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Abstract

Multivariate time series (MTS) data sets are common in
various multimedia, medical and financial application do-
mains. These applications perform several data-analysis
operations on large number of MTS data sets such as
similarity searches, feature-subset-selection, clustering and
classification. Inherently, an MTS item has a large num-
ber of dimensions. Hence, before applying data mining
techniques, some form of dimension reduction, e.g., fea-
ture extraction, should be performed. Principal Component
Analysis (PCA) is one of the techniques that have been fre-
quently utilized for dimension reduction. However, tradi-
tional PCA does not scale well in terms of dimensionality,
and therefore may not be applied to MTS data sets. The
Kernel PCA technique addresses this problem of scalabil-
ity by utilizing the kernel trick. In this paper, we propose a
PCA based kernel to be employed for the Kernel PCA tech-
nique on the MTS data sets, termed KEros, which is based
on Eros, a PCA based similarity measure for MTS data sets.
We evaluate the performance of KEros using Support Vector
Machine (SVM), and compare the performance with Kernel
PCA using linear kernel and Generalized Principal Com-
ponent (GPCA). The experimental results show that KEros
outperforms these other techniques in terms of classification
accuracy.

1 INTRODUCTION

A time series is a series of observations,xi(t); [i =
1, · · · , n; t = 1, · · · , m], made sequentially through time
wherei indexes the measurements made at each time point
t [20]. It is called a univariate time series (UTS) whenn
is equal to 1, and a multivariate time series (MTS) whenn
is equal to, or greater than 2. A UTS data is usually repre-
sented in a vector of sizem, while each MTS item is typ-
ically stored in anm × n matrix, wherem is the number
of observations andn is the number of variables (e.g., sen-

sors).
MTS data sets are common in various fields, such as in

multimedia, medicine and finance. For example, in multi-
media, Cybergloves used in the Human and Computer In-
terface (HCI) applications have around 20 sensors, each
of which generates 50∼100 values in a second [11, 19].
For gesture recognition and video sequence matching using
computer vision, several features are extracted from each
image continuously, which renders them MTSs [5, 2, 17].
In medicine, Electro Encephalogram (EEG) from 64 elec-
trodes placed on the scalp are measured to examine the cor-
relation of genetic predisposition to alcoholism [26]. Func-
tional Magnetic Resonance Imaging (fMRI) from 696 vox-
els out of 4391 has been used to detect similarities in acti-
vation between voxels in [7].

An MTS item is typically very high dimensional. For
example, an MTS item from one of the data sets used in the
experiments in Section 4 contains 3000 observations with
64 variables. If a traditional distance metric for similarity
search, e.g., Euclidean Distance, is to be utilized, this MTS
item would be considered as a 192000 (3000× 64) dimen-
sional data. 192000 dimensional data would be overwhelm-
ing not only for the distance metric, but also for indexing
techniques. To the best of our knowledge, there has been no
attempt to index data sets with more than 100000 dimen-
sions/features1. Hence, it would be necessary to preprocess
the MTS data sets and reduce the dimension of each MTS
item before performing any data mining tasks.

A popular method for dimension reduction is Principal
Component Analysis (PCA) [10]. Intuitively, PCA first
finds the direction where the variance is maximized and
then projects the data on to that direction. However, tra-
ditional PCA cannot be applied to MTS data setsas is,
since each MTS item is represented in a matrix, while for
PCA each item should be represented as a vector. Though
each MTS item may bevectorizedby concatenating its UTS
items (i.e., the columns of MTS), this would result in the

1In [3], the authors employed MVP-tree to index 65536 dimensional
gray-level MRI images.



loss of the correlation information among the UTS items.
In order to overcome this limitation of PCA, i.e., the data
should be in the form of a vector, Generalized Principal
Component Analysis (GPCA) is proposed in [24]. GPCA
works on the matrices and reduces the number of rows and
columns simultaneously by projecting a matrixinto a vector
space that is the tensor product of two lower dimensional
vector spaces. Hence the data do not need to be vectorized.
While GPCA reduces the dimension of an MTS item, the re-
duced form is still a matrix. In order to be fed into such data
mining techniques as Support Vector Machine (SVM) [21],
the reduced form still needs to be vectorized, which would
be a whole new challenge.

