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Abstract sors).
MTS data sets are common in various fields, such as in
Multivariate time series (MTS) data sets are common in multimedia, medicine and finance. For example, in multi-
various multimedia, medical and financial application do- media, Cybergloves used in the Human and Computer In-
mains. These applications perform several data-analysisterface (HCI) applications have around 20 sensors, each
operations on large number of MTS data sets such asof which generates 50100 values in a second [11, 19].
similarity searches, feature-subset-selection, clusteand For gesture recognition and video sequence matching using
classification. Inherently, an MTS item has a large hum- computer vision, several features are extracted from each
ber of dimensions. Hence, before applying data mining image continuously, which renders them MTSs [5, 2, 17].
techniques, some form of dimension reduction, e.g., fea-ln medicine, Electro Encephalogram (EEG) from 64 elec-
ture extraction, should be performed. Principal Component trodes placed on the scalp are measured to examine the cor-
Analysis (PCA) is one of the techniques that have been fre-relation of genetic predisposition to alcoholism [26]. Eun
quently utilized for dimension reduction. However, tradi- tional Magnetic Resonance Imaging (fMRI) from 696 vox-
tional PCA does not scale well in terms of dimensionality, els out of 4391 has been used to detect similarities in acti-
and therefore may not be applied to MTS data sets. Thevation between voxels in [7].
Kernel PCA technique addresses this problem of scalabil- An MTS item is typically very high dimensional. For
ity by utilizing the kernel trick. In this paper, we propose a example, an MTS item from one of the data sets used in the
PCA based kernel to be employed for the Kernel PCA tech-experiments in Section 4 contains 3000 observations with
nique on the MTS data sets, termed KEros, which is baseds4 variables. If a traditional distance metric for simitgri
on Eros, a PCA based similarity measure for MTS data sets.search, e.g., Euclidean Distance, is to be utilized, thiSMT
We evaluate the performance of KEros using Support Vectoritem would be considered as a 192000 (36064) dimen-
Machine (SVM), and compare the performance with Kernel sional data. 192000 dimensional data would be overwhelm-
PCA using linear kernel and Generalized Principal Com- ing not only for the distance metric, but also for indexing
ponent (GPCA). The experimental results show that KErostechniques. To the best of our knowledge, there has been no
outperforms these other techniquesin terms of classifinati attempt to index data sets with more than 100000 dimen-
accuracy. sions/feature's Hence, it would be necessary to preprocess
the MTS data sets and reduce the dimension of each MTS
item before performing any data mining tasks.

1 INTRODUCTION A popular method for dimension reduction is Principal
Component Analysis (PCA) [10]. Intuitively, PCA first

A time series is a series of observations(t); [i = finds thg direction where the varia_nce.is maximized and

1,---,n;t = 1,---,m], made sequentially through time then projects the data on to that direction. However, tra-

wherei indexes the measurements made at each time poinfitional PCA cannot be applied to MTS data sats is

¢ [20]. It is called a univariate time series (UTS) when  Since each_MTS item is represented in a matrix, while for
is equal to 1, and a multivariate time series (MTS) when PCA each .|tem should be rgpresented as a v_ectpr. Though
is equal to, or greater than 2. A UTS data is usually repre- 88ch MTS item may beectorizedby concatenating its UTS
sented in a vector of size:, while each MTS item is typ- items (i.e., the columns of MTS), this would result in the
ically stored in anm x n matrix, wherem_is the number LIn [3], the authors employed MVP-tree to index 65536 dimenai

of observations and is the number of variables (e.g., sen- gray-level MRI images.




loss of the correlation information among the UTS items.

In order to overcome this limitation of PCA, i.e., the data

should be in the form of a vector, Generalized Principal

Component Analysis (GPCA) is proposed in [24]. GPCA
works on the matrices and reduces the number of rows ang
columns simultaneously by projecting a mairito a vector

space that is the tensor product of two lower dimensional

vector spacesHence the data do not need to be vectorized.

While GPCA reduces the dimension of an MTS item, the re-
duced form is still a matrix. In order to be fed into such data

mining techniques as Support Vector Machine (SVM) [21],

the reduced form still needs to be vectorized, which would
be a whole new challenge.

