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Abstract—In this paper we address the problem of ap- A first example is the pointwise symmetPH (t)Q = H(t)
proximating symmetric systems with systems with the same for t € N. In words, the transformatio® applied to the
symmetry. We show that for periodic systems, a reduced order ;5 t5 js compensated by the transformafoapplied to the
periodic system can be obtained by SVD-techniques. We also touts. F | iderand/ tati
show that pointwise symmetries of the impulse response are ou p” S. or_examp €, we consideran _OrQ Permu aton
retained after balanced model reduction. Both results are hsed ~Matrices. This corresponds to systems in which some of the
on the fact that under certain conditions the SVD-reductionof  inputs and/or outputs can be interchanged, without changin
a matrix with unitary symmetries leads to a lower rank matrix the Markov parameters. Figure 1.a shows a system in which
with the same symmetries. The results are applied to model he gytputs can be interchanged. Figure 1.b gives an example
reduction of an interconnected system. : . . .

of a system in which the inputs can be interchanged. Another

. INTRODUCTION important case is whe@ = P~ which occurs for example in
Model reduction is undoubtedly one of the most usefuﬁ,ystems with identical subsystems (Figure 2). Also of eder

aspects of system theory because of its immediate relevarigdn€ case in whict? and/orQ are rotation matrices, etc.
to model simplification. It combines mathematical modeling

problems with computational complexity issues, two of the S . - S

pillars of modern applied mathematics. However, physical U y
models usually have some properties which are very impor-

tant from the physical point of view, as conservativeness, S L - S

dissipativity, etc. Also symmetries fall into this categorhis
is the topic of the research domain in which this articlesfall
How can we reduce a symmetric model and obtain a reduc&l§- 1-  Systems in which the outputs (subfigure &) or inpuisf{gure b)
model that preserves the symmetry? can be interchanged.

1. SYSTEMS WITH SYMMETRIES

We consider linear time-invariant input-output systems in uy S Y
discrete time, described by

a. b.

X(t+1) = Ax(t)+Bu(t) ‘ yz uz
yt) = Cx(b). ) TR s

with u(t) € R®, y(t) € R®?, andx(t) € R®, or equivalently

A

Fig. 2. System as an interconnection of two identical suiesys.

y(t) = S H(nu(t-1), ()
=1 A second example has been studied in the interesting paper
with H(t) = CA"1B, t € N the Markov parameters of the that stimulated us to study this problem [1]. It corresponds
system. Associated with this system is the (doubly infinitel0 systems with periodic impulse responses of pefliode.

block Hankel matrix H(t) =H({+T), teN.
H(1) H(2) H(@3) , : _
H(2) H(3) H@) - We will also consider even, odd, or even/odd impulse re-
HH=| H(3) H@) H®EB) - |- sponses.

In this paper we restrict ourselves to these two types of ex-
amples: pointwise symmetries and periodic impulse respons

We will consider dynamic symmetries from a rather concret&YMMmetries. The problem to be considered is whether model

point of view (an abstract theory may be found in [2]). WereQucti_on algorithms (e.g. balanced mod_el reduction fer th
start by giving some examples of symmetries that we wilPOiNtWise case) respects these symmetries.

consider. I1l. SVD-REDUCTION OF MATRICES WITH
Bart Vanluyten, Jan C. Willems and Bart De Moor are with thedHical SYMMETRIES
Engineering Department, K.U.Leuven, Kasteelpark Aregb&d, B-3001 In this section, we prove an interesting property of the

Leuven, Belgium. . h . . .
Bart Vanluyten is a Research Assistant with the fund for ifie SVD-reduction of matrices. It will be the mathematical lsasi

Research-Flanders (FWO-Vlaanderen). of our results on model reduction for dynamic systems. We



consider matrices oveR. A square matrixP is said to be Of course, it follows that if the gap conditiooi(M) >
[unitary] :< [PTP =1]. The norm||-|| on R**®2 s said to 0, 1(M) holds, then the rank SVD-truncationM, is the
be [unitarily invariant] : < unique matrix of rankk which approximatedv optimally,
o X . simultaneously for all unitarily invariant norms. It is an