Moreover, for traditional PCA, even if each MTS item
is vectorized, the space complexity of PCA would be over-
whelming. For example, assume an MTS item with 3000
observations and 64 variables. If this MTS item is vector-
ized by concatenating each column end to end, the length
of the vector would be 192000. Assume that there are 378
items in the data set. Then the whole data set would be
represented in a matrix of size 378× 192000. Though, in
theory, the space complexity of PCA isO(nN) wheren is
the number of features/dimensions andN is the number of
items in the data set [14], Matlab fails to perform PCA on
a matrix of size 378× 192000 on a machine with 3GB of
main memory due to lack of memory. In [8], it has also
been observed that PCA does not scale well as a function of
dimensionality.

In [18], the authors proposed an extension of PCA using
kernel methods, termedKernel PCA. Intuitively, what the
Kernel PCA does is firstly to transform the data into a high
dimensional feature space using a possibly non-linear ker-
nel function, and then to perform PCA in the high dimen-
sional feature space. In effect, Kernel PCA computes the
pair-wise distance/similarity matrix of sizeN × N using a
kernel function, whereN is the number of items. This ma-
trix is called aKernel Matrix. Kernel PCA therefore scales
well in terms of dimensionality of the data, since the ker-
nel function can be efficiently computed using theKernel
Trick [1]. Depending on the kernel employed, Kernel PCA
has been shown to yield better classification accuracy us-
ing the principal components in feature space than in input
space. However, it is an open question which kernel is to be
used [18].

In this paper, we propose to utilize Eros [22] for the
Kernel PCA technique, termedKEros. By using Eros, the
data need not be transformed into a vector for computing
the similarity between two MTSs, which enables us to cap-
ture the correlation information among the UTSs in an MTS
item. In addition, by using the kernel technique, the scala-
bility problem in terms of dimensionality is resolved. KEros
firstly computes a matrix that contains pair-wise similari-
ties between MTSs using Eros, and utilizes this matrix as

Symbol Definition
A anm × n matrix representing an MTS item
A

T the transpose ofA
MA the covariance matrix of sizen × n for A

VA the right eigenvector matrix of sizen × n for MA

VA = [ a1, a2, · · · , an ]

ΣA ann × n diagonal matrix that has all the
eigenvalues forMA obtained by SVD

ai a column orthonormal eigenvector of sizen for VA

aij jth value ofai, i.e.,
a value at theith column and thejth row ofA

a∗j all the values at thejth row ofA
w a weight vector of sizen∑r

i=1
wi = 1, ∀i wi ≥ 0

Table 1. Notations used in this paper

the Kernel Matrix for the kernel PCA technique. Though
Eros cannot readily be formulated in terms of dot product as
other kernel functions, it has been shown that any positive
semi-definite (PSD) matrices whose eigenvalues are non-
negative can be utilized for kernel techniques [13]. If the
matrix obtained by using Eros is shown to be positive semi-
definite, it can be utilized as a Kernel Matrixas is; other-
wise, the matrix can be transformed into a Kernel Matrix by
utilizing one of the techniques proposed in [16]. In this pa-
per, we utilize the first naı̈ve approach. We plan to compare
different approaches to transforming a non-PSD matrix into
a PSD matrix for Eros in the future.

In order to evaluate the effectiveness of the proposed ap-
proach, we conducted experiments on two real-world data
sets: AUSLAN [11] obtained from UCI KDD repository [9]
and the Brain Computer Interface (BCI) data set [12]. After
performing dimension reduction using KEros, we compared
the classification accuracy with other techniques, such as
Generalized Principal Component Analysis (GPCA) [24],
and Kernel PCA using linear kernel. The experimental re-
sults show that KEros outperforms other techniques by up
to 60% in terms of classification accuracy.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses the background of our proposed approach.
Our proposed approach is presented in Section 3, which is
followed by the experiments and results in Section 4. Con-
clusions and future work are presented in Section 5.

2 BACKGROUND

Our proposed approach is based on Principal Component
Analysis (PCA) and our similarity measure for Multivariate
Time Series (MTS), termed Eros. In this section, we briefly
describe PCA and Eros. For details, please refer to [10, 22].
For notations used in the remainder of this paper, please
refer to Table 1.
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Figure 1. Two principal components obtained
for one multivariate data with two variables x1

and x2 measured on 30 observations.

