂ = x + e, and a
post-relaxation step is applied on fine nodes to ensure that
the oscillatory error is not introduced through the coarse-node
correction step. The two-level solution method can be easily
extended to multilevel, and the efficiency of multigrid method
strongly depends on the quality of mapping operator. The
constructions of mapping operators of AMG and aggregation
AMG are discussed in Section IV-A and IV-B.

A. Mapping Operator Construction of AMG
Since the goal of AMG method is to develop a multilevel

scheme to efficiently eliminate all error components, the
smooth error components that the relaxation cannot eliminate
well must be represented by the mapping operator of AMG.

The traditional AMG methods construct the mapping operator
with the property of algebraic smoothness, (Ae)i ≈ 0, which
assumes that the residue is small at each row i after several
relaxations. The equation (Ae)i ≈ 0 can be expanded as

aiiei ≈ −
∑
j 6=i

aijej . (5)

Using the Color Scheme algorithm [9], a coarser discretion is
performed to the set of fine grid nodes and the set of coarse
nodes can be determined according to the connections of each
node i in the matrix graph of A. If |aij | ≥ θ|aii|, we say
that node j strongly influences i and vice-versa. Here, θ is
a threshold factor between 0 to 1. The nodes which strongly
influence many nodes are defined as coarse nodes since they
can approximate other nodes well. However, the above select-
ing procedure only considers the local connections of each
node i, and may result in unsuitable coarse nodes and degrade
the convergence rate. To further discuss the construction of
mapping operator, Equation (5) can be rewritten as

aiiei ≈ −
∑
j∈Ci

aijej −
∑

k∈F s
i

aikek −
∑

m∈F w
i

aimem (6)

The set of total original nodes is defined as C ∪ F , where C
is the set of coarse nodes and F is the set of remaining fine
nodes. The set Ci is equal to C ∩Ni, and the set Fi is equal
to F ∩Ni. Here, Ni is the set of neighboring nodes of node i.
The set Fi can be divided into F s

i and Fw
i , where F s

i is the
set of nodes which strongly influence i in Fi, and Fw

i is the
set of nodes which weakly influence i in Fi.

From Equation (6), an interpolation formula for each fine
node error variable, ei, by its neighboring coarse nodes error
variables is defined as ei =

∑
j∈Ci

wijej [9], where
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∑
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akl

aii +
∑

m∈F w
i

aim
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Here, the coefficient of each node error variable corresponding
to the fine node in F s

i is approximated by a sum of the
coefficients of node error variables corresponding to the coarse
nodes in Ci, and the coefficient of each node error variable
corresponding to the fine node in Fw

i is simply added to the
coefficinet aii. The selection of F s

i and Fw
i is only determined

by the coefficients in Equation (6) and this might lead to the
inappropriate choice of F s

i and Fw
i since those nodes of Fw

i
with large errors should be labeled in the set of F s

i . This
unsuitable selection can decrease the convergent rate of AMG.

B. Mapping Operator Construction of Aggregation AMG

The idea of the mapping operator construction of aggre-
gation AMG is based on the concept that the smooth error
components are in the directions of system’s eigenvectors as-
sociated with small eigenvalues [11] [13]. Firstly, an algebraic
partition is performed to the connection graph of system matrix
A, and the nodes which represent the unknown variables
with strong influence between them are clustered together.
After the aggregating procedure, each aggregated sub-matrix
is eigen-decomposed and the eigenvectors related to the small
eigenvalues are used to compose the mapping operator P . With
accurately calculating the directions of system’s smooth error



components, the aggregation AMG can achieve better conver-
gence rate than the traditional AMG methods. However, the
small connected coefficients between aggregations are usually
neglected or added to the diagonal elements of the aggregated
sub-matrices. Hence, the convergent rate of aggregation AMG
might be declined [10]. To improve the convergent rate, an
innovative matrix compensation algorithm with a global error
estimation procedure is developed in our AbAMG method and
is described in the next section.

V. GLOBAL MAPPING OPERATOR CONSTRUCTION

In this section, a proposed global mapping operator con-
struction for the AbAMG method is presented. At first, a node-
by-node aggregation algorithm is shown in Section V-A. Then,
the global error estimation procedure and matrix compensation
algorithm are stated in Section V-B and Section V-C, respec-
tively. After that, the mapping operator construction procedure
is summarized in Section V-D. Finally, the practicability of
aggregation AMG method for the power delivery network
analysis problem is addressed in Section V-E.
A. Aggregation Algorithm

One goal of aggregation method is to reformulate the
system matrix such that the smooth error components can be
easily calculated from the modified system. Different from
the difficulty of performing a geometry partition on the circuit
topology because of the mutual inductance coupling effects,
the aggregation method provides an easy approach in the
algebraic manner and simplifies the problem.