[(M e R™%2) A (P.Q unitary)] = [[[PMQ] = [[MI[]. interesting question for which unitarily invariant norniset
One example of a unitary invariant norm is the Frobeniugnalogue of Proposition 1 holds.
norm. The Frobenius norm oM = [myj] is defined as Using the above proposition, we are now able to prove the
IMll5 = /5™ Til(mj)z- following theorem about the SVD of a matrix with symmetry.

i=1 .
. : Th 2. A hat th R®1*2 has th
Let M € R**2, Denote its singular values by foIIovs?r:Smsym Srsyl_Jme that the matris as the

(01(M),02(M), ..., Omin{a;.n,} (M)), Ordered as

M = PM
G1(M) > G5(M) > .. > Grinay.y) (M). Q

Consider the Singular Value Decomposition (SVD)Nf with P andQ unitary matrices. Then, if

M=UzV', (M) > 0x11(M),
with Mg, the optimal rankk approximation derived from truncat-

_ ing the SVD, has the same symmetry:
2= dlaqal(NDa O-Z(M)a R Gmin{nl,nz}(M)>

andU € R**"1 andV € R*2**2 unitary. Call Proof: The Frobenius norm is unitarily invariant, so
Mo=u [ OV M= M5 = [IP(M ~ M)Ql 5 = M ~ PV Q5.

HencePM,Q is an optimal rank approximation oM with
respect to the Frobenius norm. So by the uniqueness shown
in Proposition 1PM,Q = M. [ |

with
3 :=diag(o1(M), 02(M),..., 0x(M))

the rank k SVD-truncation of M. It is well-known that, if

the gap condition IV. EXAMPLES

In this section, we give some examples of matritkés
(M) > 1 (M) RM*®2 for which M = PMQ with P and Q unitary matrices.
holds, then the rank SVD-truncation ofM is uniquely We restrict the examples to matrices which are relevant for
defined. Indeed, while thes(M)'s are always uniquely model reduction of LTI systems with symmetries.
defined,U andV are never unique, but nevertheless, if th

gap condition holds, then the rarkSVD-truncation ofM ) _ )
is unique. Let B j be then; x n; permutation matrix such that in

The rankk SVD-truncation ofM leads to an optimal rank P.jX thei-th and j-th elements ok are permuted. Then in
k approximation ofM, with respect to any unitarily matrix F.jM, thei-th and j-th rows are permuted. Nom = R ;M

€. Matrices with equal rows/columns

invariant norm. In other words means that théth and thej-rows of M are equal. Theorem
2 allows us to conclude that if the gap condition holds, then
[(I| - || unitarily invarianj A (rankM’) < k)] My = PR jM, i.e. thei-th andj-th rows of My are also equal.
= [[[M = M|| > [|M = Mq][l. A matrix M for which the symmetryM = B ;M holds for

many pairs of(i, j), corresponds to either a matrix with more

The purpose of this section is to prove a theorem conrhan two equal rows or a matrix with more than one group of
cerning the preservation of a certain kind of symmetry aftetows which are identical. If the gap condition holds, allske
rank k SVD-truncation. It is based on the well-known factsymmetries separately are retained after SVD-truncation.
that My is the unique matrix of rankk which approximates Analogous results can be obtained for the columnMof
M optimally with respect to the Frobenius norm if the gap
condition holds. B. Matrices with zero-rows/-columns

Proposition 1: If the gap conditiongy(M) > 0y11(M) To express that théth row of M is zero, consider the
holds, then the rank SVD-truncationMy is the unique matrix B = diag(1,...,1,—1,1,...,1), with the —1 on the
matrix of rank k which approximatesM optimally in the i-th position, and express thit = BM. If the gap condition

Frobenius norm, i.e. holds, then for the optimal rarik approximation oM holds
that M, = RMy, i.e. thei-th row of My is also equal to zero.

[(0k(M) > Gi1(M)) A (rank My) < k) If the symmetryM = RM holds for different values of,
A(IM =M||z = [IM — M| |3)] = [My. = My] then more than one row d¥1 are equal to zero. All the

Proof:  This proposition is undoubtedly very well- symmetries separately are retained after SVD-truncafion i
known, but for the sake of completeness, we give a prodiie gap condition holds. Analogous results can be obtained
in appendix. m for the columns oM.



