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Abstract
ENOR is an innovative way to produce provably-
passive, reciprocal, and compact representations of
RLC circuits.  Beginning with the nodal equations,
ENOR formulates recurrence relations for the
moments that involve factorizing a symmetric, positive
definite matrix; this contrasts with other RLC order
reduction algorithms that require expensive LU
factorization.  It handles floating capacitors, inductor
loops, and resistor links in a uniform way. It
distinguishes between active and passive ports, does
Gram-Schmidt orthogonalization on the fly, controls
error in the time-domain.  ENOR is a superbly simple,
flexible, and well-conditioned algorithm for  lightning
reduction of mega-sized RLC trees, meshes, and
coupled interconnects-all with excellent accuracy.

Introduction
The problem we pose is whether reduction of RLC

circuits can be sped up by exploiting the symmetry of such
circuits.  For example, it has long been known that RLC
circuits satisfy reciprocity, which is a sort of symmetry; yet
methods like PRIMA [1], when applied to RLC circuits,
abrogate this reciprocity.  Similarly, the equations for RLC
circuits can be formulated so all matrices are symmetric;
why not use this nodal form?  Ultimately, the speed
question leads to the question how to quickly solve large
linear systems.  Can we formulate RLC reduction so that
we factorize only sparse positive definite (spd) matrices?

Motivated by this quest for a more symmetrical
computation, Efficient Nodal Order Reduction, or
ENOR, is a new, provably passive, well-conditioned,
reciprocity-preserving,  multiport RLC circuit reduction
algorithm.   It is easy to code, quick to solve, arbitrarily
accurate.  Possibly, ENOR is the best algorithm to date for
reducing colossal RC and RLC circuits.

The method draws on the past decade's rich progress in

reduction techniques.  It adapts moment matching [2],
block techniques [3], Arnoldi-like orthogonalization [4],
and congruence transformations [5][1]--ever with an eye to
symmetry and its consequent efficiencies.  In [6][7]
symmetry is used to advantage in RC circuits; ENOR does
like service for RLC circuits.

We will derive and explain the method and then
illustrate it with several examples.

1 Nodal Equations
Most discussions of model order reduction begin with

the modified nodal analysis (MNA) equations for an RLC
circuit,
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The unknowns x∈L n and i∈L p are the nodal voltages and
inductor currents, respectively (L  denotes the space of real-
valued functions of time defined for t>=0).  Blocks C∈Rnxn

and G∈Rnxn are the nodal capacitance and conductance
matrices (both are symmetric and positive semi-definite);
L∈Rpxp is the matrix of self and mutual inductances (L is
also symmetric and positive semi-definite); E∈Rnxp is the
incidence matrix of the inductors.  Finally, j∈L N is a vector
of current sources with incidence matrix B∈RnxN.

Advantages of MNA include it's simplicity and,
especially, its generality: it can handle voltage sources, for
example, and all four types of controlled sources--
something plain nodal analysis cannot do without some
contriving.  However, for RLC reduction we don't need this
generality.  Besides, (1.1) has the drawback that the
coefficient matrices are not at once symmetric and positive-
definite, which means pivoting ought to be used during
factorization.

For our purposes the nodal equations, obtained by
taking the Laplace transform of (1.1) and eliminating
inductor currents, are preferable:
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Here Γ = −EL E T1 and  X and J are the Laplace transforms
of x and j.1  Γ, like C and G, is symmetric and positive

                                                       
1 Arguably there is an iota of advantage in working with L-1

instead of L.  Some 2-D inductance programs, using an analogy



semidefinite; this is an important advantage of (1.2) over
(1.1).

We supplement (1.2) by equations to extract the nodal
voltages of interest.  Conceptually, we partition the nodes
of the circuit into three classes:  1) internal nodes (those
whose identity may be lost during reduction), 2) active
ports (those nodes to which external circuitry may be
attached), and 3) observation ports (nodes whose voltages
we want to observe but to which no external circuitry may
be connected).  Denoting active and observation port
voltages by ua and uo, we can write
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where B, the incidence matrix of the active ports, is the
same as in (1.2) and Bo is the incidence matrix of the
observation ports.

2 Orthogonal Projection and Passivity
An effective way of reducing a system of equations is

by projecting them into a suitable subspace.
Definition 2.1. A orthogonal projection of equations

(1.2) and (1.3) by projection method PV, where V∈Rnxm, is
the m-dimensional system
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m is the order of the reduction, and PV is proper if m<n
and rank(V)=m.

Orthogonal projection is simply the Galerkin process,
which historically has been used to replace infinite-
dimensional systems (i.e. partial differential and integral
equations) by finite-dimensional sets of equations.

We saw that C, G and Γ are positive semidefinite for an
RLC circuit.  This is important because of the following
theorem, proved in the appendix:

Theorem 2.1. Projected system (2.1) is passive if C, G
and Γ in the original system are positive semidefinite.

