
(SR

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Robust and Passive Model Order Reduction
for Circuits Containing Susceptance Elements †
Hui Zheng and Lawrence T. Pileggi
Carnegie Mellon University, Department of Electrical and Computer Engineering

5000 Forbes Avenue
Pittsburgh, PA 15213

{hzheng, pileggi}@ece.cmu.edu
lm
in
d
tu
c
e
a
in
c

no
ti
e

,
rix
r

or

o
k
o

n
n
r
e
c
b
m
ie
se
ri
t

r
a
r

ep
e
i
ic

su
n
r

ling
o the
tric
e

on

nter-
rve
in
ain

er-
of
gs
MA
as-

he
rall
tem.
les
be
will
ns

its
of
for
lat-
w
p-
e
rder

by
cy-
ons,

or-
ess
ip-
ose
te
erv-
-

trix
ilar
c-
ABSTRACT
Numerous approaches have been proposed to address the overwhe
modeling problems that result from the emergence of magnetic coupl
as a dominant performance factor for ICs and packaging. Firstly, mo
order reduction (MOR) methods have been extended to robustly cap
very high frequency behaviors for large RLC systems via methods su
as PRIMA[8] with guaranteed passivity. In addition, new models of th
magnetic couplings in terms of susceptance (inverse of inductance) h
shown great promise for robust sparsification of otherwise intractable
ductance coupling-matrix problems[3-5]. However, model order redu
tion via PRIMA for circuits that include susceptance elements does
guarantee passivity. Moreover, susceptance elements are incompa
with the path tracing algorithms that provide the fundamental runtim
efficiency of RICE [10]. In this paper a novel MOR algorithm, SMOR
is proposed as an extension of ENOR [11] which exploits the mat
properties of susceptance-based circuits for runtime efficiency, and p
vides for a numerically stable, provably passive MOR using a new
thonormalization strategy.

1 INTRODUCTION
Due to the increasing operating frequencies and larger sizes of

chip and off-chip interconnect systems, it has become a daunting tas
perform signal integrity analyses for systems containing hundreds
thousands of conductors while accounting for all of the capacitive a
inductive couplings. Among the challenges, the extraction, modeli
and simulation of the magnetic couplings has been the focus of resea
due to the following difficulties. First, when the return paths can not b
determined prior to the extraction and simulation of an interconne
system, a partial inductance matrix must be formed which can
extremely large and dense [1]. Since arbitrarily discarding small ter
may render the circuit model unstable, special sparsification strateg
most notably the shift-and-truncate technique in [2], have been devi
to preserve the positive definiteness of the partial inductance mat
This sparsification is limited, however, if the shell has to be chosen
be large enough to guarantee accuracy.

Very recently the concept of susceptance has emerged as an alte
tive way for modeling magnetic couplings [3, 4]. As the inverse of
partial inductance matrix, a susceptance matrix has properties simila
a capacitance matrix (the inverse of a potential matrix). Firstly, susc
tance inherently provides a shielding effect whereby the mutual susc
tance terms drop off much faster than the mutual inductance terms w
distance. Secondly, a susceptance matrix is diagonally dominant wh
guarantees its positive definiteness under simple truncation. As a re
window-based extraction can be used to build a sparse suscepta
matrix by piecing together the localized extraction window results. Fu
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thermore, in [5] it was recently shown that susceptance-based mode
and simulation are superior to inductance-based approaches due t
superior sparsity of the susceptance matrix and the inherent symme
positive definite formulation which enables fast matrix solutions in th
inner-most-loops during transient simulation.

Unrelated, but equally important, various model order reducti
(MOR) algorithms, such as AWE [6], PVL [7], and PRIMA [8], have
been developed during the past fifteen years to also address the i
connect complexity problem. These MOR approaches primarily se
two functions: 1) reduce the circuit size so that efficient time-doma
analysis can be performed; 2) accurately extract frequency-dom
characteristics by identifying the dominant pole information. The em
gence of Krylov subspace methods [7] has facilitated the application
MOR to large, coupled, RLC systems. With the emergence of couplin
and the need to model large N-port problems, methods such as PRI
have provided reliable MOR with similar accuracy and guaranteed p
sivity [9].