Moreover, for traditional PCA, even if each MTS item
is vectorized, the space complexity of PCA would be over-
whelming. For example, assume an MTS item with 3000
observations and 64 variables. If this MTS item is vector-

ized by concatenating each column end to end, the IengthE

of the vector would be 192000. Assume that there are 378
items in the data set. Then the whole data set would be
represented in a matrix of size 328192000. Though, in
theory, the space complexity of PCAGXnN) wheren is
the number of features/dimensions akds the number of
items in the data set [14], Matlab fails to perform PCA on
a matrix of size 378« 192000 on a machine with 3GB of
main memory due to lack of memory. In [8], it has also
been observed that PCA does not scale well as a function o
dimensionality.

In [18], the authors proposed an extension of PCA using
kernel methods, termeldernel PCA Intuitively, what the
Kernel PCA does is firstly to transform the data into a high

dimensional feature space using a possibly non-linear ker-

nel function, and then to perform PCA in the high dimen-
sional feature space. In effect, Kernel PCA computes the
pair-wise distance/similarity matrix of sizZ€ x N using a
kernel function, wheréV is the number of items. This ma-
trix is called aKernel Matrix Kernel PCA therefore scales
well in terms of dimensionality of the data, since the ker-
nel function can be efficiently computed using #ernel
Trick [1]. Depending on the kernel employed, Kernel PCA

has been shown to yield better classification accuracy us-,

ing the principal components in feature space than in input
space. However, it is an open question which kernel is to be
used [18].

In this paper, we propose to utilize Eros [22] for the
Kernel PCA technique, termd@Eros By using Eros, the
data need not be transformed into a vector for computing
the similarity between two MTSs, which enables us to cap-

Symbol Definition
A anm x n matrix representing an MTS item
AT the transpose oA
Ma the covariance matrix of size x n for A
Va the right eigenvector matrix of size x n for M a
Va=lai, a2, -+, an]
YN ann x n diagonal matrix that has all the
eigenvalues foM o obtained by SVD
a; a column orthonormal eigenvector of sizéor V a
aij jth value ofa;, i.e.,
a value at théth column and thgth row of A
Qxj all the values at thgth row of A
w a weight vector of size,
Erzl w; = I,Vi w; 2 0

Table 1. Notations used in this paper

the Kernel Matrix for the kernel PCA technique. Though
ros cannot readily be formulated in terms of dot product as
other kernel functions, it has been shown that any positive
semi-definite (PSD) matrices whose eigenvalues are non-
negative can be utilized for kernel techniques [13]. If the
matrix obtained by using Eros is shown to be positive semi-
definite, it can be utilized as a Kernel Matras is other-
wise, the matrix can be transformed into a Kernel Matrix by

utilizing one of the techniques proposed in [16]. In this pa-

per, we utilize the first naive approach. We plan to compare

different approaches to transforming a non-PSD matrix into
a PSD matrix for Eros in the future.

In order to evaluate the effectiveness of the proposed ap-
proach, we conducted experiments on two real-world data
sets: AUSLAN [11] obtained from UCI KDD repository [9]
and the Brain Computer Interface (BCl) data set [12]. After
performing dimension reduction using KEros, we compared
the classification accuracy with other techniques, such as
Generalized Principal Component Analysis (GPCA) [24],
and Kernel PCA using linear kernel. The experimental re-
sults show that KEros outperforms other techniques by up
to 60% in terms of classification accuracy.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses the background of our proposed approach.
Our proposed approach is presented in Section 3, which is
followed by the experiments and results in Section 4. Con-
clusions and future work are presented in Section 5.

2 BACKGROUND

Our proposed approach is based on Principal Component

ture the correlation information among the UTSs in an MTS Analysis (PCA) and our similarity measure for Multivariate
item. In addition, by using the kernel technique, the scala- Time Series (MTS), termed Eros. In this section, we briefly
bility problem in terms of dimensionality is resolved. KEro  describe PCA and Eros. For details, please refer to [10, 22].
firstly computes a matrix that contains pair-wise similari- For notations used in the remainder of this paper, please
ties between MTSs using Eros, and utilizes this matrix asrefer to Table 1.



X, In practice, PCA is performed by applying Singular
Value Decomposition (SVD) to either a covariance matrix
or a correlation matrix of an MTS item depending on the
data set. That is, when a covariance mattixs decom-
posed by SVD, i.e.A = UAU”, a matrixU contains
the variables’ loadings for the principal components, and
a matrixA has the corresponding variances along the diag-

- onal [10].

PC, =(cosa )X, +(cosB

2.2 Eros

Score

In [22], we proposedEros as a similarity measure for
multivariate time series. IntuitivelEroscomputes the sim-
ilarity between two matrices using the principal compo-
nents (PCs), i.e., the eigenvectors of either the covagianc
or the correlation coefficient matrices, and the eigenvalue
as weights. The weights are aggregated from the eigenval-
ues of all the MTS items in the database. Hence, the weights
change whenever data are inserted into or removed from the
database.