The node i and node j are defined to have a strong con-
nection if any strong influence relation exists between them.
Please refer to Section IV-A for the meaning of strong influ-
ence. Otherwise, we say that they have a weak connection. The
above definition of strong connection provides a reasonable
measure when determining aggregations. A node having the
maximum number of strong connections is a good candidate to
be the starting node of aggregation algorithm, and those nodes
with strong connections between them must be labeled in the
same aggregation since their values might be highly correlated.
On the other hand, the nodes with weak connections between
them should be classed to different aggregations. Each node
can only be included in an aggregation. The aggregation
algorithm is shown in Fig. 1 and 2.

An example of aggregation algorithm is shown in Fig. 3.
Given a system equation Ax = b, the system matrix A and
its matrix connection graph are shown at the left hand side of
Fig. 3. The modified system matrix A after aggregating and
rearranging is shown at the top of the right hand side of Fig. 3.
After that, this modified system matrix can be further simpli-
fied into three isolated aggregated sub-matrices a, b, and c, and
the smooth error components of original system can be derived
by the eigen-decomposition analysis of these sub-matrices.
Because the nodes with weakly connected coefficients might
have large errors in the global view, the way of discarding
the coefficients or adding them into to the diagonal elements
of aggregations [10] is not a suitable simplification strategy.
Therefore, a global error estimation procedure is developed in
Section V-B to estimate these troublesome error components,
and the related matrix compensation algorithm is shown in
Section V-C to remedy this defect.
B. Global Error Estimation

An intuitive way to get the information of errors which
the relaxation cannot efficiently eliminate is applying the

Algorithm of Aggregation
Input: The Graph of System Matrix A of Nodes 1, 2, ..., n
and the Related Weights w1, w2, ..., wn of these Nodes
Output: Aggregations 1, 2, ..., m

1 Begin
2 NodeCounter=0, AggCounter=0
3 While NodeCounter!=n
4 MaxWeight=0, StartNode=1
5 For each node i
6 If node i is not in any aggregation
7 If wi >MaxWeight
8 MaxWeight=wi, StartNode=i
9 EndFor
10 AggCounter++
11 j=AggCounter, StartNode is labeled in aggregation j
12 NodeCounter++
13 AggreConstruct(j, NodeCounter, StartNode and

its strongly connected nodes)
14 End

Fig. 1. Algorithm of Aggregation

Algorithm of AggreConstruct
Input: AggCounter j, NodeCounter, The StartNode i
and it’s Strongly Connected Nodes n1, n2, ..., ns

1 Begin
2 For each strongly connected node k of node i
3 If the node k is not in any aggregation
4 the node k is labeled in aggregation j
5 NodeCounter++
6 AggreConstruct(j, NodeCounter, node k and

its strongly connected nodes)
7 EndFor
8 End

Fig. 2. Algorithm of AggreConstruct

relaxation scheme to an auxiliary problem with a known
solution. The system homogeneous problem, Ax = 0, provides
us the proper information for this purpose. The error of the
approximated solution of Ax = 0 can be known since its
solution is a zero vector. By applying the relaxation several
times to this problem with a random initial guess, we can get
an error vector, eg , which consists of the error components
that the relaxation can not eliminate well. This error vector can
deliver the information of those troublesome errors and can be
employed in the following matrix compensation algorithm.

C. Matrix Compensation Algorithm
Given a linear algebraic system equation Aeg = 0 with

dimension N and the global error estimation eg from Sec-
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Algorithm of Matrix Compensation
Input: System Matrix A and Aggregation 1, 2, ..., n

Output: Aggregated Sub-matrices A1, A2, ..., An

1 Begin
2 For each aggregation m
3 For each node i in aggregation m, sweep the i-th row of A
4 If node j is within aggregation m
5 Am

ij = Aij

6 Else If Node j is a strong node,sweep the j-th row of A
7 total = 0
8 For each column k in row j
9 If node k is within aggregation m
10 total+ = Ajk
11 EndFor
12 For each column k in row j
13 If node k is within aggregation m
14 Am

ik+ = Aij ×Ajk/total
15 EndFor
16 EndFor
17 EndFor
18 End

Fig. 4. Algorithm of Matrix Compensation

tion V-B, a node i is defined as a strong node if eg
i ≥

λ max(eg
1, · · · , e

g
N ), and is defined as a weak node if eg

i <
λ max(eg

1, · · · , e
g
N ). Here, eg

1, · · · , e
g
N are the elements of

vector eg , and λ is a positive constant which is less than 1
and is chosen to be 0.25 in our algorithm.