Even with susceptance to control the complexity of modeling t
magnetic couplings, MOR is desirable to accommodate the ove
complexity of the complete RCS (S representing susceptance) sys
However, we will show that the path-tracing technique [10] that enab
fast calculation of moments or Krylov vectors in RICE can no longer
directly applied for mutual susceptance elements. Furthermore, we
demonstrate that applying PRIMA directly to the RCS circuit equatio
does not guarantee passivity.

In [11], Sheehan proposed ENOR, a MOR algorithm that explo
the symmetric positive definite formulation brought by the inverse
the inductance matrix. This algorithm provides an elegant solution
the aforementioned problems associated with RCS circuits by calcu
ing only the node voltage moment vectors. However, as we will sho
in this paper, two problems prevent ENOR from challenging other po
ular MOR algorithms for RCL circuits. Firstly, the numerical procedur
used in ENOR is not robust enough to generate accurate high-o
reduced models; secondly, the reduced-order models generated
ENOR can only be used for time-domain simulation, and no frequen
domain characteristics, such as dominant poles and transfer functi
can be easily extracted.

To address the first problem in ENOR, we propose a new orthon
malization strategy which can greatly improve the numerical robustn
without increasing the computational complexity. A detailed descr
tion of this procedure is described in Section 3. In Section 4 we prop
a novel MOR algorithm for RCS circuits, SMOR, that can genera
extended moment vectors including susceptance currents while pres
ing the efficiency by way of solving symmetric positive definite equa
tions. In addition, the procedure of generating the transformation ma
can be made very robust through an orthonormalization strategy sim
to that described in Section 3. As in PRIMA, poles and transfer fun
tions can be readily calculated from the reduced-order models gen
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ated by SMOR. Section 5 shows some experimental results which
validate the accuracy and efficacy of our new algorithms. Finally, some
conclusions are drawn in Section 6.

2 BACKGROUND
Since a susceptance matrix is the inverse of an inductance matrix,

the differential system matrix equations that describe an RCS circuit
can be directly stated as:

(1)

where and present the contribution from resistances/conductances
and capacitances; and are incidence matrices for susceptances

and current sources; and are the node voltage vector and the sus-

ceptance current vector; and  is the susceptance matrix.
Applying the Laplace transform to both sides of (1) and Taylor

expanding the state vectors around :

(2)

Where for notational simplicity, we designate , , ,

and . Also, since impulse responses are normally required for

moment matching, is 0 for . To facilitate matching of the mo-

ments in (2), moment generation can be performed based on the follow-
ing recurrence relation:

 for  and (3)

For model order reduction of RCL circuits, a recurrence relation
similar to (3) can be used to generate moments. While the straightfor-
ward way is to solve the linear system using matrix techniques, the
path-tracing technique [10], which provides the fundamental runtime
efficiency of RICE, can solve the DC circuit representation for intercon-
nect circuits with extreme efficiency. However, the path-tracing tech-
nique is not applicable to the susceptance-based moment generation,
which can be established in the following simple arguments. Suppose
the branch constitutive relations for a pair of coupled susceptances are:

(4)

where represents the mutual susceptance. The recurrence relation of
(4) for moments expanded around  is:

(5)

which means that if the susceptances are replaced by concatenatio
voltage sources and voltage controlled voltage sources (Fig. 1 (a)) in
DC circuit for moment generation, the present susceptance voltage
ments can not be determined solely from the previous susceptance
rent moments. This property fundamentally prevents the use of pa
tracing, since path-tracing requires that all capacitor current mome
and susceptance voltage moments be known prior to the DC circuit
lution. In contrast, in inductance-based formulations, the present ind
tor voltage moments can be calculated from the previous induc
current moments, as shown in Fig. 1 (b).

