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Abstract—1In the process of designing state-ofithe art VLSI
circuit we often euncounter large but highly structured linear
subcircuits with large number of terminals. Classical examples
are power supply networks, clock distribution networks, large
data buses, etc. Various applications would benefit from efficient
high level models of such networks., Unfortunately the existing
model-order-reduction algorithms are not adapted to handle
more than a few tens of terminals. This talk introduces RecMOR,
an algorithm for the computation of reduced order models
of structured linear circuits with numerous /O ports. The
algorithm exploits certain regularities of the subcircuit response
that are typical in numerous applications of interest. When
these regularities are present, the normally dense matrix-transfer
function of the subcircuit contains sub-blocks that in some sense
are significantly low rank and can be compactly modeled by
the recently introduced SVDMOR algorithm, The new RecMOR
algorithm decomposes the large matrix-transfer function recur-
sively, and applies SYDMOR compression adaptively to the sub-
blocks of the transfer function. The result is a reduced order
model that is sparse, efficient, and directly usable as an efficient
substitute of the subcircuit in circuit simulations. The method is
illustrated on several circuit examples.

I. INTRODUCTION

Model order reduction (MOR) has become an established
technique for the analysis and compact modeling of linear
circuits and systems. In the past decade numerous algorithms
have been devised for the computation of reduced-order
models [1]-{5]. Model order reduction is useful when only
signal behavior at the ports of the linear block is of interest.
MOR techniques generate compact models of the circuit that
approximate well circuit behavior at the port terminals but
sacrifice the modeling of behavior at internal nodes.

Unfortunately the efficiency of model order reduction de-
grades as the number of external terminals to the circuit
increases. The reason for the degradation is fundamental and
does not depend on the particular reduction algorithm, A
multi-terminal circuit is described by an m x m matrix-valued
transfer function, where m is the number of external termi-
nals. Each entry in the transfer function matrix characterizes
the interaction between a pair of two terminals and there
are @(m?) of such interactions. Moreover, in general, there
is no basis to the assumption that any of the interactions
is magnitude-wise insignificant, therefore the matrix-valued
transfer function must be assumed to be fully populated. Any
reduced-order model must approximate in some sense this
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matrix-valued transfer function. Therefore unless some special
properties of the circuit are exploited, the complexity of the
reduced order model is at least O{m?), which for a circuit with
numerous inputs and outputs may approach or even surpass the
complexity of working with the original, unreduced, circuit
equations.

Recently we introduced a new algerithm, SVDMOR, that
can take advantage of situations when the matyix transfer
function is numerically close to being low rank and generate
for it a compact and sparse reduced order model. While
SVDMOCR achieves excellent sparsification on this type of
transfer functions, a complete matrix transfer function of a
subcircuit (relating all port currents and voltages), is very
rarely low rank. On the other hand it may contain important
low rank sub-blocks. Consider, for example, the power grid
section illustrated in Figure 1. Here the inputs and the outputs
are the edges of the wire on the right and on the left of the
section, The complete matrix transfer function that relates the
currents and voltages at all the ports of the section as required
to represent its behavior in a higher level simulation, is very
large and is also full rank. Therefore SVDMOR can achieve
no practical compression on the entire matrix. On the other
hand, the submatrix-transfer function that relates the voliages
on the left side to the currents on the right is very accurately
approximated by a low rank transfer function and SVDMOR
achieves a significant sparsification of this off-diagonal sub-



block.

This paper introduces RecMOR, an algorithm for the com-
putation of reduced order models of large linear subcircuits
with a large number of input/output ports. The algorithm
depends of and exploits certain regularities of the subcircuit
response that are typical in numerous applications of interest
such as power meshes, buses, and clock networks, When these
regularities are present, the normally large and dense matrix
transfer function of the subcircuit has significant low rank sub-
blocks. The RecMOR algerithm recursively and adaptively
applies the SVDMOR [6] sparsification to these portions of
the transfer function. The result is a reduced order model that
is sparse, efficient, and directly usable as an efficient substitate
of the subcircuit in higher level simulations.