2.1 Principal Component Analysis

Principal Component Analysis (PCA) has been widely
used for multivariate data analysis and dimension reduc-
tion [10]. Intuitively, PCA is a process to identify the direc-
tions, i.e., principal components (PCs), where the variances
of scores (orthogonal projections of data points onto the di-
rections) are maximized and the residual errors are mini-
mized assuming the least square distance. These directions,
in non-increasing order, explain the variations underlying
original data points; the first principal component describes
the maximum variation, the subsequent direction explains
the next maximum variance and so on.

Figure 1 illustrates principal components obtained on a
very simple (though unrealistic) multivariate data with only
two variables (x1, x2) measured on 30 observations. Geo-
metrically, the principal component is a linear transforma-
tion of original variables and the coefficients defining this
transformation are calledloadings. For example, the first
principal component (PC1) in Figure 1 can be described as
a linear combination of original variablesx1 andx2, and
the two coefficients (loadings) defining PC1 are the cosines
of the angles between PC1 and variablesx1 andx2, respec-
tively. The loadings are thus interpreted as the contributions
or weights on determining the directions.

The central idea of principal component analysis (PCA)
is to reduce the dimensionality of a data set consisting of
a large number of interrelated variables, while retaining as
much as possible the variation present in the data set [10].
This is achieved by transforming to a new set of variables,
the principal components (PCs), which are uncorrelated,
and which are ordered so that the firstfew retain most of
the variation present inall of the original variables.

In practice, PCA is performed by applying Singular
Value Decomposition (SVD) to either a covariance matrix
or a correlation matrix of an MTS item depending on the
data set. That is, when a covariance matrixA is decom-
posed by SVD, i.e.,A = UΛUT , a matrix U contains
the variables’ loadings for the principal components, and
a matrixΛ has the corresponding variances along the diag-
onal [10].

2.2 Eros

In [22], we proposedEros as a similarity measure for
multivariate time series. Intuitively,Eroscomputes the sim-
ilarity between two matrices using the principal compo-
nents (PCs), i.e., the eigenvectors of either the covariance
or the correlation coefficient matrices, and the eigenvalues
as weights. The weights are aggregated from the eigenval-
ues of all the MTS items in the database. Hence, the weights
change whenever data are inserted into or removed from the
database.

Definition 1 Eros (Extended Frobenius norm). LetA and
B be two MTS items of sizemA × n andmB × n, respec-
tively2. Let VA and VB be two right eigenvector matri-
ces obtained by applying SVD to the covariance matrices,
MA and MB, respectively. LetVA = [a1, · · · , an] and
VB = [b1, · · · , bn], whereai andbi are column orthonor-
mal vectors of sizen. The Eros similarity ofA and B is
then defined as

Eros(A,B,w)=
∑

n

i=1
wi|<ai,bi>|=

∑
n

i=1
wi| cos θi| (1)

where< ai, bi > is the inner product ofai and bi, w is a
weight vector which is based on the eigenvalues of the MTS
data set,

∑n

i=1 wi = 1 andcos θi is the angle betweenai

and3 bi. The range of Eros is between 0 and 1, with 1 being
the most similar.

Intuitively, eachwi in the weight vector represents the
aggregated variance for all theith principal components.
The weights are then normalized so that

∑n

i=1 wi = 1. The
eigenvalues obtained from all the MTS items in the database
are aggregated into one weight vector as in Algorithms 1 or
2. Algorithm 1 computes the weight vectorw based on the
distribution of raw eigenvalues, while Algorithm 2 first nor-
malizes eachsi, and then calls Algorithm 1. Functionf()
in Line 3 of Algorithm 1 is an aggregating function, e.g.,
min, mean and max.

Note that PCA, on which Eros is based, may be de-
scribed as firstly representing each MTS item using either

2MTS items have the same number of columns (e.g., sensors), but may
have different number of rows (e.g., time samples).

