Robust and Passive Model Order Reduction

for Circuits Containing Susceptance Elements

Hui Zheng and Lawrence T. Pileggi
Carnegie Mellon University, Department of Electrical and Computer Engineering
5000 Forbes Avenue
Pittsburgh, PA 15213
{hzheng, pileggi}{@ece.cmu.edu

ABSTRACT thermore, in [5] it was recently shown that susceptance-based modeling

Numerous approaches have been proposed to address the overwhelmirﬁ’ij‘d simulation are superior to inductance-based approaches due to the
modeling problems that result from the emergence of magnetic couplingSUPErior sparsity of the susceptance matrix and the inherent symmetric
as a dominant performance factor for ICs and packaging. Firstly, modeIPOS't'Ve definite formglatlon vvhnch gnablgs fast matrix solutions in the
order reduction (MOR) methods have been extended to robustly capturdNner-most-loops during transient simulation. _
very high frequency behaviors for large RLC systems via methods such Unrelated_, but equally important, various model order reduction
as PRIMA[8] with guaranteed passivity. In addition, new models of the (MOR) algorithms, such as AWE [6], PVL [7], and PRIMA [8], have
magnetic couplings in terms of susceptance (inverse of inductance) havdeen developed dur'ng the past fifteen years to also add_ress_the inter-
shown great promise for robust sparsification of otherwise intractable in- cOnNnect complexity problem. These MOR approaches primarily serve
ductance coupling-matrix problems[3-5]. However, model order reduc- two functlons: 1) reduce the circuit size so that efficient tlme-domalq
tion via PRIMA for circuits that include susceptance elements does not@nalysis can be performed; 2) accurately extract frequency-domain
guarantee passivity. Moreover, susceptance elements are incompatibleharacteristics by identifying the dominant pole information. The emer-
with the path tracing algorithms that provide the fundamental runtime 9€nce of Krylov subspace methods [7] has facilitated the application of
efficiency of RICE [10]. In this paper a novel MOR algorithm, SMOR, MOR to large, coupled, RLC systems. With the emergence of couplings
is proposed as an extension of ENOR [11] which exploits the matrix @nd the need to model large N-port problems, methods such as PRIMA
properties of susceptance-based circuits for runtime efficiency, and pro-nave provided reliable MOR with similar accuracy and guaranteed pas-

vides for a numerically stable, provably passive MOR using a new or- sivity [9]. ) _ )
thonormalization strategy. Even with susceptance to control the complexity of modeling the

magnetic couplings, MOR is desirable to accommodate the overall

complexity of the complete RCS (S representing susceptance) system.
1 INTRODUCTION However, we will show that the path-tracing technique [10] that enables

Due to the increasing operating frequencies and larger sizes of on-fast calculation of moments or Krylov vectors in RICE can no longer be
chip and off-chip interconnect systems, it has become a daunting task tadirectly applied for mutual susceptance elements. Furthermore, we will
perform signal integrity analyses for systems containing hundreds of demonstrate that applying PRIMA directly to the RCS circuit equations
thousands of conductors while accounting for all of the capacitive and does not guarantee passivity.
inductive couplings. Among the challenges, the extraction, modeling  In [11], Sheehan proposed ENOR, a MOR algorithm that exploits
and simulation of the magnetic couplings has been the focus of researclthe symmetric positive definite formulation brought by the inverse of
due to the following difficulties. First, when the return paths can not be the inductance matrix. This algorithm provides an elegant solution for
determined prior to the extraction and simulation of an interconnect the aforementioned problems associated with RCS circuits by calculat-
system, a partial inductance matrix must be formed which can being only the node voltage moment vectors. However, as we will show
extremely large and dense [1]. Since arbitrarily discarding small terms in this paper, two problems prevent ENOR from challenging other pop-
may render the circuit model unstable, special sparsification strategiesular MOR algorithms for RCL circuits. Firstly, the numerical procedure
most notably the shift-and-truncate technique in [2], have been devisedused in ENOR is not robust enough to generate accurate high-order
to preserve the positive definiteness of the partial inductance matrix.reduced models; secondly, the reduced-order models generated by
This sparsification is limited, however, if the shell has to be chosen to ENOR can only be used for time-domain simulation, and no frequency-
be large enough to guarantee accuracy. domain characteristics, such as dominant poles and transfer functions,
Very recently the concept of susceptance has emerged as an alternazan be easily extracted.