C. Circulant matrices where® denotes the Kronecker product, is called the block
skew-circulant matrix generated Iy An equivalent way of

In this section we consider block matrices withx n . : . .
defining block skew-circulant matrices is:

blocks of sizep x m. Define the special permutation matrix

nXxXn
nek 0 1.4 [M € R*** is block skew-circulant <
= [1 0 ] M=(02IM(O2 )]
where |,_1 denotes the identity matrix of size — 1. Let It follows from Theorem 2 that iM is block circulant (in
F=] |:1T .. FE ]T with | € RP*® i =1 ... n, then any of the senses considered above) and if the gap condition
the block matrixér with n x n blocks of sizep x m holds, then the truncated SV is also block circulant (in
the same sense). We know from Proposition 1 that if the

¢ =[F (Mel)F (Mxl)?F - (M) 'F],  gap condition holds, the rank SVD-truncationM is the

(1)  unique matrix of rankk which approximatesvl optimally
where® denotes the Kronecker product, is called theck in the Frobenius norm. As a consequence of this, the SVD-
circulant matrix generated by F. Such a matrix looks like  truncationM, of a block circulant matrix can very nicely be
computed using the Discrete Fourier Transform (DFT). We

F K ... FR.1 R . . -
explain this only for the vector case. Consider
E F ... R R P y
G = . m M ... Mg M
Fn—l Fn cee Fn—3 Fn—Z m2 ms o rnn n:]l
Fa Fi ... Fao Foa M= : : : o
Observe thévlock Hankel structure of block circulant matri- M1 Mo Moz MMho2
. .. K . my m ... M2 My_1
ces. An equivalent way of defining block circulant matrices
is: withm eRP fort=1,2...n. Let
[M € R is block circulant< M = (M@ 1,)M(M@1,)]. ffy 1= imeif?g £=01.. -1
t=

A generalization of block circulant matrices are thieck

g-circulant matrices. The block matrix4= with n x n blocks be the DFT of the first block row d#l: my, mp, ..., m,, such

of sizep x m defined as that 11,
m==- Zorﬁfe'fﬁ, t=1,2,...,n.
Y = D=
[F (M@l,)9F Mel)ZF - (Mel,)eLF] Using for example realization theory, it follows readilyath

the rank ofM equals the cardinality of the set
is called the bloclg-circulant matrix generated by. Again,

an equivalent way of defining blod-circulant matrices is: {£€{0,1,--- ,n— 1} ||| # O}.

[M € R*®*™® is block g-circulanf < Itis also known that

M=MaI)MMAxI,)9. %”M”%

Z\Ilmtll2

t=
We already noticed that block circulant matrices have 101

block Hanke! structure. On the other hand a blogk— 1)- - (Z || |2

circulant matrix haslock Toeplitz structuré. =0

A second generglization of . block c_irculant matricesrherefore, in order to obtaiNl,, an optimal ranks approx-
are theblock skew-circulant matrices. Define the special imation of M in the Frobenius norm, we can proceed as

permutation-like matrix@ € R**» follows. First calculate
@:[01 'noll m:%f;mféf%"t, t=12,... n,
Let F € R**® then the block matrix#; with n x n blocks With F. the subset 0of0,1,...,n— 1} of cardinalityk with
of sizep xm the property
Se=[F (O0)F (OoL)PF - (@sl)y1F], [(£ € R)A (' ¢ R)] = [[IMe]| > || Mg]].
Now, it is easy to see th&ly is equal to the block circulant

1Some authors define block circulant matrices to be block lfaepnd - ST AT ~T 17T
their block (n — 1)-circulant matrices are block Hankel. For further use, wematr')f induced by the vegto[r my rn2 e My } (see
prefer the definition given above. equation (1)). Under obvious conditions &, My is real.