Figure 1. Two principal components obtained
for one multivariate data with two variables T
and z, measured on 30 observations.

2.1 Principal Component Analysis L )
Definition 1 Eros (Extended Frobenius norm). LAtand

L . . B be two MTS items of size 4 x n andmpg x n, respec-
Principal Component Analysis (PCA) has been widely tively. LetVa and Vg be two right eigenvector matri-
used for multivariate data analysis and dimension reduc—CeS obtained by applying SVD to the covariance matrices,
tion [10]. Intuitively, PCA is a process to identify the dire Ma and Mg, respectively. LeWa = a1, ---,a,] and
tions, i.e., principal components (PCs), where the vaganc — [b1,---,b,), wherea; andb; are coIL;mnvorthonor-

of scores (orthogo_na_l projections of dgta points onto the.dll mal vectors of size. The Eros similarity ofA and B is
rections) are maximized and the residual errors are MiNi- 4 o defined as

mized assuming the least square distance. These directions

in non-increasing order, explain the variations undegyin Bros(AB,w)=) "  wi|<aibi>|=) "  wi|cos] 1)
original data points; the first principal component desesib

the maximum variation, the subsequent direction explainsWhere< a;,b; > is the inner product ofi; andb;, w is a

the next maximum variance and so on. weight vector which is based on the eigenvalues of the MTS

Figure 1 illustrates principal components obtained on a data sety =i, w; = 1 andcos®; is the angle betweem;
very simple (though unrealistic) multivariate data witdyon andf b;. The range of Eros is between 0 and 1, with 1 being
two variables £, z;) measured on 30 observations. Geo- the most similar.
metrically, the principal component is a linear transforma
tion of original variables and the coefficients defining this
transformation are calletbadings For example, the first
principal component (PC1) in Figure 1 can be described as
a linear combination of original variables andz,, and
the two coefficients (loadings) defining PC1 are the cosines
of the angles between PC1 and variahlesndz, respec-
tively..The loadings afe.thus inte_rpre_ted as the contrimst malizes eacls;, and then calls Algorithm 1. Functiofy)
or weights on d_etermmm_g the directions. _ in Line 3 of Algorithm 1 is an aggregating function, e.g.,
. The central |dez_;\ of pr!nC|p§1I component analy5|s_ (PCA) min, mean and max.
is to reduce the dimensionality of a data set consisting of
a large number of interrelated variables, while retainiag a
much as possible the variation present in the data set [10]
This is achieved by transforming to a new set of variables, *MTS items have the same number of columns (e.g., sensotshayu
the principal components (PCs), which are uncorrelated,"a different number of rows (€.g., time samples). .

. . . For simplicity, it is assumed that the covariance matriaesad full
and which are ordered so that the fifstv retain most of a0k in general, the summations in Equation (L) should benft to
the variation present iall of the original variables. min(r 4, 7g), wherer 4 is the rank ofM o andr s the rank ofMg.

Intuitively, eachw; in the weight vector represents the
aggregated variance for all théh principal components.
The weights are then normalized so thaf_, w; = 1. The
eigenvalues obtained from all the MTS items in the database
are aggregated into one weight vector as in Algorithms 1 or
2. Algorithm 1 computes the weight vecterbased on the
distribution of raw eigenvalues, while Algorithm 2 first ror

Note that PCA, on which Eros is based, may be de-
scribed as firstly representing each MTS item using either




Algorithm 1 Computing a weight vectow based on the
distribution of raw eigenvalues
1: function computeWeightRaw(S)

Require: ann x N matrix S, where n is the number of vari-
ables for the dataset ad is the number of MTS items
in the dataset. Each column vectgin S represents all
the eigenvalues fath MTS item in the dataset,; is a
value at columniand row jin S..; isith rowin S.s;,
is ¢th column, i.egs;.

2: for i=1 to ndo

4: end for

5: for i=1 to ndo
6: W; «— wl/ 2?21 Wy,
7: end for

Algorithm 2 Computing a weight vectow based on the
distribution of normalized eigenvalues

1: function computeWeightRatio(S)
Require: the same as Algorithm 1.