The weakly connected coefficients related to the strong
nodes are properly distributed to aggregated nodes with suit-
able weights as shown in Fig. 4, and the effects related to
the weak nodes are simply neglected. With this compensation
step, each modified aggregated sub-matrix is isolated from
other sub-matrices and a better reduced system can be con-
structed to achieve a smaller error which is demonstrated in
Section VI. The matrix compensation algorithm is shown in
Fig. 4. The compensation procedure exactly matches with the
weight calculation step in the traditional AMG methods. The
modified sub-matrices are used for the coarse grid construction
introduced in the next subsection.

D. Mapping Operator Construction
In this section, we summarize the coarse grid construction

of the aggregation-based AMG method. After executing the
matrix compensation algorithm, those modified aggregated
sub-matrices are isolated from each other, and the eigenvalue
decomposition procedure is performed to each modified aggre-
gated sub-matrix. Finally, the eigenvector corresponding to the
smallest eigenvalue of each sub-matrix is used to compose the
inter-grid transfer operator P , and the coarse grid operator can
be constructed by the Galerkin operator Ac = RAP , where
R = PT . This mapping operator construction of AbAMG is
determined from the global information of system matrix, and
only needs to be performed once. The experimental results are
shown in Section VI.

E. Practicability of Aggregation AMG Method for Power
Network Analysis

Before showing the experimental results of the proposed
AbAMG method, we discuss the practicability of aggregation
AMG method for the power network analysis. The aggregation
AMG method is applied to the Ax = b problem in Equa-
tion (3), where A is equal to (2Cn/h+Gn+hAT

ln
L−1Aln/2),

and the unknown variable vector x consists of all nodal
voltages of power delivery circuit at each specific time.

From the predictive technology model (PTM) developed
by the Berkeley university (http://www.eas.asu.edu/ ptm/), the
unit value of R, L, and C in the 0.13µm technology are
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Fig. 5. Structure of aggregation with size 3

0.046Ω/µm, 1.69pH/µm, and 0.13011fF/µm, respectively.
For the length of wire segment being around 100µm, the
values of 2Cn/h, Gn, and hAT

ln
L−1Aln/2 vary from 5E-3

to 8E-3, 2E-1 to 4E-1, and 2E-2 to 5E-2, respectively. The
value of Gn term is over 8 times larger than other terms of
A. From the aggregation algorithm discussed in Section V-A,
we can know that the determination of the aggregation of A
is dominated by the effects of the resistances of Gn. This
R-dominant phenomenon still exists if we choose different
reasonable wire lengths or more advanced technologies such
as 0.9µm or 0.65µm technologies. For the on-chip power
delivery network with mesh structure, most aggregations have
the size with 3 as shown in Fig. 5, and the maximum size of
aggregation is equal to 4 if the via is connected to the structure
of Fig. 5. Hence, the eigenvectors of each sub-matrix can be
easily solved by using the QR algorithm [14].

VI. EXPERIMENTAL RESULTS

AMG AbAMG without AbAMG with
compensation compensation

Circuit MaxVD MaxE AvgE MaxE AvgE MaxE AvgE
Size (v) (%) (%) (%) (%) (%) (%)

49.6K 0.150 1.173 0.077 1.165 0.077 0.973 0.067
199.2K 0.168 1.107 0.066 1.059 0.065 0.885 0.058
448.8K 0.165 1.170 0.065 1.072 0.064 0.955 0.056
798.4K 0.158 1.130 0.067 1.081 0.067 0.967 0.059

TABLE I
ERROR PERCENTAGE OF RLKC CIRCUITS

This section demonstrates the speed and accuracy of the
developed AbAMG solver. The power delivery networks are
randomly generated as mesh circuits which consist of lumped
RLKC segments with many independent time varying current
sources, and the supply voltage is 1 volt. This solver is
implemented in C++ language and tested on a Pentium IV
3.4-GHz machine with 3 GB memory.