tive way for modeling magnetic couplings [3, 4]. As the inverse of a To address the first problem in ENOR, we propose a new orthonor-
partial inductance matrix, a susceptance matrix has properties similar tomalization strategy which can greatly improve the numerical robustness
a capacitance matrix (the inverse of a potential matrix). Firstly, suscep-without increasing the computational complexity. A detailed descrip-
tance inherently provides a shielding effect whereby the mutual suscep-tion of this procedure is described in Section 3. In Section 4 we propose
tance terms drop off much faster than the mutual inductance terms witha novel MOR algorithm for RCS circuits, SMOR, that can generate
distance. Secondly, a susceptance matrix is diagonally dominant whichextended moment vectors including susceptance currents while preserv-
guarantees its positive definiteness under simple truncation. As a resulting the efficiency by way of solving symmetric positive definite equa-
window-based extraction can be used to build a sparse susceptanctons. In addition, the procedure of generating the transformation matrix
matrix by piecing together the localized extraction window results. Fur- can be made very robust through an orthonormalization strategy similar
to that described in Section 3. As in PRIMA, poles and transfer func-
tions can be readily calculated from the reduced-order models gener-
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ig S > V2 [: (@) /St (@) 261/ which means that if the susceptances are replaced by concatenations of
_ voltage sources and voltage controlled voltage sources (Fig. 1 (a)) in the

DC circuit for moment generation, the present susceptance voltage mo-
ments can not be determined solely from the previous susceptance cur-

-
R

rent moments. This property fundamentally prevents the use of path-

M'2<k-1) M'l(k-1> tracing, since path-tracing requires that all capacitor current moments

V1 Vo —|> Vlk and susceptance voltage moments be known prior to the DC circuit so-

L1'1<k'1) 9 Lalagen lution. In contrast, in inductance-based formulations, the present induc-

- tor voltage moments can be calculated from the previous inductor
current moments, as shown in Fig. 1 (b).

Fig. 1. Comparison of DC CerUltS for Mutual Susceptance and One may think the remedy to this problem is to expand the Laplace-

Mutual Inductance ) . 1 1
ated by SMOR. Section 5 shows some experimental results whichd@main responses around- « , iXs) = Kot HatXat e - Then,

validate the accuracy and efficacy of our new algorithms. Finally, some

. . ! the recurrence relation in (5) can be converted into:
conclusions are drawn in Section 6.

Vg = SVaw-1) W Voo ®)
Vot = WV k-1)) * SV pik-y)
2 BACKGROUND Consequently, if the susceptances are replaced by concatenations of cur-

Since a susceptance matrix is the inverse of an inductance matrix,rent sources and voltage controlled current sources, the present suscep-
the differential system matrix equations that describe an RCS circuit tance current moments can be readily computed from the previous

can be directly stated as: susceptance voltage moments. However, for self-consistence in the gen-
. eration of moments, a potential matrix, instead of a capacitance matrix,
G AsHVn . {C ﬂ {Vﬂ - {—Acslcﬂ 1) must be used for the capacitors to be represented as voltage sources in
-SAL 0][ls| O]/ 0 the DC circuit. It is well-known that a potential matrix, like an induc-

wherec andc present the contribution from resistances/conductance$@nce matrix, is very hard to sparsify, which in fact defeats the advantage

and capacitancesis angk;  are incidence matrices for susceptance8f USing susceptances in place of inductances.
Even more importantly, if one opts to use matrix techniques to solve

the equations in (3), there still exists the problem that the reduced-order

ceptance current vector; asd s the susceptance matrix. system obtained through PRIMA-like methods is not necessarily pas-
Applying the Laplace transform to both sides of (1) and Taylor sjve. As detailed in [8], preservation of passivity requires that the matrix

expanding the state vectors aroung o

and current sources,, angd  are the node voltage vector and the sus,

D+D' be a nonnegative matrix whem is the matrix in front of the

{ G A {xo+sx1+..} +{c cﬂ {x0+sx1+..} } ﬁ Gorshe) (@) undifferentiated state vector in the differential system formulation. In
—SAL Of|lp*sl+ O 1f|lg+sl +