II. OVERVIEW OF THE SVDMOR ALGORITHM

First, we briefly summarize the essence of MOR methods.
We are interested to compute the reduced-order model for a
linear circuit characterized by a Jarge number of input/output
terminals, The general state-space formulation of the circuit is

C’im+ Gz

p Mu

NTx

(1)
'y =

Here C, and G, are n x n matrices describing the reactive,
and dissipative parts of the circuit respectively. M isan x p
matrix that defines the input ports, and N is a n x ¢ matrix
that defines the outputs. For most circuits these matrices are
quite sparse.

A large class of MOR methods operate on the Laplace-
domain transfer function of the multi-port circuit. The Laplace
transform of the input output transfer function has the expres-
s10n

H(s) = NT(G + sC)"*M, )

and is in fact a ¢ X p matrix-valued rational function. Padé-
based MOR algorithms [1]-{5], operate on the original cir-
cuit matrices G,C, M, N, and compute models described
by smaller matrices, which usually are just projections of
the circuit matrices in well chosen subspaces. The transfer
function of the reduced-order models approaches the original
in the Padé approximation sense

H(s) » Hy(s) = NT(G1 + sC1) "' M. (3)

In this reduced-order model (3) Gy and € are [ % ! matrices.
where [ depends on the number of I/O ports and the order of
approximation, Typically, [ is much smaller than =, the size of
the original system muatrices and, therefore the reduced-order
model is expressed in terms of significantly smaller matrices.

However, reduced-order model matrices may also be much
denser. The number of non-zero entries in the reduced-order
model matrices is increasing rapidly with the number of I/Q
ports and is of order O(pq), while for typical circuits, the
original system matrices G and C are very sparse, having
only an order O(n) of non-zero entries. This situation causes
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the benefits of model-order reduction (compactness and com-
putational efficiency) to vanish rapidly as the number of 1/O
ports is increased,

The SVDMOR algorithm [6] exploits the structure of a wide
class of transfer functions and can often result in compact
reduced-order models even for circuits with large numbers
of I/O ports. Matrix N and M encode all the input/output
port definitions. Obviously in many applications, the responses
at the circuit inputs and outputs are not independent. On
the contrary, typically there is a large degree of correlation
between circuit responses at various ports, Such a correlation
will manifest itseif in the matrix H having highly dependent
entries, or in other words A can be well approximated by a
lower rank matrix.

Note that in our formulation, A/ and N conly contain topol-
ogy information. SVDMOR first transforms the equations in
a way that reveals circuit response correlations. One possible
transformation focuses on the DC response matrix of the cir-
cuit Hpc. For a highly regular circuit we expect this response
to be highly correlated and therefore to be well approximate
by a low rank matrix. We determine this approximation by
performing SVD and keeping only the important singular
values.

Hpc = NTG M =UnWT 4

where ¥ = diag{o1,...,0m), and U and W are orthogonal
matrices. Note that we chose the unusual notation W instead
of the traditional V' in order to avoid confusion with the
voitage variables. In many important situations there will be
a relatively small number of dominant singular values, say
O1...0-, 1 << m, and the error caused by setting the
remaining singular values to zero, will be relatively small. In
these cases

B=UsWT x U, 5, W7 ()

Other good matrices for revealing correlations that are the first
moment of the response M; = MTG~1CG 1N, frequency
shifted moments My, = MT(G + s,C)~IN or even combi-
nations of these. We approximate

M =bpUY and N =b, W7 (6)

where b,, and b, are obtained using the Moore-Penrose
pseudoinverse.

b = MU, (UTU.)™Y and b, = NW,(WTW,)~' (1)
The circuit transfer function now becomes
H(s) = U b (G +sC) 1o, WT
H(s)

The standard model order reduction technigue [1]-[5] can now
be applied just to

H,.(s) = b1 (G 4+ sC) b, )

which is just a 7 X7 matrix transfer function, and obtain H,(s).
The complete transfer function is approximated by

H(s) = U He(s)WT

&

(10}



where all the matrices involved have O(r®) non-zero entries.

Note also that SVDMOR compression works at the problem
formulation level, therefore it is not tied to a particular chaice
of reduction method. As such, SVDMOR compression can be
applied in conjunction with any of the quoted model reduction
algorithms.