3For simplicity, it is assumed that the covariance matrices are of full
rank. In general, the summations in Equation (1) should be from 1 to
min(rA, rB), whererA is the rank ofMA andrB the rank ofMB.
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Algorithm 1 Computing a weight vectorw based on the
distribution of raw eigenvalues

1: function computeWeightRaw(S)
Require: ann×N matrix S, where n is the number of vari-

ables for the dataset andN is the number of MTS items
in the dataset. Each column vectorsi in S represents all
the eigenvalues forith MTS item in the dataset.sij is a
value at column i and row j in S.s∗i is ith row in S.si∗

is ith column, i.e,si.
2: for i=1 to ndo
3: wi ← f(s∗i);
4: end for
5: for i=1 to ndo
6: wi ← wi/

∑n

j=1 wj ;
7: end for

Algorithm 2 Computing a weight vectorw based on the
distribution of normalized eigenvalues

1: function computeWeightRatio(S)
Require: the same as Algorithm 1.

2: for i=1 to N do
3: si ← si/

∑n

j=1 sij ;
4: end for
5: computeWeightRaw(S);

covariance or correlation coefficients, and then performing
SVD on the matrix that contains the coefficients. In order
to stably represent an MTS using correlation coefficients,
we proposed to utilize thestationarityof time series before
computing the correlation coefficients of an MTS item [23].
Intuitively, if a time series is stationary, it means that the
statistical properties of a time series, e.g., covariance and
correlation coefficients, do not change over time. For de-
tails, please refer to [23].

3 THE PROPOSED APPROACH

In this section, we will firstly describe the traditional
PCA in a little more detail, and then briefly describe the ker-
nel PCA technique in relation to the traditional PCA, which
will be followed by our proposed approach.

Assume that we are given a set ofN items, and each
data item is ann dimensional column vector, i.e.,xi ∈ R

n,
where1 ≤ i ≤ N . Assume also that the data is mean cen-
tered, i.e.,

∑n

i=1 xji = 0, for 1 ≤ j ≤ N . The covariance
matrix can subsequently be computed as follows:

C =
1

N

N∑

i=1

xix
T
i

The traditional PCA then diagonalizes the covariance ma-
trix to obtain the principal components, which can be

achieved by solving the following eigenvalue problem:

λv = Cv (2)

Kernel PCAextends this traditional PCA approach, and
performs PCA in thefeature space. Hence, the data are
first mapped into a high dimensional feature space using
Φ : RN → F, x 7→ X. The covariance matrix in the feature
space can be described as follows, assuming that data are
centered:

C =
1

N

N∑

i=1

Φ(xi)Φ(xi)
T

An N × N Kernel Matrix, which is also called asGram
matrix, can be defined as follows:

Kij = (Φ(xi) · Φ(xj)) = k(xi, xj)

and as Equation (2), one computes an eigenvalue problem
for the expansion coefficientsαi, that is now solely depen-
dent on the kernel function

λα = Kα (3)

Hence, intuitively, Kernel PCA can be performed by firstly
obtaining the Kernel Matrix, and then solving the eigen-
value problem as in Equation (3). For details, please refer
to [18, 15]. Let us formally define the kernel function and
the kernel matrix [13].

Definition 2 A kernel is a functionk, such thatk(x, z) = <
Φ(x), Φ(z) > for all x, z ∈ X , whereΦ is a mapping from
X to an (inner product) feature spaceF . A kernel matrix is
a square matrixK ∈ R

N×N such thatKij = k(xi, xj) for
somex1, · · · , xN ∈ X and some kernel functionk.

As in [13], the kernel matrices can be characterized as fol-
lows:

Proposition 1 Every positive semi-definite and symmetric
matrix is a kernel matrix. Conversely, every kernel matrix
is symmetric and positive semi-definite.

As a kernel function for Kernel PCA technique, we pro-
pose to utilize Eros for MTS data sets. That is, given
an MTS data setX and a weight vectorw, the Kernel
Matrix is constructed in such a way thatKEros(i, j) =
Eros(Xi,Xj , w). Note thatEros is not a distance metric,
and cannot be readily represented in a form of dot product
as the other kernel functions. However, according to Propo-
sition 1, KEros can be utilized for Kernel PCA, as long
asKEros is symmetric and positive semi-definite, i.e., the
eigenvalues ofKEros is non-negative. Firstly,Eros is sym-
metric, i.e.,Eros(Xi,Xj , w) = Eros(Xj ,Xi, w). Hence,
KEros is symmetric. Consequently, as long asKEros is
positive semi-definite,KEros can be utilized for Kernel
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PCA. In [16], a number of approaches to making a ma-
trix into a PSD matrix have been described. In this pa-
per, we utilize the first naı̈ve approach4, which is to add

