
1

Improved Kernel PCA for
Feature Extraction

Xianhua Jiang

Yuichi Motai

09/06/05

VC(Vapnik-Chervonenkis) Theory

Input Space Feature SpaceMapping

Low dimension

High dimension
(Greater Classification Power)

Ex.: Two Class Problem with Data in R2

Linearly inseparable
in the input space

(x1, x2)
(x1, x2, x1

2+x2
2)

Separate using a plane

Kernel Trick

• Most classification method can be represented
as inner product, such as PCA, SVM.

• Kernel makes inner product in high-dimension
done in low dimension

>ΦΦ=<)(),(),(yxyxk

Kernel

||}||exp{),(yxryxk −−=

dyxyxk]1,[),(+><=

Polynomial Kernel

Radial basis function Kernel

Linear PCA

• Find orthonormal axes to maximally
decorrelate the data

• Assumption:
Sources are Gaussian

Sources are independent and stationary.

2

Ex.: PCA Standard PCA Algorithm

• Centered Observations: column vectors,
i = 1, . . . , n

• PCA finds the principal axes by diagonalizing the
Scatter matrix

• Note that S is positive definite, and thus can be
diagonalized with nonnegative eigenvalues.

λv = Cv

l
i Rx ∈

∑
=

=
n

i

T
ii xxS

1

Using PCA

• Find eigenvectors, and arrange in order of
decreasing eigenvalue.

• Project test points onto eigenvectors

• use those coefficients to do something
useful (classification,image reconstruction,
etc).

PCA in Mapped Feature Space

∑
=

ΦΦ=
n

i

T
ii xxS

1

)()(

))()(,()()(
11
∑∑
==

Φ>Φ<=ΦΦ==
n

i
iijj

n

i

T
iijj xxeexxSeeλ

∑
=

Φ=
n

i
ijij xae

1

)(

Kernel PCA

jj Kaa =λ
d

jijiij xxxxk >>=<ΦΦ=< ,)(),(Where:

∑
=

Φ=
n

i
ijij xae

1

)(

∑∑
==

><>=ΦΦ<>=Φ<
n

i

d
iji

n

i
ijij xxaxxaxe

11

,)(),()(,

Projection to the principal vector:

Calculate Coefficient αj :

Represent the principal vector:

Comment on Kernel PCA

• Calculate the dot product at feature space
without calculating the mapping Ф(x).

• Need to solve n*n eigenvalue problem, which is
time-consuming.

• Each eigenvector is the combination of all
training data, which makes it unacceptable for
on-line learning

3

Improve Kernel PCA

• Select a subset of input data, then apply kernel
PCA.

• Selected subset of data are important in feature
space according to the Kernel we chosen, which
is similar as clustering.

• Random sampling is must faster, and have
equal performance in some cases. (It’s very
practical, but too simple to write paper!)

Kernel Feature Analysis

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

≤Φ== ∑∑
==

n

i
i

n

j
jjLP awithawwV

11

1 has a vertex solution.

Extracts the eigenvectors one by one according to the
decreasing order of eigenvalues.

KFA Algorithm

1. Calculate n*n Gram matrix K

2. Orthogonalize the possible directions to any previous
principal vector

3. Compute the dot products between the possible
direction and the training data

4. Compute the variance of each possible directions

5. Choose the direction with the maximum variance as
the principal vector

6. Normalize this principal vector

Commend On KFA

• KFA extracted P eigenvectors, where in most cases P
much less than n.

• Computational complexity of computing P features is
O(P×n2), while the standard kernel PCA costs O(n3).

• Orthogonalize, normalize, calculate the projection
variance, sort, then unitize the eigenvectors, it didn't
save much time as expected.

• The eigenvectors of KFA are approximate solutions. Its
performance is not comparable with Kernel PCA.

Improved KFA

• After select one principle vector, discard
amount of data that are not potential new
principle vectors.

• Increase the efficiency, but not helpful to
improve its performance.

Experiment Results
400 points, 2 principle vectors, RBF Kernel

R: KPCA
B: KFA

4

800 points, 2 Eigenvectors, RBF Kernel

R: KPCA
G: KFA

800 points, 3 Eigenvectors, RBF Kernel

R: KPCA
G: KFA

800 points, 4 Eigenvectors, RBF Kernel

R: KPCA
G: KFA

800 points, 10 Eigenvectors, RBF Kernel

R: KPCA
G: KFA

800 points, 20 Eigenvectors, RBF Kernel

R: KPCA
G: KFA

Each 400 points, 10 Eigenvectors, RBF Kernel

R: KPCA
G: KFA

5

2000 points (within one rectangle), 10
Eigenvectors, RBF Kernel

[1582 1146 331
1051 1176 101
325 1144 152
1470]

480.5810 6.2320e-004 Improved

KFA

[1582 1146 331
1051 1176 101
325 1144 152
1684]

331.7971 5.5607e-004 KFA

All375.24961.2572e-004 KPCA

Data

Related

Cpu-time(s)Recons. Error

In High Dim.

USPS Zip Code. 1000 training data. 10 test data. 10
Eigenvectors, RBF kernel

Original Image Pre-image of KPCA Pre-image of KFA

Simple Classification

1. To each digit, use 300 samples to train, store
10 eigenvectors. Then project the test data to
each eigenspace, choose the eigenspace with
minimum reconstruction error as the class it
belongs to.

• Use 100 data to test, Accuracy of KPCA is
91%, accuracy of KFA is 84 %

300 training data for each digit, 100 test data

919188878881kpca

787878757168Kfa

1501005020105

Number of Principle Vectors Extracted in Feature SpaceAccuracy
(%)

Test data+ random noise

Training data+ random noise, Test data+ random noise

908791918988kpca

858279808181Kfa

1501005020105

Number of Principle Vectors Extracted in Feature SpaceAccuracy
(%)

300 training data for each digit, 100 test data

63576562585354kpca

50515045464440Kfa

2001501005020105

Number of Principle Vectors Extracted in Feature SpaceAccuracy
(%)

Training data + random noise

No noise both to training data and test data

93939393919190kpca

90909091868482Kfa

2001501005020105

Number of Principle Vectors Extracted in Feature SpaceAccuracy
(%)

Next Step

• Give up the instance selection for kernel PCA

• Try to improve the performance of KFA, such as making
each principle vectors contain more data information.

• From the theoretical view, analyze the difference of the
eigenvectors by Kernel PCA and by Kernel Feature
Analysis.

• From the theoretical view, understand the property of
kernel, the property of the high dimension.

• From the theoretical view, how to choose kernel,
whether we can analyze data can be linearly separated
in the high dimension without experiment?

6

Acknowledge

Prof.Motai

Prof.Zhu

Prof.Snapp
Thank you!