One may think the remedy to this problem is to expand the Lapla

domain responses around , i.e. . Then

the recurrence relation in (5) can be converted into:
(6)

Consequently, if the susceptances are replaced by concatenations o
rent sources and voltage controlled current sources, the present sus
tance current moments can be readily computed from the previ
susceptance voltage moments. However, for self-consistence in the
eration of moments, a potential matrix, instead of a capacitance mat
must be used for the capacitors to be represented as voltage sourc
the DC circuit. It is well-known that a potential matrix, like an induc
tance matrix, is very hard to sparsify, which in fact defeats the advant
of using susceptances in place of inductances.

Even more importantly, if one opts to use matrix techniques to so
the equations in (3), there still exists the problem that the reduced-or
system obtained through PRIMA-like methods is not necessarily p
sive. As detailed in [8], preservation of passivity requires that the mat

be a nonnegative matrix when is the matrix in front of th
undifferentiated state vector in the differential system formulation.

the case that  as in (1), this condition can not be satisfi

In [11], Sheehan proposed ENOR, a MOR algorithm, which pr
vides an elegant solution for the aforementioned problems. The follo
ing is a brief description of the ENOR algorithm. For more detail
please refer to the original paper [11].

In ENOR, a Laplace-domain nodal formulation, instead of the MN
formulation in (2), is used:

(7)

where . Then, the basic procedure for model order reducti

is to find an orthonormal basis for node voltage moment vectors up
a certain order and perform an orthogonal projection on this syste
which is similar to what is done in PRIMA. The reduced-order syste
has the form:

(8)

where , ,  and .
What is interesting is how the moment vectors are generated

ENOR. After performing a variable substitution to (7) a

shown in the paper, a recurrence relation can be obtained for mom
generation:

(9)
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Fig. 1. Comparison of DC circuits for Mutual Susceptance and

Mutual Inductance

di1
dt
------- S1v1 W v2

di2
dt
------- W v1 S2v2+=

+=

W

s 0=

V1k
1
S1
----- I 1 k 1–( )

W
S1
-----V2k

V2k
1
S2
----- I 2 k 1–( )

W
S2
-----V1k–=

–=

s ∞= X s( ) X0
1
s
---X 1–

1

s
2

----X 2– …+ + +=

I 1 k–( ) S1V1 k 1–( )–( ) W V2 k 1–( )–( )
I 2 k–( ) W V1 k 1–( )–( ) S2V2 k 1–( )–( )+=

+=

D D
T+ D

D
G AS

SA– S
T 0

=

Cs G
Γ
s
---+ + 

  X s( ) BJ s( )=

Γ ASSAS
T=

V

C̃s G̃
Γ̃
s
---+ + 

  X̃ s( ) B̃J s( )=

C̃ V
T
CV= G̃ V

T
GV= Γ̃ V

TΓV= B̃ V
T
B=

z
1–

s0
------ s s0–( )=

Cs0 G
Γ
s0
----+ + 

  Xk Cs0Xk 1–
Γ
s0
----Yk 1–– BJk+=



en-
r
for

s a
our

by
al-

e-

se

le
es
ion

c-
tem.
n
al

in
m
go-
u-
nts

tion
.
rom

per
(10)

(11)

Note that the matrix on the left side of (9) is symmetric positive definite
(s.p.d.) which is casually stated in Sheehan’s paper. A more rigorous
proof of this property for the RCS formulation can be found in [5]. This
property is very advantageous for fast direct sparse matrix solutions,
since no pivoting is required and powerful ordering algorithms can be
employed prior to the actual factorization in order to reduce potential
fill-ins [13]. As a result, the efficiency achieved through solving a s.p.d.
system can approach that of path-tracing.

The generated vectors in (9) are actually the scaled node voltage
moments expanded about the frequency . It is worth noting that fre-

quency shifting is essential for establishing the recurrence relation in
(9), and the computational cost does not change with regard to the value
of . However, frequency shifting is detrimental to the path-tracing

technique, since extra resistors and current controlled voltage sources
corresponding to the shift frequency have to be added which slows

down path tracing significantly. Therefore, for the cases in which fre-
quency shifting must be applied in order to get accurate moments
around certain high frequencies [12], ENOR and the algorithms pre-
sented in this paper can be computationally more efficient than the
MOR algorithms using frequency-shifted path tracing.