δI to KEros, i.e.,K
Eros

← KEros + δI, whenKEros is
not PSD. Forδ sufficiently larger in absolute value than the

most negative eigenvalue ofKEros, K
Eros

is PSD.
Algorithms 3 and 4 describes how to computeKEros,

and how to obtain the principal components in the feature
space. Given an MTS data set, and a weight vectorw, we
first construct the pair-wise similarity matrix,KEros, of
sizeN ×N , whereN is the number items in the given data
set as in Lines 2∼7 of Algorithm 3. Lines 8∼10 make sure
KEros is PSD. The Kernel Matrix,KEros, is then mean-
centered in the feature space in Line 3 of Algorithm 4. The
eigenvalue problem in the feature space, i.e., the Equation
(3), is solved, and the principal components in feature space
are obtained in Line 4.

Algorithm 3 ComputeKEros

Require: MTS data set,X with N {the number of items in
the data set} andn {the number of variables in an MTS
data}; w {a weight vector for Eros}

1: {Construct a Kernel Matrix using Eros}
2: for i = 1 toN do
3: for j = i to N do
4: KEros(i, j) ← Eros(Xi,Xj , w); {Xi is the ith

MTS item inX}
5: K(j, i)←K(i, j);
6: end for
7: end for
8: if KEros is not PSDthen
9: KEros ← KEros + δI; {choose sufficiently largeδ

to makeKEros PSD}
10: end if

Algorithm 4 Perform PCA usingKEros

Require: MTS data set,N {the number of items in the data
set}, n {the number of variables in an MTS data}, w {a
weight vector for Eros}

1: KEros ← Computer the Kernel Matrix using Algo-
rithm 3;

2: {Center the Kernel Matrix in feature space}

3: K
Eros

←KEros −O×KEros −KEros ×O + O×
KEros×O; {whereOij = 1/N, 1 ≤ i, j ≤ N andN
is the number of items}

4: [V,v]← solve the eigenvalue problemλα = K
Eros

α;
{V contains the eigenvectors, andv the corresponding
eigenvalues}

4We plan to compare different approaches to transforming a non-PSD
matrix into a PSD matrix for Eros in the future.

After obtaining the principal components in feature
space using thetraining MTS items as in Algorithms 3
and 4, the projection of thetestMTS items on the principal
components is performed as in Algorithms 5 and 6. Intu-
itively, Lines 1∼4 of Algorithm 6 describe how to map the
test data into feature space and subtract the pre-computed
mean, i.e., mean-center the mapped data in the feature
space. Line 5 projects the mean-centered data onto the prin-
cipal components,V, in the feature space, which is analo-
gous to the traditional PCA approach. For details, please
refer to [18].

Algorithm 5 ComputeKEros for Projection

Require: MTS data set,X with N {the number of items
in the data set} andn {the number of variables in an
MTS data}; w {a weight vector for Eros}; MTS data
set,Xtest with Ntest andn.

1: {Construct a Kernel Matrix using Eros for Projection}
2: for i = 1 toNtest do
3: for j = 1 toN do
4: KEros(i, j) ← Eros(Xtest,i,Xj , w); {Xi is the

ith MTS item inX, andXtest,i theith MTS item
in Xtest}

5: end for
6: end for

Algorithm 6 Project Test Data Set usingKEros

Require: MTS data set,X with N {the number of items in
the data set} andn {the number of variables in an MTS
data}; w {a weight vector for Eros}; test MTS data set,
Xtest with Ntest andn; V obtained in Algorithm 4

1: KEros
test ← Computer the Kernel Matrix using Algo-

rithm 5;
2: KEros ← Computer the Kernel Matrix using Algo-

rithm 3;
3: {Center the Kernel Matrix in feature space}

4: K
Eros

← KEros
test −Otest ×KEros −KEros

test × O +
Otest×KEros×O; {whereOij = 1/N, 1 ≤ i, j ≤ N ,
Otest,ij = 1/N, 1 ≤ i ≤ Ntest, 1 ≤ j ≤ N}