& O_ ! o ° l_ the casethab = | © 9 asin (1), this condition can not be satisfied.
Where for notational simplicity, we designate= v, 1 515 BF -Acs -SAL 0

and J = 15 . Also, since impulse responses are normally required for  In [11], Sheehan proposed ENOR, a MOR algorithm, which pro-
moment matchingJ, is O fok>0 . To facilitate matching of the mo- Vides an elegant solution for the aforementioned problems. The follow-
ments in (2), moment generation can be performed based on the follow-"9 1S @ brief descrlptl_on of the ENOR algorithm. For more details,
ing recurrence relation: please refer to the original paper [11].
In ENOR, a Laplace-domain nodal formulation, instead of the MNA
{ G Al N _ {C(ﬂxm} for k>0 and{ G As} xo} i {BJO} (3  formulationin (2), is used:
-SAL 0|1 011 -SAL 0!
% ol o 58 Bl L9 . Les+ 6+ Lx(9 = BI(Y (7)

For model order reduction of RCL circuits, a recurrence relation s

similar to (3) can be used to generate moments. While the straightfor-wherer = A;sAl . Then, the basic procedure for model order reduction

ward way is to solve the linear system using matrix techniques, the js to find an orthonormal basis ~ for node voltage moment vectors up to
path-tracing technique [10], which provides the fundamental runtime 5 certain order and perform an orthogonal projection on this system,

efficiency of RICE, can solve the DC circuit representation for intercon- \hich is similar to what is done in PRIMA. The reduced-order system
nect circuits with extreme efficiency. However, the path-tracing tech- 55 the form:

nique is not applicable to the susceptance-based moment generation,

which can be established in the following simple arguments. Suppose Bis+ €3+£B;<(s) = BJ(9 (8)
the branch constitutive relations for a pair of coupled susceptances are:

dll wherec =v'cv ,G=Vv'Gv ,F =V'Tv and =Vv'B

= SVt WY, 4) What is interesting is how the moment vectors are generated in

d

E =Wy + S, ENOR. After performing a variable substitution= _g}(s— ) to(7)as
WhereW represents the mutual Susceptance. The recurrence relation (ghown in the paper7 a recurrence re|ati0n can be Obtained for moment
(4) for moments expanded arousé o is: generation:

r r
B3SD+G+S_OBXL< = CSDXk—l_S_OYk—1+B‘]k 9)



Yy = X+ Yy (10) Algorithm ImpENOR
X,=Y,=0 (12) X, =0
Note that the matrix on the left side of (9) is symmetric positive definite
(s.p.d.) which is casually stated in Sheehan’s paper. A more rigorous
proof of this property for the RCS formulation can be found in [S]. This |, _ %,
property is very advantageous for fast direct sparse matrix solutions,

1
Xo = 53%*@*5[5 B and X, = orth(X,)

since no pivoting is required and powerful ordering algorithms can be fork=1:q/n

employed prior to the actual factorization in order to reduce potential SetT = C%Xk_l—SLO(Xk71+Xk72)
fill-ins [13]. As a result, the efficiency achieved through solving a s.p.d.

system can approach that of path-tracing. Solve BZ%J' G +S£0EI‘><k =T

The generated vectors in (9) are actually the scaled node voltage
moments expanded about the frequergy . It is worth noting that fre-

quency shifting is essential for establishing the recurrence relation in Vo= [v xk}
(9), and the computational cost does not change with regard to the value
of s,. However, frequency shifting is detrimental to the path-tracing

technique, since extra resistors and current controlled voltage sourceq Fig. 2. Improved ENOR Algorithm
corresponding to the shift frequensy  have to be added which slows

down path tracing significantly. Therefore, for the cases in which fre- value problems [14]. Now it also finds its way into model order

quency shifting must be applied in order to get accurate momentsreduction, just like Krylov subspace theory has been the foundation for

around _Ce”"’?i” high frequencies [12], E_NOR and the a}lg_orithms pre- many MOR algorithms for RCL circuits, such as PVL [7] and PRIMA
sented in this paper can be computationally more efficient than the[8]

MOR algorithms using frequency-shifted path tracing.