[IT. HIERARCHICAL DECOMPOSITION OF COMPLETE
MATRIX TRANSFER FUNCTION

By complete matrix-transfer function we mean a transfer
function that completely characterizes the port behavior of
a circuit block. It can be, for example, the full Z-parameter
matrix relating all the port currents to all port voltages, or the
S-parameter matrix, or any other representation.

We assume that the input ports are sorted, to the extent it is
possible, according to some electrical distance metric. In other
words, ports with indices that are close to each other are likely
to be electrically close, and widely separated indices are likely
to correspond to electrically distant ports. This indexing policy
does not have to be absolutely enforced but can significantly
impact the effectiveness of model reduction,

For example, we consider the rectangular grid network in
Figure 1, modeling a portion of the power grid, that has ports
on the right and on the left edges. The Laplace transform of
the state equations of this system are

(G+sC) X
Vv =

BI
BTXx

(In

where (7 and C are matrices that describe the resistive and the
reactive elements comprising the mesh and B is the vector that
defines the 1/0 ports to the subeircuit. The equations determine
the following transfer function that establishes the relationship
between port currents and port voltages

H(s)=BT(G+sC)'B

The vector B which defines the ports is partitioned in two
components: B = [B; Br], with B and B, selecting the
ports on the left and right sides of the grid, respectively.
The partitioning of the ports results in the partiticning of the
transfer function of as follows

H(s) = BT(G+sC)™'B
_ [BE(G+sC) B B (G+sC) B,,]
BT(G+sC)"'B, BT(G+sC)'B,
We assume that model order reduction is performed separately

on the four components of the transfer function matrix result-
ing in the following reduced matrix

gy - |G AV
B = |Ghsirs, ey

(12)

(13

where for notational brevity we denote Ypq = Gpq + 5Chq-
Note also that the off-diagonal blocks are just transposes of
each other.

This transfer function approximates the port current to port
voltage relationship
W) _ (6% dFF h
Vo] TV Td TV |
where for notational convenience we replaced the ~ relation-
ship with =. We now rewrite this reduced system in state

variable form using [XH,X”,XJ,-,X"]T as the state of the
reduced system

(14)

YaXy=bl, Vu=blXu

ﬁrXt'r = d'rIm Vir = d[Tle Vl =Vu+ Vir
X’ITsz =dif;, Vu=d'X,

YooXrr =2 b, Vi = bZ‘era Vi=Vu+ Ve

We gather these equation in matrix form and arrange them in
a way that results in a symmetric system

Yu . Xu b
0 Yir Xrl _ d, 1]
}7131 0 Xl'r' dl [Ir]

| Kr Xor br
by T [ Xu
FI/E dr Xrl
_Vr dl Xlr
by Xor

When any of these transfer function sub-matrices can be
modeled by low-rank models as shown in the previous section,
or its number of ports is sufficiently small, it is approximated
by a sparse reduced-order model. Otherwise the sub-block is
further subdivided and the process continues recursively until
all the sub-block are modeled by sparse approximations,

IV. COMBINING HIERARCHICAL DECOMPOSITION WITH
SVDMOR COMPRESSION
We continue the example and assume that the off-diagonal
transfer function sub-matrix
Hir = BF (G +sC)™" B, (15)

can be approximated by the low rank reduced order model.
We also observe that, G and C, being symmetric matrices,
H,; = H{, so it is sufficient to work on only cne of the blocks.
Applying the SVDMOR method B; and B, are approximated
B bUL and B, ~ b WT (16)
Standard model reduction is than applied to the inner part of
the expression resulting in a sparse multi-port model
Hy, =~ U (G+sC)y o, WT
[ S S ——
MOR
=~ U uzpﬁrAI'Ufr W,:-T

(17)

In other words the current to voltage transfer function Vi, =
Hj.Ip. can be approximated in terms of fewer state variables
since

Vie = U T Y e W Ty (18)
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can be expressed as

ﬁT‘X!T
Vir

T
ur W, Ity
T
Uy Xir

(19)
(20)

We replace the expression in the hierarchical decomposition
obtained in the previous section

rYll _ Xy b
0 Yh" Xrl Up VVTT [I¢:|
Y}TT 0 Xir - Uy U!T I,
i v, | Xer br
b T T Xu
-VI UrW;F X
V;.. ’U,[UIT Xlr
by Xer

The resulting submatrices that comrespond to off-diagonal
terms are small and sparse when the correlation assumptions
hold well. The diagonal terms Yy and Y., had their port count
reduced by half. Furthermore, this process can be repeated re-
cursively on the diagonal terms until the off-diagonal elements
no longer yield significant reductions through correlation ex-
ploitation.