2: for i=1to Ndo

3: S; — Si/ Z?:l Sij

4: end for

5. computeWeightRaw(S);

covariance or correlation coefficients, and then perfogmin
SVD on the matrix that contains the coefficients. In order
to stablyrepresent an MTS using correlation coefficients,
we proposed to utilize thstationarityof time series before
computing the correlation coefficients of an MTS item [23].
Intuitively, if a time series is stationary, it means thag th
statistical properties of a time series, e.g., covariamzk a
correlation coefficients, do not change over time. For de-
tails, please refer to [23].

3 THE PROPOSED APPROACH

In this section, we will firstly describe the traditional
PCA in a little more detail, and then briefly describe the ker-
nel PCA technigue in relation to the traditional PCA, which
will be followed by our proposed approach.

Assume that we are given a set df items, and each
data item is am dimensional column vector, i.ex; € R",
wherel < i < N. Assume also that the data is mean cen-
tered, i.e.) . xj = 0,for1 < j < N. The covariance
matrix can subsequently be computed as follows:

1
C = N;xixf

The traditional PCA then diagonalizes the covariance ma-

trix to obtain the principal components, which can be

achieved by solving the following eigenvalue problem:

(2)

Kernel PCAextends this traditional PCA approach, and
performs PCA in thdeature space Hence, the data are
first mapped into a high dimensional feature space using
®: RN — T,z — X. The covariance matrix in the feature
space can be described as follows, assuming that data are
centered:

Av =Cv

O—lNcb P(x;)"
_N; (xi)®(xi)

An N x N Kernel Matrix, which is also called a&ram
matrix, can be defined as follows:

Kij = (®(x) - ®(x5)) = ki, z5)

and as Equation (2), one computes an eigenvalue problem
for the expansion coefficients;, that is now solely depen-
dent on the kernel function

A= Ka )
Hence, intuitively, Kernel PCA can be performed by firstly
obtaining the Kernel Matrix, and then solving the eigen-
value problem as in Equation (3). For details, please refer
to [18, 15]. Let us formally define the kernel function and
the kernel matrix [13].

Definition 2 A kernel is a functiotk, such that(z, z) = <
®(x), ®(z) > forall z,z € X, whered is a mapping from
X to an (inner product) feature space. A kernel matrix is
a square matrixx € RV*¥» such thatk;; = k(z;, x;) for
somery,---,xy € X and some kernel function

As in [13], the kernel matrices can be characterized as fol-
lows:

Proposition 1 Every positive semi-definite and symmetric
matrix is a kernel matrix. Conversely, every kernel matrix
is symmetric and positive semi-definite.

As a kernel function for Kernel PCA technique, we pro-
pose to utilize Eros for MTS data sets. That is, given
an MTS data seiX and a weight vectow, the Kernel
Matrix is constructed in such a way that®os(i, j) =
Eros(X;,X,,w). Note thatErosis not a distance metric,
and cannot be readily represented in a form of dot product
as the other kernel functions. However, according to Propo-
sition 1, K¥7°s can be utilized for Kernel PCA, as long
as K ros is symmetric and positive semi-definite, i.e., the
eigenvalues of{ ©7°¢ is non-negative. FirstljErosis sym-
metric, i.e.,Eros(X,;, X, w) = Eros(X;, X;,w). Hence,
KFros is symmetric. Consequently, as long B¢ is
positive semi-definite K 7°¢ can be utilized for Kernel



PCA. In [16], a number of approaches to making a ma-  After obtaining the principal components in feature
trix into a PSD matrix have been described. In this pa- space using théraining MTS items as in Algorithms 3
per, we utilize the first naive approdgiwhich is to add and 4, the projection of thestMTS items on the principal

o1 to K Eros, i.e.,FEms « KPEros L 5T, whenKEros is components is performed as in Algorithms 5 and 6. Intu-
not PSD. Fo# sufficiently larger in absolute value than the  itively, Lines 1~4 of Algorithm 6 describe how to map the
most negative eigenvalue &fZros, =E is PSD. test data into feature space and subtract the pre-computed

mean, i.e., mean-center the mapped data in the feature
space. Line 5 projects the mean-centered data onto the prin-
cipal componentsy, in the feature space, which is analo-
gous to the traditional PCA approach. For details, please
refer to [18].