In the algorithm shown in the ENOR paper, an orthonormalization
procedure is designed in order to gain better numerical stability. How-
ever, since only thex  vectors are actually orthonormalizedythe vec-
tors, though computed in synch with X vectors to keep the spanned ) ) ST ) )
subspace intact, can grow rapidly in magnitude and cause numericaI_The rqtlonale behind this S|mpI|f|ca.t|0n is that it can be again proven by
inaccuracy when the order is high. We address this problem with our induction thatspar( 3, X, X, ...x)  is & subspace of the same general-
orthonormalization strategy in Section 3. ized Krylov subspace (P, Q X, k) . Moreover, our later experimental re-

Another disadvantage with ENOR is that the reduced-order systemsults demonstrate thaspar( X, X3, X', ... X}) presents a very close
can only be simulated to get the time-domain response, and itis 'mprac'approximation ofsparn % Xy X . X) -
tical to calculate the poles and the frequency-domain responses of the . L .
reduced-order system due to the difficulty of inverting the matrix in (8). More |mpor§ant_ly, the recurrence rela_tlon n (15.) IS more amen_able
The algorithm SMOR presented in Section 4 provides a solution to this to orthonorma_llzatlon, a powerful numerical technique which pro_wd_es

superb numerical stability. It can also be proven that orthonormalization

Orthonormalizex, against, X,, ...X,_, and itself

end

alized Krylov subspace has been used for numerical analysis of eigen-

However, the summation in the recurrence relation still presents a
numerical problem, since errors can be accumulated. This leads to our
next step, namely simplification of the recurrence relation:

Xy = PXy 1+ QX1 +QX,_, for k>0 (15)

problem. leaves spar( X, X';, X', ...X})  intact, which is critical for model order
reduction, since it is the subspace, not the identity of the individual vec-

3 NEW ORTHONORMALIZATION tors, that determines the eigenvalues/poles of the reduced-order system.

STRATEGY A numerically improved ENOR for generating the transformation

Since it is observed that the numerical problem with ENOR lies in Matrix v is presented in Fig. 2. Note that since there is no additional
the v vectors, our first step is to get rid of these vectors. It can derived processing forv  vectors, the computational cost is reduced.
from (10) that:

Y, = ﬁx' (12) 4 SMOR: ROBUST AND PASSIVE MODEL
& ORDER REDUCTION FOR RCS CIRCUITS
By substituting (12) into (9), we get a new recurrence relation: The main reason that ENOR fails to provide frequency-domain
k-1 information is that its formulation in (7) is a second-order system
X, = ka_1+Qz X for k>0 (13) instead of a first-order system equivalent to those used in MOR algo-
i=o rithms for RCL circuits. Therefore, in order to use the first-order formu-

(14) lation in (1), extended moment vectors including susceptance currents
should be generated. The following derives a new recurrence relation
which can facilitate efficient generation of extended moment vectors.

ret
X4=0 xO:B:g)+G+S—DErB

S

_ rt B rEF1£
wherep = f£5+6 &0 Cy ando = _B:%J'G’LS_OD s Note that the current vector for susceptances can be computed from
It can be proven by induction thapar( %, X, X, ...X) is a subspace Node voltage vector, which in Laplace-domain is:
gf a generalized Krylov subspac&pr, Q x, k) , the definition of which I(s) = §_;A5_Tx(s) (16)
is:
K(P, Q X, K) = spar( B(P, Q)Xo ..., P(P, Q)X,) Performing a same variable substitution as that in the ENOR paper
o T . yields:
P.(P, Q) is the space spanned by all the homogeneous polynomials of . .
andqQ of orderi . Itis interesting to point out that this concept of gener- I(z) = Shs X(2) = SSAOS Y(2) a7)



which can be represented in terms of moments as: Algorithm SMOR

SAS ‘ Build all the matrices required in (7) and (21), and choosg an
Ik:'s—Yk:Win =l # WX (18) q ) (1) ®
i=0 M, =0
T
wherew = 3% Pt Xo
oY o X = B9+ B, Mo = [Ral |+ (MoT) = ar(Mo)
Combining the relations in (13) and (18), we get a recurrence rela- % Xo
tion for the extended moment vectors:
k-1 If 3 is not aninteger, set=|4|+1 , else set 3
M, = {Xk} = UMV M (19) N LNJ N
e “ fork=12..n
B: rot SetX,_; = My_4(1...nn) X, _, = My_,(1...nn)
$+C+og B -
ML =0, M= S 1 (20) Setl,_; = M,_j(nn+1..nn+ng
r
WEF:%+6+S—OEr B T= C%Xk,l—go(xk_l“xk-z)
r _
whereu = {P ﬂ andv = {Q 0} .Theresulting  vectors are actually Solve %%J'GJ'S_DBX" =T
WP | WQO
.. T