5: Y←K
Eros
×V; {Theith MTS item is represented as

features in theith row ofY}

4 PERFORMANCE EVALUATION

4.1 Datasets

The experiments have been conducted on two different
real-world data sets, i.e., AUSLAN and BCI, which are all
labeled MTS data sets whose labels are given. TheAus-
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Table 2. Summary of data sets used in the ex-
periments

AUSLAN BCI

# of variables 22 64
(average) length 60 3000

# of labels 95 2
# of MTS items per label 27 189

total # of MTS items 2565 378

tralian Sign Language (AUSLAN)data set uses 22 sensors
on the hands to gather the data sets generated by signing of a
native AUSLAN speaker [11]. It contains 95 distinct signs,
each of which has 27 examples. In total, the number of
signs gathered is 2565. The average length is around 60.

TheBrain Computer Interface (BCI) data set [12] was
collected during the BCI experiment, where a subject had to
perform imagined movements of either the left small finger
or the tongue. The time series of the electrical brain activity
was collected during these trials using 64 ECoG platinum
electrodes. All recordings were gathered at 1000Hz. The
total number of items is 378 and the length is 3000.

Table 2 shows the summary of the data sets used in the
experiments.

4.2 Methods

For KEros, we first need to constructKEros. As de-
scribed in Section 2.2, there are 6 different ways of obtain-
ing weightsfor Eros. For the data sets used in the exper-
iments, themeanaggregating function on the normalized
eigenvalues yields the overall best results, which are pre-
sented in this section. In order to compute the classification
accuracy of KEros, we performed 10 fold cross validation
(CV) employing Support Vector Machine (SVM) [21]. That
is, we break an MTS data set into 10 folds, use 9 folds to
obtain the principal components in the feature space using
KEros and then project the data in the remaining 1 fold onto
the first 51 principal components to obtain 51 features. We
subsequently computed the classification accuracy varying
the number of features from 1 to 51. We repeated the 10
fold cross validation ten times, and report the average clas-
sification accuracy.

We compared the performance of KEros with two other
techniques, Kernel PCA using linear kernel (KLinear), and
Generalized Principal Component Analysis (GPCA) [24],
in terms of classification accuracy. Since the linear kernelis
the simplest kernel for the Kernel PCA technique, we chose
the linear kernel as the performance baseline for the Kernel
PCA technique. Note that intuitively Kernel PCA using lin-
ear kernel would perform similarly to vectorizing an MTS
item column-wise, i.e., concatenate columns back to back,

and performing PCA on it to extract the features.
GPCA does not require vectorization of the data, and

works on each MTS item, i.e., a matrix, to reduce it to a
(ℓ1, ℓ2) dimensional matrix. In [24], the best results have
been reported whenℓ1

ℓ2
= 1. Hence, we variedℓ1 andℓ2

from 2 to 7, and the sizes of the reduced matrix would be 4,
9, 16, 25, 36 and 49, respectively. In order to utilize SVM,
these reduced matrices have beenvectorizedcolumn-wise.

One of the disadvantages of GPCA and KLinear is that
the number of observations within the MTS items should be
all the same, while KEros, i.e., Eros, can be applied to the
MTS items with variable number of observations. Hence,
for GPCA and KLinear, the AUSLAN data set have been
linearly interpolated, so that all the items have the same
number of observations, which is the mean number of ob-
servations, i.e., 60.

For KLinear, STPRtool implementation [6] and SVM-
KM implementation [4] are utilized. For KEros, we mod-
ified the Kernel PCA routine in STPRtool and SVM-KM.
We implemented GPCA from scratch. All the implementa-
tions are written in Matlab.

4.3 RESULTS

In order to check if the pair-wise similarity matrix com-
puted by using Eros, i.e.,KEros, is positive semi-definite,
we obtained the eigenvalues ofKEros. For the AUSLAN
data set, the minimum eigenvalue ofKEros is 3.2259e-06,
and for the BCI data set, it is 0.0014. Hence,KEros for
the AUSLAN and BCI data sets turned out to be symmet-
ric and positive semi-definite, i.e., all the eigenvalues are
non-negative. Consequently, we did not need to addδI to
KEros; for the AUSLAN and BCI data sets,KEros is uti-
lized as isas the Kernel Matrix for the Kernel PCA tech-
nique.