In the algorithm shown in the ENOR paper, an orthonormalization
procedure is designed in order to gain better numerical stability. How-
ever, since only the vectors are actually orthonormalized, the vec-
tors, though computed in synch with X vectors to keep the spanned
subspace intact, can grow rapidly in magnitude and cause numerical
inaccuracy when the order is high. We address this problem with our
orthonormalization strategy in Section 3.

Another disadvantage with ENOR is that the reduced-order system
can only be simulated to get the time-domain response, and it is imprac-
tical to calculate the poles and the frequency-domain responses of the
reduced-order system due to the difficulty of inverting the matrix in (8).
The algorithm SMOR presented in Section 4 provides a solution to this
problem.

3 NEW ORTHONORMALIZATION
STRATEGY

Since it is observed that the numerical problem with ENOR lies in
the vectors, our first step is to get rid of these vectors. It can derived
from (10) that:

(12)

By substituting (12) into (9), we get a new recurrence relation:

 for (13)

(14)

where  and .

It can be proven by induction that is a subspace

of a generalized Krylov subspace , the definition of which

is:

is the space spanned by all the homogeneous polynomials of

and of order . It is interesting to point out that this concept of gener-

alized Krylov subspace has been used for numerical analysis of eig
value problems [14]. Now it also finds its way into model orde
reduction, just like Krylov subspace theory has been the foundation
many MOR algorithms for RCL circuits, such as PVL [7] and PRIMA
[8].

However, the summation in the recurrence relation still present
numerical problem, since errors can be accumulated. This leads to
next step, namely simplification of the recurrence relation:

 for (15)

The rationale behind this simplification is that it can be again proven
induction that is a subspace of the same gener

ized Krylov subspace . Moreover, our later experimental r

sults demonstrate that presents a very clo

approximation of .

More importantly, the recurrence relation in (15) is more amenab
to orthonormalization, a powerful numerical technique which provid
superb numerical stability. It can also be proven that orthonormalizat
leaves intact, which is critical for model order

reduction, since it is the subspace, not the identity of the individual ve
tors, that determines the eigenvalues/poles of the reduced-order sys

A numerically improved ENOR for generating the transformatio
matrix is presented in Fig. 2. Note that since there is no addition
processing for  vectors, the computational cost is reduced.

4 SMOR: ROBUST AND PASSIVE MODEL
ORDER REDUCTION FOR RCS CIRCUITS

The main reason that ENOR fails to provide frequency-doma
information is that its formulation in (7) is a second-order syste
instead of a first-order system equivalent to those used in MOR al
rithms for RCL circuits. Therefore, in order to use the first-order form
lation in (1), extended moment vectors including susceptance curre
should be generated. The following derives a new recurrence rela
which can facilitate efficient generation of extended moment vectors

Note that the current vector for susceptances can be computed f
node voltage vector, which in Laplace-domain is:

(16)

Performing a same variable substitution as that in the ENOR pa
yields:

(17)
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Fig. 2. Improved ENOR Algorithm
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which can be represented in terms of moments as:

(18)

where .

Combining the relations in (13) and (18), we get a recurrence rela-
tion for the extended moment vectors:

(19)

, (20)

where and . The resulting vectors are actually

the scaled moment vectors of the original system expanded about the fre-
quency , which can be otherwise computed through the moment gen-

eration method by solving the equations in (3). But our new recurrence
relation preserved the feature in ENOR that only one factorization of a
symmetric positive definite matrix is required for moment generation,
which can be seen more clearly in Fig. 3.

More importantly, noticing the striking similarity between the recur-
rence relations in (13) and (19), we can apply the same simplification
and orthonormalization strategies discussed in Section 3 for numeri-
cally robust generation of an orthonormal basis for the extended
moment vectors. After the orthonormal basis is found, a similar proce-
dure as in PRIMA can be used to reduce the system and calculate the
poles and residues.