Algorithms 3 and 4 describes how to computé’ s,
and how to obtain the principal components in the feature
space. Given an MTS data set, and a weight veetowe
first construct the pair-wise similarity matrid ©7°¢, of
sizeN x N, whereN is the number items in the given data
set as in Lines 27 of Algorithm 3. Lines 8-10 make sure - — —
K, is PSD. The Kernel MatrixK z,.., is then mean-  Algorithm 5 Computek™* for Projection
centered in the feature space in Line 3 of Algorithm 4. The Require: MTS data setX with N {the number of items
eigenvalue problem in the feature space, i.e., the Equation  in the data sg¢tandn {the number of variables in an
(3), is solved, and the principal componentsin featurespac ~ MTS datg; w {a weight vector for Ergs MTS data
are obtained in Line 4. set, Xyest With Nyes; andn.

1: {Construct a Kernel Matrix using Eros for Projectjon
Algorithm 3 Computek £7os 2: for i =110 Niest do
Require: MTS data setX with N {the number ofitemsin 3 for JEzmls to N do _
the data sdtandn {the number of variablesinan MTS % K271, j) < Eros(Xeesti, X, w); {X, is the
datg; w {a weight vector for Erds _zth MTS item inX, andX;.s; ; theith MTS item
1: {Construct a Kernel Matrix using Erps N Xt}
2: for i =1toN do 5. end for
3 forj=itoN do 6: end for
4: KEFros(i, j) « Eros(X;,X;,w); {X; is theith
MTS item inX}
5: K(j,i) — K(i,75); Algorithm 6 Project Test Data Set usirg® o
6: end for Require: MTS data setX with N {the number of items in
7: end for the data sdtandn {the number of variables in an MTS
8: if K”7°* is not PSDthen data; w {a weight vector for Erdjs test MTS data set,
9: KFros — KFros 4 4T, {choose sufficiently largé Xest With Ny.. andn; V obtained in Algorithm 4
to makeK""* PSD} 1: KEros — Computer the Kernel Matrix using Algo-
10: end if rithm 5,
2: KPros  Computer the Kernel Matrix using Algo-
rithm 3;
Algorithm 4 Perform PCA usingi £ 3: {Center the Kernel Matrix in feature spgce
n - - yelros Eros Eros Eros
Require: MTS dataset)V {the numberofitemsinthedata 4 K — K{/#® — Opeq x KP7° — K78 < O +
sett, n {the number of variables in an MTS dafa {a Orest xXKP7°xO; {whereO;; = 1/N,1<4,j < N,
weight vector for Ero Ovtest,ij = 1/N,1 <4 < Nyegt, 1 < j < N}
1: KPros — Computer the Kernel Matrix using Algo- 5. Y <« K x V; {Theith MTS item is represented as
rithm 3; features in theth row of Y}
2: {Center the Kernel Matrix in feature spgce
3 K7 KFros — 0 x KFros — KPros x 0+ O x
KFros x O; {whereO;; =1/N,1<i,j < N andN
is the number of items 4 PERFORMANCE EVALUATION

—FEros

4: [V,v] < solve the eigenvalue problehay = K~ "«
{V contains the eigenvectors, andhe corresponding 4.1 Datasets
eigenvalues

The experiments have been conducted on two different
“We plan to compare different approaches to transformingraf®D real-world data sets, i.e., AUSLAN and BCI{ which are all
matrix into a PSD matrix for Eros in the future. labeled MTS data sets whose labels are given. Abs




and performing PCA on it to extract the features.

Table 2. Summary of data sets used in the ex- GPCA does not require vectorization of the data, and
periments works on each MTS item, i.e., a matrix, to reduce it to a
| [ AUSLAN [ BCI | (£1,¢2) dimensional matrix. In [24], the best results have
# of variables 22 64 been reported Wheﬁl— = 1. Hence, we varied, and/,
(average) length 60 3000 from2to 7, and the sizes of the reduced matrix would be 4,
# of labels o5 2 9, 16, 25, 36 and 49, respectively. In order to utilize SVM,
# of MTS items per labe 27 189 these reduced matrices have b&eatorizedcolumn-wise.
total # of MTS items 2565 378 One of the disadvantages of GPCA and KLinear is that

the number of observations within the MTS items should be
all the same, while KEros, i.e., Eros, can be applied to the
tralian Sign Language (AUSLAN) data set uses 22 sensors MTS items with variable number of observations. Hence,
on the hands to gather the data sets generated by signing of or GPCA and KLinear, the AUSLAN data set have been
native AUSLAN speaker [11]. It contains 95 distinct signs, linearly interpolated, so that all the items have the same
each of which has 27 examples. In total, the number of number of observations, which is the mean number of ob-
signs gathered is 2565. The average length is around 60. servations, i.e., 60.