Figure 2(a) shows the results of the classification accu-
racy for the AUSLAN data set. Using only 14 features ob-
tained by KEros, the classification accuracy is over 90%.
As we increase the number of features for SVM, the perfor-
mance of KLinear improves and when the number of fea-
tures is more than 40, the performance difference between
KLinear and KEros is almost negligible. The performance
of GPCA, however, is much worse than the Kernel PCA
technique. Even when 49 features are employed, the classi-
fication accuracy is less then 80%, while the others achieved
more than 90% of classification accuracy. There may be
a couple of reasons for this poor performance of GPCA.
Firstly, in [24], the data sets contain images which are rep-
resented in approximately square matrices. For the AUS-
LAN data set, however, each MTS item is not square; the
number of observations is almost three times the number
of variables. Hence, theℓ1 and ℓ2 parameters for GPCA
should be re-evaluated. Secondly, the result of dimension
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(a) AUSLAN Dataset (b) BCI Dataset

Figure 2. Classification Accuracy Comparison

reduction using GPCA is still a matrix; a vectorization is
required so that SVM can be utilized. Our vectorization by
simply concatenating the columns may have resulted in the
loss of correlation information.

Figure 2(b) represents the classification accuracies of the
three techniques on the BCI data set. Similarly as for the
AUSLAN data set, KEros outperforms other techniques in
terms of classification accuracy. When 16 features are used,
KEros yielded more than 70% of classification accuracy.
Unlike for the AUSLAN data set, KLinear does not per-
form as well as KEros as the number of features increased.
16 features from KLinear achieved just more than 60% of
classification accuracy. The performance of GPCA is not
good for the BCI data set as well; the classification accuracy
is more or less the chance level, i.e., 50%. As described for
the AUSLAN data set, the parameters for GPCA seem to re-
quire re-configuration for the data sets whose items are not
square matrices.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a technique to utilizeKernel
PCAtechnique to extract features from MTS data sets using
Erosas its similarity measure, termedKEros. Using Eros as
a similarity measure between two MTS items, the correla-
tion information between UTSs in one MTS item would not
be lost. In addition, utilizing the Kernel Trick, KEros does
scale well in terms of dimensionality of data sets. KEros
first constructs the pair-wise similarity matrix using Eros,
KEros. In order to be utilized as a Kernel Matrix for the
Kernel PCA technique,KEros is naı̈vely transformed, if
necessary, in such a way that the transformedKEros is posi-
tive semi-definite, i.e., all the eigenvalues ofKEros are non-
negative. Our experimental results show that using KEros

to extract features, the classification accuracy is up to 60%
better than using features extracted using linear kernel, and
Generalized Principal Component Analysis (GPCA) [24].

We intend to extend this research in two directions.
Firstly, more comprehensive experiments with more real-
world data sets will be performed including comparisons
with other techniques such as Kernel LDA [15]. In [25],
we utilized the principal component loadings to identify a
subset of variables that are least redundant in terms of con-
tributions to the principal components. We plan to explore
similar feature subset selection techniques utilizing kernel
methods.
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Hill, W. Rosenstiel, C. E. Elger, B. Schölkopf, and N. Bir-
baumer. Methods towards invasive human brain computer
interfaces. InAdvances in Neural Information Processing
Systems 17, pages 737–744. Cambridge, MA, 2005.

[13] G. R. G. Lanckriet, N. Cristianini, P. Bartlett, L. E. Ghaoui,
and M. I. Jordan. Learning the kernel matrix with semidefi-
nite programming.J. Mach. Learn. Res., 5:27–72, 2004.

[14] Q. Li, J. Ye, and C. Kambhamettu. Linear projection meth-
ods in face recognition under unconstrained illuminations: a
comparative study. InComputer Vision and Pattern Recog-
nition, 2004. CVPR 2004. Proceedings of the 2004 IEEE
Computer Society Conference on, volume 2, pages 474–481,
July 2004.

[15] K.-R. Müller, S. Mika, G. Rätsch, K. Tsuda, and
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