Note also thaM is the unique optimal rank approximation where the size oy, is equal tok. The balanced reduced
of M in the Frobenius norm if system.¥¢q Of orderk then has the realization

I VA, FRIVRYD et

1 T &%l
Bred = ZH1U1 5H )

(£ € R)A(E" ¢ RI] = [[IMe]| > [[g]]). Aved

Assume that both these conditions are satisfied. TMen
approximatesM optimally in the Frobenius norm with a
block circulant matrix of rankk and it is the unique block Cred = 5#“1\/1 /zﬁl.

circulant matrix that does so. Hence we derived an altermati !

way to calculate the SVD-truncatid, by making use ofthe ca| 2 —|,,2P and 2 = 1, ® Q, then

DFT. Moreover, sincen;t =1,2,...n— 1 may be computed

using the Fast Fourier Transform (FFT), it is numerically 9 = PHn2.

much more efficient to computi, by first computingnt,

t=1,2,...n—1 and then formingv, than it is to compute ; follows from Theorem 2 that, if the conditiod (9 ) >
the SVD. This observation is valid also when we look foerH(ﬁH) holds,

an optimal rankk approximation ofM in another unitarily
invariant norm than the Frobenius norm. DUV 2 =Ussh, V.
V. APPLICATION TO MODEL REDUCTION Because the Moore-Penrose pseudo-inverse of a given matrix

A. Impulse responses with pointwise symmetry is uniquely defined, we also have that

In this section, it is shown that if the Markov parameters
H(1),H(2),...,H(t),... of a stable (meanincy ||H (1)|| <
) system.”” have a pointwise symmetry, then the Markovrye first Markov parameter is equal to
parameter$deq(1), Hred(2),. .. of the balanced reduced sys-
tem .%eq have the same symmetry. We first prove this result CreBred = sjﬁ“vlz,qlu 1T y)°H°71
and then present some applications. Lo ! T el T T ol
Proposition 3: Assume that the systen¥ is stable and = POy (2 iz Uy & )(P9Hy7P)
that its Markov parameters have the symmetry = PCredBredQ-

2"z Ul 2T =visiiu)

PH(t)Q=H(t), teN, The same can be done GfedAredBred, CredAZBred; - - We

: . . . , conclude that
with P and Q given unitary matrices. Then, i (HH) >

Ox+1(91), the Markov parameters of the balanced reduced PCogAl - B edQ | = CrogAl-1B teN.

system.%eq Of orderk have the same symmetry: ethed BredQ redeq Brec:
PHred(t)Q = Hred(t)v teN. . . . -

Proof: A balanced realization of the systesi can be Ve now present some applications (assuming that the gap

obtained from the reduced SVD of its Hankel matfj — condition holds) of the above proposition.

UzyVT as Suppose that for alt, row i and j of the Markov
parameterdi(t) of a system¢ are equal. In that case, we
A — /ZﬁlUTﬁaHV s see that outputy; andy; of the systems are identical.
Now from Proposition 3, we know that the outpq; and
B = wz;lu Tﬁfj,’*l, outputyreq; of the balanced truncated systeffjq are also
equal.
C = 9;°Vy/Zt Similarly, suppose that for ali, columni and j of the
where Markov parametersi(t) of a systems are equal. In that
case, we see that the outpwtof the system.” does not
H(2) H(3) H(4) depend on thé-th and j-input separately, but depends only
H(3) H(4) H(5) on its sum. Now from Proposition 3, we know that the output
Hov = | H ) H(5) H(6) Vreq Of the balanced truncated systeffq also depends only

andsai,jlj denotes the submatrix dfy consisting of the first
i block rows andj block columns. Expres§y as

Hu=[U1 U] [ 0 ZHJ \ VZ]T,

S, O

on the sum of input$ and j.

If the thei-th column ofH(t) is equal to O for allt, the
output of the system?” does not depend on itsth input.
Again, we know from Proposition 3, that the output.&feq
is also independent of thieth input. Analogous conclusions
can be drawn for the case where rowsHft) are equal to
0.