First, an efficient and accurate time domain solver Induct-
Wise [1] is used to demonstrate the accuracy of our method.
The results are shown in TABLE I. The “MaxVD” is the
maximum voltage drop of circuit, and is around 15% of
the supply voltage for each circuit. The “MaxE” means the
maximum error percentage, and “AvgE” is the average error
percentage. Even without executing the matrix compensation
algorithm, our AbAMG solver can still achieve a smaller
maximum error than the traditional AMG method [9], and
its average error is also less than or equal to the AMG
method. With the help of matrix compensation algorithm, the
AbAMG can further reduce the maximum error to be less
than 0.973% (AMG is 1.173%) for each test circuit, and the



InductWise [1] AMG AbAMG
Circuit RT Mem RT Mem RT* RT** Mem Speed Up

Size (s) (MB) (s) (MB) (s) (s) (MB) SIn SAMG S∗
49.6K 78.34 111 3.95 46 3.59 2.97 40 26.38 1.33 1.21

199.2K 391.70 424 15.88 182 14.24 12.72 156 30.80 1.25 1.12
448.8K 1576.00 994 38.19 407 32.59 28.31 351 55.67 1.35 1.15
798.4K 2903.00 1547 68.22 721 59.33 51.81 624 56.03 1.32 1.15
1.248M × × 105.59 1130 93.75 83.16 974 - 1.27 1.13

1.7976M × × 152.36 1627 137.31 119.36 1401 - 1.28 1.15
2.4472M × × × × 196.53 167.60 1907 - - 1.17

TABLE II
RUNTIME AND SPEED UP COMPARISON OF RLKC CIRCUITS. “×” DENOTES THIS METHODOLOGY FAILED.

average error to be less than 0.067% (AMG is 0.077%). The
above demonstrates that the aggregation-based AMG method
can accurately capture the error directions which can not be
eliminated in the relaxation procedure of fine grid nodes, and
our matrix compensation algorithm does improve the accuracy.

To show the efficiency of AbAMG solver, the analysis of
DC and 50 transient time steps are executed and the results
are compared with InductWise [1] and the conventional AMG
method [9]. The results are shown in TABLE II for different
RLKC circuits. The “RT” is the CPU run time, “Mem” denotes
the memory usage, “RT*” is the run time of AbAMG without
compensation, and “RT**” is the run time of AbAMG with
compensation. The SIn, SAMG and S∗ are the speedup of
AbAMG with compensation respect to InductWise, AMG,
and AbAMG without compensation. The significant speed
improvement, over 26 times faster than InductWise [1], over
1.25 times faster than AMG, and over 1.12 times faster than
AbAMG without compensation, and less memory usage, 40%
of the memory usage in [1] are observed. The proposed
AbAMG solver only takes 167.6 CPU seconds to solve a
circuit with size being 2.4472M, and this indicates that our
simulator is very efficient in solving power delivery networks
and capable of handling the circuit with size over millions.

The number of the none zero terms of system matrix and
the iterative cycles needed for 100 time step transient analysis
of AMG or AbAMG are shown in Table III. Here, “Fine
Grid NZ”, and “Coarse Grid Nz” are the numbers of the non-
zero terms of original system matrix, and the reduced system
matrix, respectively. The “Cycle”, “Cycle*”, and “Cycle**”
are the total numbers of multilevel cycles needed in the AMG
method, the AbAMG without compensation, and the AbAMG
with compensation, respectively. From the results, we can see
that the number of non-zero terms in the reduced system
matrix of AbAMG is only one third of the reduced system
matrix of AMG method. In the other words, the reduced
system matrix by using AbAMG is sparser than the matrix
by using the AMG method. Hence, its computational load
is much lighter than the AMG’s. Furthermore, because the
matrix compensation algorithm can compensate those big error
terms from the information of system homogenous problem,
Aeg = 0, the number of multilevel cycles used by AbAMG
with compensation approaches the minimum number needed
(Ideally, the minimum number of cycle for 100 time steps
analysis is 100.) and is much smaller than the AMG method.
Therefore, the speed of analysis can be improved further.

VII. CONCLUSION

An AbAMG solver for power distribution networks has
been developed. The proposed method can handle the circuit
size with more than two million in 167.6 CPU seconds, and
the maximum error of each test circuit is less than 1%. The
significant speed improvement and the less memory usage

AMG AbAMG
Circuit Fine Grid Coarse Grid Cycle Coarse Grid Cycle* Cycle**

Size NZ NZ NZ
49.6K 119.5K 92K 118 33.8K 127 101
199.2K 480.0K 370K 113 135.6K 131 100
448.8K 1082.0K 834K 111 305.4K 131 101
798.4K 1925.0K 1484K 114 543.0K 135 103
1.248M 3009.0K 2320K 109 849.0K 131 102
1.7976M 4335.0K 3342K 108 1223.0K 132 100

TABLE III
COMPARISON BETWEEN ABAMG AND AMG

show that this AbAMG method is very suitable for analyzing
the power delivery network. The global mapping operator con-
struction with a matrix compensation algorithm does improve
the performance of AbAMG, and a sparser reduced system
matrix is performed with the better convergence rate than the
traditional AMG method.
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