TheBrain Computer Interface (BCI) data set [12] was For KLinear, STPRtool implementation [6] and SVM-
collected during the BCI experiment, where a subject had toKM implementation [4] are utilized. For KEros, we mod-
perform imagined movements of either the left small finger ified the Kernel PCA routine in STPRtool and SVM-KM.
or the tongue. The time series of the electrical brain agtivi We implemented GPCA from scratch. All the implementa-
was collected during these trials using 64 ECoG platinum tions are written in Matlab.
electrodes. All recordings were gathered at 1000Hz. The
total number of items is 378 and the length is 3000. 4.3 RESULTS

Table 2 shows the summary of the data sets used in the

experiments. In order to check if the pair-wise similarity matrix com-

puted by using Eros, i.eK”"°¢, is positive semi-definite,
4.2 Methods we obtained the eigenvalues Kf?°s. For the AUSLAN
data set, the minimum eigenvaluel§f”"** is 3.2259e-06,

For KEros, we first need to construBt® . As de- and for the BCI data set, it is 0.0014. Hen&e s for
scribed in Section 2.2, there are 6 different ways of obtain- the AUSLAN and BCI data sets turned out to be symmet-
ing weightsfor Eros. For the data sets used in the exper- ric and positive semi-definite, i.e., all the eigenvalues ar
iments, themeanaggregating function on the normalized non-negative. Consequently, we did not need to &dtb
eigenvalues yields the overall best results, which are pre-K£7°¢; for the AUSLAN and BCI data set¥®"* is uti-
sented in this section. In order to compute the classifinatio lized as isas the Kernel Matrix for the Kernel PCA tech-
accuracy of KEros, we performed 10 fold cross validation nique.
(CV) employing Support Vector Machine (SVM) [21]. That Figure 2(a) shows the results of the classification accu-
is, we break an MTS data set into 10 folds, use 9 folds to racy for the AUSLAN data set. Using only 14 features ob-
obtain the principal components in the feature space usingtained by KEros, the classification accuracy is over 90%.
KEros and then project the data in the remaining 1 fold onto As we increase the number of features for SVM, the perfor-
the first 51 principal components to obtain 51 features. We mance of KLinear improves and when the number of fea-
subsequently computed the classification accuracy varyingtures is more than 40, the performance difference between
the number of features from 1 to 51. We repeated the 10KLinear and KEros is almost negligible. The performance
fold cross validation ten times, and report the average clas of GPCA, however, is much worse than the Kernel PCA
sification accuracy. technique. Even when 49 features are employed, the classi-

We compared the performance of KEros with two other fication accuracy is less then 80%, while the others achieved
techniques, Kernel PCA using linear kernel (KLinear), and more than 90% of classification accuracy. There may be
Generalized Principal Component Analysis (GPCA) [24], a couple of reasons for this poor performance of GPCA.
in terms of classification accuracy. Since the linear keisel  Firstly, in [24], the data sets contain images which are rep-
the simplest kernel for the Kernel PCA technique, we choseresented in approximately square matrices. For the AUS-
the linear kernel as the performance baseline for the KernelLAN data set, however, each MTS item is not square; the
PCA technique. Note that intuitively Kernel PCA using lin- number of observations is almost three times the number
ear kernel would perform similarly to vectorizing an MTS of variables. Hence, thé and/, parameters for GPCA
item column-wise, i.e., concatenate columns back to back,should be re-evaluated. Secondly, the result of dimension
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Figure 2. Classification Accuracy Comparison

reduction using GPCA is still a matrix; a vectorization is to extract features, the classification accuracy is up to 60%

required so that SVM can be utilized. Our vectorization by better than using features extracted using linear kernell, a

simply concatenating the columns may have resulted in theGeneralized Principal Component Analysis (GPCA) [24].

loss of correlation information. We intend to extend this research in two directions.
Figure 2(b) represents the classification accuracies of theFirstly, more comprehensive experiments with more real-

three techniques on the BCI data set. Similarly as for the world data sets will be performed including comparisons

AUSLAN data set, KEros outperforms other techniques in with other techniques such as Kernel LDA [15]. In [25],

terms of classification accuracy. When 16 features are usedye utilized the principal component loadings to identify a

KEros yielded more than 70% of classification accuracy. subset of variables that are least redundant in terms of con-

Unlike for the AUSLAN data set, KLinear does not per- tributions to the principal components. We plan to explore

form as well as KEros as the number of features increasedsimilar feature subset selection techniques utilizinghkér

16 features from KLinear achieved just more than 60% of methods.

classification accuracy. The performance of GPCA is not
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