B. Periodic impulse response that: H(t +2T) = H(t) for t € N, H(T —t) = H(t) for
Assume that the impulse resport$él), H(2),... H(t),... t€[LT =1, H(@T —1) = —H(t) for t  [1,2T —1] and

is periodic with periodT: H(t+T) = H(t) for t € N. The H(T)=0. In this crﬁe the Hankel matrix with the size equal

problem is to obtain a reduced order model with an impulst® half the period$,; " is block skew-circulant. The problem

response which is also periodic. Now since rahk) = of finding a reduced order model with an impulse response
rank(ﬁL’T) it is logical to look for a periodicHyeg Such which is also periodic and even-odd can again be solved by

that truncating the SVD ofs‘gL’T.
T,T TT
19K = Ol VI. SIMULATION EXAMPLE
is small and that rar(lf)L’rId) < rank(saL’T). SinceﬁL’T is We consider the problem of how to model reduce a system

block circulant, the problem is to find a low rank blockconsisting of the interconnection of many identical burtgi
circulant approximation of a block circulant matrix. Weblocks. Model reduction of interconnected systems while
know that if the gap condition holds, the truncated SVDpreserving the interconnection structure is important anyn

of ﬁL’T gives an optimal approximation in any unitarily applications. In this section we study the interconnectibn
invariant norm which is again block circulant. Moreoveiisit two identical building blocks shown in Figure 2. In order
shown in [1] that this reduction corresponds to reduction bto model reduce the interconnected system, we can proceed
finite time balancing. As was shown in the previous sectionn two ways: either model reduce the building block and
the SVD-truncation of the circulant Hankel matrix, can bénterconnect, or model reduce the interconnected system an
efficiently computed using the DFT, which in addition can bevziew the reduced model as an interconnection of identical
implemented with the FFT-algorithm. This yields a fast waysubsystems. The simple simulations which we carried out
of computing a reduced order periodic model. This result ishowed that the second procedure gives much better results.
of relevance in image processing, as shown in [1] and [3].Take a ‘random' fourth order system for.

C. Even/odd periodic impulse response Xt+1) = Ax(t)+[ B, B, } [ ug(t) }
Assume that the impulse resport$él), H(2),... H(t),... Ua(t) (%)

is periodic with periodT: H(t+T) = H(t) for t € N. [ ya(t) ] _ [ © }x(t),

Consider in addition that the impulse responseeven: y2(t) C2

H(T —t) = H(t) for t € [1,T — 1]. The problem is to find with
a reduced order model with an impulse response which is

also periodic and even. The Hankel matst;" has two —01067 —0.1458 —0.2499 —0.0102

—0.2803 -0.1569 —-0.0534 02273

symmetries: A=1 00680 -00575 —0.1349 02395 |
T = MelL)eiTNol) 00248 03294 -0.0029 —0.1033
T,T T,T
9y = (A)Hy (A@l), 0.1209 11343
with | —0.2222 0
1 [Br Bz |= 0 ~1.4671 |’
1 ~0.3001 0
A= .
] [ 0 -06936 —22374 —0.0016
1 C, | = | 05654 08339 0 -16146 "

If the ga}? condition holds, the truncated SVD of the Hanketirst order balanced reduction givebeg
matrix 3§H’T gives an optimal approximation in any unitarily

invariant norm for which the same symmetries hold. Again, Aed = [-0.1322,
the problem can be solved more efficiently using DFT- [ Bired B2rea] = [ —0.1088 —1.8262],
techniques. Cired 17962

Analogous results can be obtained for edd periodic [ Czyred ] = { _0 3604]'

impulse responseH (1),H(2),...,H(t),... with period T
defined asH(t+T) =H(t) fort e N, H(T —t) = —H(t) . o
for t € [LL,T —1] and H(T) = 0. In that case, the Hankel The interconnected system is given B%on

matrix ﬁL’T has the symmetries A BG
Acon = :| )
S = Mooy (Mol S
TT TT
Dy = A9y (-A@l). Beon = 0l B, :| )
In the combination of the even and odd case, skew- :Cl 0
circulant matrices pop up. For aven-odd periodic impulse Ceon = 0 C ] )

responseH (1),H(2),...,H(t),... with period ZI it holds



From input 1 to output 1 / From input 2 to output 2.

which after second order balanced reduction giv&sn red 1 .
—— Connection of reduced systems

AC _ [ _00647 08248 oel —— Reduction of connected system (approximation)
onred = | 0.8248 —0.0647 |’