However, as is discussed in Section 2, model order reduction to the
system formulated in (1) does not guarantee passivity. A remedy to this
problem is the following. Given a Cholesky decomposition of the sus-

ceptance matrix , which can be computed during the window-
based extraction on the fly [3, 4] ( is upper triangular and has the same
sparsity structure as ), the original system can be reformulated as:

(21)

where . This vector transformation, however, does not

present a problem, since applying this transformation to (18) we can ob-
tain:

(22)

Obviously, when , the matrix is a nonnegative

matrix, which satisfies the condition required for preservation of passiv-
ity [8]. The only thing we need to update for the recurrence relation in

(19) is . For notational simplicity, we designate

 and .

Assembling all those important elements discussed above, the com-
plete flow for our passive model order reduction algorithm SMOR is
shown in Fig. 3, where is the desired order, is the number of ports,

 is the number of nodes and  is the number of susceptances.

In order to perform complete time-domain circuit simulation, th
reduced-order model generated by SMOR can be combined with n
linear elements through either direct stamping and realization or
parameter based simulation, as discussed in [8].

5 EXPERIMENTAL RESULTS
To demonstrate and validate the accuracy and efficacy of our n

MOR algorithms, we have implemented the original ENOR algorith
(OrigENOR), our improved ENOR algorithm (ImpENOR), and ou
SMOR algorithm in Matlab [15]. All the following experiments are per
formed on a Sun Ultra 5 model 360 machine.

The example circuit used in our initial experiments is a capacitive
and inductively coupled 2-bit bus, as shown in Fig. 4. This bus has
length of 3000 microns and is modeled with 60 coupled RSC sectio
Each line has the width of 1 micron and height of 1 micron and t
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İ m

+ BJ

0
=

I m R
T( )

1–
I S=

I mk R
T( )

1–
I k

R
T( )

1–
SAS

T

s0
-----------------------------Yk

RAS
T

s0
-------------Yk= = =

D G ASR
T

RA– S
T 0

= D D
T+

W
RAS

T

s0
-------------=

H G ASR
T

RA– S
T 0

= J C 0

0 I
=

q N

nn ns

Algorithm SMOR
Build all the matrices required in (7) and (21), and choose an .

, ,

If  is not an integer, set , else set

for
Set

Set

Solve

,

orthonormalize  against  and itself

end

Set  and truncate  so that it has q columns.

Compute  and

Find eigendecomposition of :

To find poles and residues for :

Solve  for

Set  and

s0

M 1– 0=

X0 Cs0 G
Γ
s0
----+ + 

  1–
B= M0

X0

RAS
T

s0
-------------X0

= M0 T,( ) qr M0( )=

q
N
---- n q

N
---- 1+= n

q
N
----=

k 1 2 … n, , ,=

Xk 1– Mk 1– 1…nn( )= Xk 2– Mk 2– 1…nn( )=

I k 1– Mk 1– nn 1…nn ns+ +( )=

T Cs0Xk 1–
Γ
s0
---- Xk 1– Xk 2–+( )–=

Cs0 G
Γ
s0
----+ + 

  Xk T=

I k

RAS
T

s0
-------------Xk I k 1–+= Mk

Xk

I k

=

Mk M0 M1 …Mk 1–, ,

V M0 M1 … Mn 1–
= V

H̃ V
T
HV= J̃ V

T
JV=

H̃
1–
J̃ H̃

1–
J̃ FΛF

1–=

Λ diag λ1 λ2 … λq, , ,( )=

Zi j, s( )

H̃w V
T
bj= w

µ F
T
V

T
l i= ν F

1–
w=

Zi j, s( )
µi νi

1 sλi+
----------------

i 1=

q

∑=

Fig. 3. SMOR Algorithm

Fig. 4. Coupled 2-bit Bus
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spacing between the two lines is 1 micron. The capacitance and suscep-
tance values are not artificial, since they are extracted by a full 3D field
solution tool using a windowing technique [3, 4]. At the near ends of the
two lines, one line is driven by the Norton equivalent of a driver for fit-
ting into the NA formulation, while the other line is quiet and only con-
nected to the ground through a resistor. Both lines have capacitive loads
at their far ends.