A passive circuit cannot generate energy, is stable, and
can be connected to other passive circuits without risk of

                                                                                            
between capacitive charge and inductive flux, calculate L-1

directly and then invert.  Also, L-1 usually is sparser, or at least
more diagonally dominant, than L

instability.  Orthogonal projection preserves passivity by
virtue of its symmetry; oblique projection (WTCV, etc. with
W≠V) does not guarantee passivity.

3 Moment Matching
The fidelity of a projected system depends crucially on

the choice of the projection matrix V.  Most reduction
techniques choose V to span the first q moments of x in
(1.1), for some q; our contribution lies in applying the idea
of moment matching to (1.2), which has greater symmetry,
rather than to (1.1).

Let's see how this can be done. It is convenient to
change variable from s, the complex frequency, to z,

s s zo= −( )1 (3.1)

and then expand X(s) in powers of z; this amounts to
expanding about the point so and scaling frequencies by (-
1/so), since by (3.1)
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We also introduce an auxiliary quantity
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Proceeding as in the method of moments, we expand X(z),
Y(z) and J(z) in powers of z, and substitute the expansions
into (1.2) and (3.3):
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Equating powers of z results in the following system of
recurrence relations,
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which can be solved for as many terms of the sequence
{Xk} as desired.  The matrices Xk∈RnxN are, except for the

mutliplicative constant ( )−1 so
k

, the (block) moments of

the nodal voltages when expanded about the frequency so.
Instead of moment matching, we could apply projective

convolution to (1.2); this would lead to a different set of
recurrence relations; see [8].

In solving (3.5), we take J(z)=IN, the NxN identity
matrix; this amounts to applying an impulsive current at
each active port in turn.  The general case, if needed (it
isn't needed here), can be found by superposition.

Reduction is achieved by setting V=[Xo,...Xq], i.e. the
matrix composed of the first q block moments,  and then



orthogonally projecting (1.2) and (1.3) with this V.  If each
Xk has Na columns, the order of V is (q+1)Na.

In practice it is col-span{[Xo,...Xq]} and not the identity
of the individual Xk's that is important;  therefore, to ensure
that V is well-conditioned, we orthnormalize the Xk's on
the fly, doing deflation as needed and keeping Yk in synch
by applying identical operations to Yk and Xk during
orthogonalization.  It can be shown that this Arnoldi-like
procedure leaves col-span{[Xo,...Xq]} in tact.

There is the practical issue of how many moments to
use.  We get adaptive error control if we include moments
in V until two successive projected systems have the same
time-domain responses to within a given tolerance; this
requires simulating a number of reduced systems, but the
time-step can be quite large and the simulation time short.

The ENOR algorithm is summarized in Figure 1,
where  subroutine orthnormalize(...) is also detailed.

4 Reciprocity
Besides preserving passivity and matching moments,

ENOR has another property that is a consequence of the
symmetry of (1.2), namely,
Theorem 4.1.  The reduced system (2.1) obtained by ENOR
is reciprocal among the active ports.
Proof:  A system is reciprocal if its impedance matrix is
symmetric.  But Z(s) for the active ports of the projected
system is
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5 Efficient Factorization
It is a question whether symmetric sparse matrix

techniques can be as efficient as special-purpose codes like
RICE, which reduces simple structures like trees and
ladders before solving several smaller systems by general
techniques[9].  From a software perspective, RICE has the
disadvantage of needing to handle floating capacitors,
inductor loops, and resistor links as separate cases; ENOR
handles all of these 'cases' in a uniform way.

As indicated in Figure 1, ENOR must factor the
symmetric positive semidefinite (sps) system
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In practice, A in (5.1) is almost always positive definite
(rather than just semidefinite).  The following theorem
provides sufficient conditions for this:

Theorem 5.1.  Matrix A in (5.1) will be positive definite
if each node in the corresponding RLC circuit has some
path through resistors and capacitors to ground.

Proof:  Arguing physically, we show that

x Cs G xT
o( )+ > 0 ; then, certainly, x AxT > 0 , since Γ is

sps. Interpret Cso+G as a resistive network obtained from
the RLC circuit by retaining resistors, dropping inductors,
and replacing each capacitor c by a conductance cso.  As x
is the vector of nodal voltages, xT(Cso+G)x is the power
dissipated in the resistive network.  Unless all nodes are
grounded (x=0), there will be some dissipation, or
xT(Cso+G)x>0, because each node has a resistive path to
ground.

Because of Theorem 5.1, we can, in practice, Cholesky
factorize A: pivoting is not needed, and we can order nodes
before-hand to reduce fill. For large RLC networks, this is
a significant benefit.