the scaled moment vectors of the original system expanded about the fre I = %x“ sy My = {xk}
quencys, , which can be otherwise computed through the moment gen- %o I

eration method by solving the equations in (3). But our new recurrence orthonormalizem, agains@,M,,..M,_; and itself
relation preserved the feature in ENOR that only one factorization of a | gng
symmetric positive definite matrix is required for moment generation,
which can be seen more clearly in Fig. 3.
More importantly, noticing the striking similarity between the recur-
rence relations in (13) and (19), we can apply the same simplification
and orthonormalization strategies discussed in Section 3 for numeri-| Find eigendecomposition o3 /73 = FAF™
cally robust generation of an orthonormal basis for the extended | A = diag(Ay, A, ... Ag)
moment vectors. After the orthonormal basis is found, a similar proce-
dure as in PRIMA can be used to reduce the system and calculate thg R
poles and residues. Solve Hw = V'b; forw
However, as is discussed in Section 2, model order reduction to the Setp = F'V', andv = Flw
system formulated in (1) does not guarantee passivity. A remedy to this

problem is the following. Given a Cholesky decomposition of the sus- 2,08 = 2wy
i 1+sh

ceptance matrixs = RR , which can be computed during the window- oS

based extraction on the fly [3, 4R( is upper triangular and has the same

sparsity structure as ), the original system can be reformulated as:

Setv = [My M, ... M,_,] andtruncate so thatit has g columns

Computefi = V'HV and = vTav

To find poles and residues fay (s)

Fig. 3. SMOR Algorithm

G AR {Vn} . {co} Vil _ {BJ} 1) In order to perform complete time-domain circuit simulation, the
—RALl o |[! 01 0 reduced-order model generated by SMOR can be combined with non-

— . ) linear elements through either direct stamping and realization or Z-
where 1, = (R") I . This vector transformation, however, does not parameter based simulation, as discussed in [8].

present a problem, since applying this transformation to (18) we can ob-

tain: 5 EXPERIMENTAL RESULTS

Y, (22) To demonstrate and validate the accuracy and efficacy of our new
MOR algorithms, we have implemented the original ENOR algorithm
. G AR ) . ) (OrigENOR), our improved ENOR algorithm (ImpENOR), and our
Obviously, whenp = { } , the matrio +D°  is a nonnegative  g\MOR algorithm in Matlab [15]. All the following experiments are per-

m Im

R)'sA’ R
_EYsAT R

o= ®RNY
mk = (R) "Iy 5 5

RA 0 formed on a Sun Ultra 5 model 360 machine.
matrix, which satisfies the condition required for preservation of passiv-
ity [8]. The only thing we need to update for the recurrence relation in lr---=--"="==-=-=-=-=-=--- | 2
|
T 1 I
(19) is w= R% . For notational simplicity, we designate @i 31 4L
S g—r* ] $
H=| G AR ansz{CO}. g
-RAL 0 01 Fig. 4. Coupled 2-bit Bus

Assembling all those important elements discussed above, the com- The example circuit used in our initial experiments is a capacitively
plete flow for our passive model order reduction algorithm SMOR is and inductively coupled 2-bit bus, as shown in Fig. 4. This bus has the
shown in Fig. 3, wherg is the desired order, is the number of ports, length of 3000 microns and is modeled with 60 coupled RSC sections.
nn is the number of nodes amd s the number of susceptances. Each line has the width of 1 micron and height of 1 micron and the
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Fig. 5. Comparison of Noise Waveforms Fig. 7. 16-bit Bus with 5 Ground Returns