To demonstrate the accuracy gain from our orthonormalization strat-
egy in the improved ENOR, we compare the noise responses at port 4
from three different approaches: 1) transient susceptance-based simula-
tion of the original system (Exact), which has also been implemented in
Matlab; 2) ImpENOR; 3) OrigENOR. All the noise waveforms are
shown in Fig. 5. While ImpENOR produces a waveform which is indis-
tinguishable from the exact one, OrigENOR underestimates the noise
peak slightly.

The comparison of runtime for transient simulation of the original
and reduce-order systems is tabulated in Table 1. For this relatively
small circuit (242 nodes), the MOR can speed up the simulation by
about 30 times. For larger circuits, more significant speed-ups are
expected, which will be very useful for simulation of enormous RCS
circuits extracted to model electronic system packaging [5].

We have also applied the SMOR algorithm to this simple circuit
example. Since SMOR generates almost the same time-domain
responses as ImpENOR, we focus on demonstrating SMOR’s ability to
capture frequency-domain characteristics. We choose to look at the fre-

quency response of the input impedance ( ) at port 1. To get

exact response, an eigen-solving procedure, similar to the one in SM
(Fig. 3), is used, except for that the original MNA matrices are in th
place of the transformed matrices. Fig. 6 shows the comparison of
frequency responses from SMOR using 48 poles and 72 poles aga
the exact response. While the reduced 72th-order response is alm
indistinguishable from the exact response up to 80 GHz, even the
accurate model with 48 poles can match up to 60 GHz.

As a test of our algorithm on larger circuits we created the exam
shown in Fig. 7, which represents a 16-bit bus (white) with 5 period
ground returns (grey). All 21 wires are 4000-micron long, 1-micro
wide and 1-micron thick with a spacing of 1 micron, representative o
long signal path for an IC package. Each wire is modeled by 40 R
sections, and the coupling capacitances and mutual susceptances a
those sections are modeled via a windowing technique. There are 1
nodes and 5803 elements in the extracted circuit. The circuit model a
includes 50 ohm resistors connected to the near end of each bit l
load capacitance at the far end of each line of 2 ff. Bit 1 line is driven
a ramp current with a 10 ps risetime and an driver impedance (Nor
equivalent admittance) of 50 ohms.

We compared a susceptance-based transient simulation using a
cuit simulator that was modified to include susceptances with t
response obtained via SMOR. We compared the voltage waveform
the far end of the switching bit 1 line and the noise responses at the
end of the bit 5 line, which are shown in Fig. 8 and Fig. 9 respective
While it is observed that more oscillatory noise waveforms genera
requires higher orders of approximation, from the results shown it
evident that SMOR is capable of generating very accurate high or
approximations for such systems.

Exact ImpENOR (24th Order)

29.37 sec 0.90 sec

Table 1. Runtime Saving from MOR

Fig. 5. Comparison of Noise Waveforms
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Fig. 6. Comparison of Frequency Responses
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Fig. 8. Waveforms at Far End of Bit 1 Line
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6 CONCLUSIONS
In this paper we investigated various issues associated with model

order reduction for RCS (resistance-capacitance-susceptance) circuits.
Based on the investigation, we propose a novel susceptance-based MOR
algorithm SMOR. SMOR not only seamlessly incorporates the two
important features associated with susceptance, namely sparsity and
symmetric positive definite formulation, but also possesses the desired
properties for a MOR algorithm, namely numerical stability through a
new orthonormalization strategy and preservation of passivity. Like
PRIMA, SMOR is able to provide frequency-domain information, and
is easy to implement. Some experimental results demonstrate the effi-
cacy and accuracy of SMOR.
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Fig. 9. Waveforms at Far End of Bit 5 Line

0e+00 1e-10 2e-10 3e-10 4e-10 5e-10
time (sec)

-0.04

-0.02

0

0.02

0.04

0.06

vo
lta

ge
 (

v)

Transient Simulation (Exact)
SMOR, 288 poles