B B 0.8328 —0.0075 °
conred = | _00075 08328 |’
L 1 O 0.4
Ceon, red = 0 1 ] :

0.2 |

Notice that.-con reqhas the same symmetry a&on. After o |
approximatingBeon, red Y

08328 0
Beon,red™ | "9 08328 |

Ycon, red CaN be seen as the interconnection of two systems From input  to output 2/ From input 2o Input 1
/ — Conneclgd system
red — ggg:i&?ggl?fcgiii%?g;z;:emms (approximation)

Aeg = [—0.0647,
[ Blrea Bhea] = [ 08328 038248],

g.,red — 1
Ch red /0.8248 |-

In Figure 3, we compare the impulse responses of

« the 8-th order interconnected syste#fion,

« the second order system obtained by interconnecting the
first order approximations#eq of the building blocks, 02t

« the second order system obtained by approximating the ‘ ‘ ‘ ‘ ‘ ‘
reduced interconnected system with an interconnection ’ ° 10 1 ® ® ®

of two identical first order building blocks/,. Fig. 3. Impulse responses (Above: from first input to firstpotl, from

. . . . _second input to second output 2; Below: from first input toosecoutput,
It is clear from _the .flgure, Fhat the second apprC’le"’moﬁom second output to first input) of a random 8-th order sysilue)
method, approximating the interconnected system and th%on, second order approximation ofcon Obtained by interconnecting the
viewing this reduction as an interconnection of the ideaitic first order apQgX'magon Og'ts building blocks (r:eol) gnﬂt?d order ap- §

o . proximation of #¢on Obtained by approximating the reduced interconnecte
bU|Id|_ng _bIOCka' yields t_he l?eSt results. system with an interconnection of two identical first ordeilding blocks
This simulation was inspired by Chapter 7 of [4]. (black).

VIl. CONCLUSION

In this paper, we have shown how to model reduc . . ] ]
LTI systems with pointwise symmetries and with periodi WI: Bil. Int. CoIIaboratlc?n Hu_ngary/ Poland,.IWT. PhD
impulse responses. We have shown that model reductig?‘glms’GBOU (McKnow); B_elg|an Federal Science Policy
based on SVD techniques preserves these symmetries if 8 Ice- IU'IAC‘IP P?_/ZZ_( Dyn%ml\l/lca:jl S”)_/ste,rr;soggdzgggtr.og).ggg—
‘gap condition' is satisfied. The results are based on the fautation, ldentification and Modelling’, i ):

e : | (CP/40: TMS and Sustainability); EU: FP5-Quprodis;
that the gap condition implies that the SVD-reduction ofi ] ) i,
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Partition

N — {Nn

Ni12
Na21

N2>

. o [Z 0
conformal with the partition o ol

Observe that, since

<k

!
rank( [26‘ N(l)z]

and
> N >0
M0 1IN 5 "l <In- [T 16

we obtain Njo = 0. Similarly, No; = 0. ThereforeN =
|:N11 0

0 sz}' Observe also that, since

, J—
rank([Zk 0N11 g} <k

0 >0
ol <=5 1)

50
0 N
Noz = U2o%, Vs, be an SVD 0Ny, and note that

;1o I 0] 1 07, ntens[l O
Vilo uzNo vl =lo ug v lo )

and

M 3] = N |G

we obtainN;; = Z;. ThereforeN = [ } . Next, let

5 0 b3
0 Zi;,andhas 0 0

optimal rankk approximation. This obviously implies that
the smallest diagonal element Xf is larger than the largest

diagonal element of,. It follows that

_ulto % 01t 07,
M=U {0 Uzz} [0 5110 Vo, v
is an SVD ofM and that

;oo |Z Oy, [0 O] [Z O]l O,
o8 g =l w8 9o il
is a rankk SVD-truncation ofM.

Now, if the gap conditiorox(M) > o0y1(M) holds, then
the rank k SVD-truncation is unique. Henc®l, = M.
Conclude thatVy is then theunique optimal rankk approx-
imation in the Frobenius norm d¥l.

is diagonal: N’ = as an
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