We believe that sparse Cholesky factorization, if
implemented properly, can be as efficient as a special-
structure handling method like RICE.  In the case of trees,
for example, Partner has shown that if a monotone

Algorithm ENOR
Input: C,G,Γ,B,Bo, and so.
Output: V.
V=Rnx0 initially.
Set X,Y∈RnxN to zero.
Cholesky factorize A=Cso+G+Γ/so.
RHS=B;
while (not converged)

Solve AX=RHS;
Y=Y+X;
for j=1,2,...,N

bDeflate=orthnormalize(X(j),Y(j),V);
if bDeflate

delete jth column from X and Y
else

appendColumn(V,X(j));
RHS=CsoX - ΓY/so;

subroutine orthnormalize(x,y,V)
for each column w of V...

x=x-(w,x)w;
y=y-(w,x)w;

if ||x||<tol
//deflate;
return true

else
x=x/||x||
y=y/||x||
return false

Figure 1. The ENOR algorithm



ordering is used (children are numbered before their
parents), there is zero fill when factorizing trees [10].
ENOR is O(n) for trees and its performance for more
general topologies, including meshes and coupled trees, is
also excellent.

6 Examples
We next give several examples of the efficacy of ENOR

in reducing RLC circuits.  In all examples, we take
so=1x109 Hz.

6.1 Coupled Lines
Consider a pair of 4 inch lines modeled by 40 coupled

RLC sections (R=0.014 ohm, L=1 nH, C=0.4 pF, and
Cm=0.08 pF per section).  With all lines terminated in 50
ohms, Figure 2 plots the response at the four ports of the
original (order 162) and reduced (order 16) systems; the
responses are indistinguishable, max error being 8x10-5 V.
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Figure 2. Crosstalk between a pair of lines

6.2 Balanced Clock Tree
Next consider a 5-level balanced tree such as might be

encountered in routing a clock; each branch is a 2 inch, 50
ohm line, with a 1 pF load at each leaf.   The root, which is
treated as a active port,  has a 50 ohm, 0.5 ns linear driver.
All leaves and internal nodes are set to observation ports.

Figure 3.  Balanced clock tree

When the 621 node tree is reduced to order 13,  the
responses before and after reduction, shown in Figure 4 for
each observation port, agree within 1.5x10-4 V.
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Figure 4. Response of clock tree

6.3 Transmission Line Mesh
Finally, consider an 5x5 mesh of 1 inch, 50 ohm

transmission lines which, modeled  by 3 RLC sections per
inch, is a 225 node circuit:

Figure 5.   5 x 5 mesh

The lower, left corner of the mesh is an active port; all
other junctions of the mesh (14 in all, accounting for
symmetry) are observation ports.  As before, a 50 ohm,
0.5ns ramp drives the active port. The original and an
order 20 reduced circuit are compared in Figure 6 (max
error 1.5x10-4).
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Figure 6.  Response of mesh (Na=1)

How does the order change if we use more active ports?
If the 5x5 mesh is modeled with 3 active ports (lower-left,
center, and upper-right), it turns out that an order 27
system is needed to achieve the same accuracy.  With one
active port, (3.5) is solved for q=20 moments, each having
Na=1 columns.  With 3 active ports, (3.5) is solved for q=9



moments, each having Na=3 columns.   In general, the
more active ports, the fewer block moments required; for a
given accuracy, however, the net order qNa increases with
Na.

Conclusion
In this paper we have presented ENOR, a new order-

reduction method for large RLC circuits that produces both
passive and reciprocal macromodels.  ENOR distinguishes
between active and observation ports to allow maximum
compression.  It does moment matching like other
methods, but works with the nodal equations, which are
more symmetric than MNA.  The ENOR formulation leads
to a symmetric positive-definite matrix, so sparse Cholesky
techniques--which are, we think, competitive with path-
tracing--apply. Also, it does Gram-Schmidt orthogonaliza-
tion on moments as they are computed (a process that is
arguably simpler than the block Arnoldi methods in the
literature).  It controls error adaptively, in the time-
domain.  Powered by these innovations,  ENOR renders
excellent accuracy and compression ratios for coupled
traces, trees, and meshes--all with inductance.

Appendix
Theorem 2.1. Projected system (2.1) is passive if C, G

and Γ in the original system are positive semidefinite.
Proof:  To be passive, transfer function (4.1) must

satisfy the following conditions [11]:
(1) Z(s) is a rational function of s.
(2) Z(s*) = [ZT(s)]* for all complex s, where * means
conjugate transpose, and

(3) z Z s Z s z* *( ( ) ( ))+ ≥ 0  for all complex vectors z and
complex s with Re(s)>0.
Write T=Cs+G+Γ/s. First, Z(s) is rational because the
inverse of a rational matrix (i.e. T) is rational.  Secondly,
C, G, Γ and B being real, conjugating Z(s) merely
conjugates s. Condition (3) requires

z B T T BzT* *( )− −+ ≥1 0

where T T− −≡* *[ ]1 .  But this is the same as
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with w T Bz= −1  and s j= +σ ω ; in arriving at (2.2), we

have used the fact that w C C wT*( )−  and

w wT*( )Γ Γ− are both zero, since the transpose of a scalar

equals itself.  Since C, G and Γare positive semi-definite,
(2.2) is greater or equal to zero for all w, hence for all z, as
required.
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