Note that this sub-matrix based sparsification procedure is
similar to the method used in [7] for matrix-vector multipli-
cation in a fast Poisson equation solver context.

V. EXAMPLES

As an example we analyze an RC rectangular mesh such
as would result from the modeling of the on-chip power-grid.
The grid is quite regular, therefore we expect the responses
of the signals to be highly correlated. We assume that all the
input/cutput ports are on the left and right side of the mesh.
Assuming the mesh is of size 50 x 60 the transfer function
that the reduced-order model needs to capture will be a 120 x
120 matrix-valued rational function. The original network has
over 3000 nodes. The SVDMOR compression is guided by
the correlations revealed by

Mbpe LTG R
M, LT(G + 50C) 'R,

@1

the DC component, and a shifted moment around the normal-
ized frequency s¢ = 0.1.

Figure 2 shows 7 transfer functions out of the 120 matrix
generated through the application of the RecMOR algorithm
on the mesh. We observe that the accuracy of the RecMOR
model below that the brute force application of a standard
MOR procedure, however it is above the preimposed error
limit of 10~3. The brute force application of MOR would have
produced as part of the “reduced” model a dense matrix of
sizes several times 120, the number of 1/0 ports. Such a matrix
is much more expensive to employ in a circuit simulation (if
at all possible) than the original 3000 x 3000 circuit matrices,
RecMOR produces instead a much sparser, block-structured
matrix shown in Figure 3. It is larger than the matrix that
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Fig. 3. Reduced system matrix structure

would have been produced by the brute force model reduction
but significantly sparser and therefore compatible with efficient
use in circuit simulators. Moreover one can take advantage of
its block diagonal structure to extract additional efficiency.

The next example is a realistic power grid section imple-
mented on three layers of metal. The topology of the grid
together with the current response to a unit excitation applied
to one of the nodes in the top layer are shown in Figure 4. The
grid consists of interlaced power and ground wires modeled
with just under 3000 nodes. The ports are assumed to be all the
nodes of the top layer, 50 in number. Note that the voltage-to-
current response is very localized in the X and Y coordinates.
Figure 5 shows the first moment response of the network.

RecMOR is applied to this circuit and the structure of the
sparsified model is shown in Figure 6. RecMOR achieves
a very significant reduction in model complexity at a smail
accuracy cost. This is shown in Figure 7.

CONCLUSION

The paper introduced a new method, RecMOR, for model-
order reduction of complete linear subcircuits characterized
by a very large number of terminals. Previously, such systems
were not amenable to reduction, because traditional methods



Fig. 4. Power grid and voltage-to-current response
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Fig. 5. Power grid first moment response

would result in reduced models that are more complex to store
and evaluate than the original circuit. This apparent paradox
is explained by the fact that reduced-order models for systems
with large number of terminals are based on dense matrices
while the original circuit equations are written in terms of
sparse matrices, albeit much larger.

The RecMOR method restores the sparsity of the reduced-
order model even in the cases when the number of terminals
is very large. The method employs the recent SVDMOR
algorithm which takes advantage of the correlations between
circuit responses at various network terminals The models
resulting from these algorithms become more efficient as the
correlation between circuit responses is more pronounced.

While not a universal property of electrical circuits, such
correlations are characteristic to large number of practical ap-
plications. As the examples analyzed in the paper indicate, the
RecMOR and SVDMOR algorithms are particularly powerful
in the analysis of regularly structured circuits, often used in
modeling of power grids, clock networks, and wide buses.

SVDMOR and RecMOR compreson are compatible with
practically any of the existing model order reduction algo-
rithms.
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