spacing between the two lines is 1 micron. The capacitance and suscepduency response of the input impedaneg ) ) at port 1. To get the
tance values are not artificial, since they are extracted by a full 3D field exact response, an eigen-solving procedure, similar to the one in SMOR
solution tool using a windowing technique [3, 4]. At the near ends of the (Fig. 3), is used, except for that the original MNA matrices are in the
two lines, one line is driven by the Norton equivalent of a driver for fit- place of the transformed matrices. Fig. 6 shows the comparison of the
ting into the NA formulation, while the other line is quiet and only con- frequency responses from SMOR using 48 poles and 72 poles against
nected to the ground through a resistor. Both lines have capacitive loadshe exact response. While the reduced 72th-order response is almost
at their far ends. indistinguishable from the exact response up to 80 GHz, even the less
To demonstrate the accuracy gain from our orthonormalization strat- accurate model with 48 poles can match up to 60 GHz.
egy in the improved ENOR, we compare the noise responses at port 4 As a test of our algorithm on larger circuits we created the example
from three different approaches: 1) transient susceptance-based simulashown in Fig. 7, which represents a 16-bit bus (white) with 5 periodic
tion of the original system (Exact), which has also been implemented in ground returns (grey). All 21 wires are 4000-micron long, 1-micron
Matlab; 2) ImpENOR; 3) OrigENOR. All the noise waveforms are wide and 1-micron thick with a spacing of 1 micron, representative of a
shown in Fig. 5. While ImpENOR produces a waveform which is indis- long signal path for an IC package. Each wire is modeled by 40 RCS
tinguishable from the exact one, OrigENOR underestimates the noisesections, and the coupling capacitances and mutual susceptances among
peak slightly. those sections are modeled via a windowing technique. There are 1702
The comparison of runtime for transient simulation of the original nodes and 5803 elements in the extracted circuit. The circuit model also
and reduce-order systems is tabulated in Table 1. For this relativelyincludes 50 ohm resistors connected to the near end of each bit line,
small circuit (242 nodes), the MOR can speed up the simulation by load capacitance at the far end of each line of 2 ff. Bit 1 line is driven by
about 30 times. For larger circuits, more significant speed-ups area ramp current with a 10 ps risetime and an driver impedance (Norton
expected, which will be very useful for simulation of enormous RCS equivalent admittance) of 50 ohms.

circuits extracted to model electronic system packaging [5]. We compared a susceptance-based transient simulation using a cir-
Exact ImpENOR (24th Order) cuit simulator .that was modified to include susceptances with the

29.37 sec 0.90 sec response obtained via SMOR. We compared the voltage waveforms at

Table 1. Runtime Saving from MOR the far end of the switching bit 1 line and the noise responses at the far

We have also applied the SMOR algorithm to this simple circuit end of the bit 5 line, which are shown in Fig. 8 and Fig. 9 respectively.

example. Since SMOR generates almost the same time-domainVhile it is observed that more oscillatory noise waveforms generally

responses as IMpENOR, we focus on demonstrating SMOR's ability to requires higher orders of approximation, from the results shown it is

capture frequency-domain characteristics. We choose to look at the fre-€vident that SMOR is capable of generating very accurate high order
approximations for such systems.

1 T T T

15 T T T T

exact
X - X SMOR, 48 poles
SMOR, 72 poles

o
©
T

1

—— Transient Simulation (Exact)
SMOR, 108 poles

Input Impedance (ohm)
o
(o2}
S
//
-
Voltage (v)
i
.
'
\
\
AN
\
/
\
\
|
‘/
|
\‘
|
|
|
‘!

[
3

o
IS
T
—

) . . .

. . .
0

0 2e+10 4e+10 6e+10 8e+10 0e+00 1le-10 2e-10 3e-10 4e-10 5e-10

Frequency (Hz) time (sec)

Fig. 6. Comparison of Frequency Responses Fig. 8. Waveforms at Far End of Bit 1 Line

0.2




6

0.06 T T T T

—— Transient Simulation (Exact)
0.04 - SMOR, 288 poles T

0.02

voltage (v)
o
g
//
N\
~
Ve
S
/
N
J
f
J\/
L

L L
2e-10 3e-10
time (sec)

Fig. 9. Waveforms at Far End of Bit 5 Line

-0.04
0e+00

L L
le-10 4e-10 5e-10

CONCLUSIONS

In this paper we investigated various issues associated with model

(11]

(12]
(13]

(14]

(15]

order reduction for RCS (resistance-capacitance-susceptance) circuits.
Based on the investigation, we propose a novel susceptance-based MOR
algorithm SMOR. SMOR not only seamlessly incorporates the two
important features associated with susceptance, namely sparsity and
symmetric positive definite formulation, but also possesses the desired
properties for a MOR algorithm, namely numerical stability through a
new orthonormalization strategy and preservation of passivity. Like
PRIMA, SMOR is able to provide frequency-domain information, and
is easy to implement. Some experimental results demonstrate the effi-
cacy and accuracy of SMOR.
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