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Abstract
This paper presents a method for general reduced order analysis of

linear circuits with a large number of independent sources. This type of
circuit is used to model the power grid in power supply noise analysis
for example. The large size of the linear circuit model renders circuit
simulation inefficient. The large number of independent sources makes
conventional multi-port model reduction ineffective. In order to
address these problems, this paper proposes an extended Krylov sub-
space method which constructs a transformation matrix based on the
dynamics of the circuit as well as the source excitations, thus avoiding
the multi-port problem of model reduction. The transformation matrix
is then used to reduce the given circuit to a smaller circuit model, which
allows for more efficient analysis.

1.Introduction

Signal integrity has become an important issue in today ‘s deep sub-
micron design. The signal degradation comes from a variety of
sources which include coupled noise from adjacent signals, reflection
noise from impedance mismatches, substrate coupling noise, and
power supply noise [1]. In particular, the power supply noise has
become more important for new technology such as Silicon-On-Insu-
lator (SOI).  As a result, the design of the power distribution network
and the associated electrical analysis has become very  critical for chip
design.

In general, the challenge in the design of the power grid is to ensure a
stable DC level while supplying large AC currents to various switch-
ing gates. In CMOS circuit, current is drawn from the power network
when logic gates make a transition. This current flows from the con-
tact to the power grid to the ground contact of the gate. This current
flow will cause voltage variation at the power and ground contacts due
to parasitic resistance, capacitance, and inductance of the power grid.
The electrical analysis of the entire chip to assess this voltage varia-
tion is prohibitively expensive. The common approach to make this
problem manageable is to decouple the analysis of the power grid
from the analysis of the logic gates. First, the logic gates are simulated
assuming a perfect DC voltage for the power contact to produce the
current signatures. These current signatures are used to model the
logic gates as linear time dependent current sources. The power grid is
then simulated with these current sources as circuit excitations to
assess the voltage variation at every node of the grid.

The electrical analysis of the power grid then becomes a linear tran-
sient analysis problem. For post layout analysis, the linear circuit
model of the power grid may contain millions of variables. The large
size of this linear circuit model makes circuit simulation computation-
ally expensive. On the other hand, conventional multiport model
reduction techniques [2][3][4] are rendered ineffective because of the
large number of ports due to the independent current sources modeling
the logic gates. For early design and analysis of the power grid, the
size of the circuit model can be reduced, but the circuit is analyzed
more often. Therefore, it is important to improve the efficiency

of the linear transient analysis of the power grid. A common technique
is to employ fixed time step integration such as Backward Euler or
Trapezoidal [5]. The advantage of fixed time step integration is that it
requires only one LU decomposition of the circuit matrix and one
backward-forward substitution (BFS) at each time step. This method
definitely improves that efficiency of the transient analysis of the
power grid when the voltage variation has largely high frequency con-
tent. i.e the voltage is changing constantly and rapidly. However, since
a sufficiently small timestep must be chosen a priori for this method, it
becomes inefficient for problems when low frequency content is more
important, i.e. when the slow variation of the responses is of concern
and when there are long intervals of steady state. Other approaches
aim at extending model reduction techniques to address the problem
of multiple sources. A symbolic algorithm is proposed in [6]. How-
ever, this approach is limited to delayed impulse excitations only. The
approach proposed in [1] allows for more general piecewise linear
representation of the sources. However, this approach suffers from the
numerical ill conditioning problem of explicit moment matching.

In order to address these problems, this paper presents a general
method for the reduced order analysis of large linear circuits with
multiple sources. It is organized as follows. Section 2 presents an
overview of various methods for power grid analysis to provide the
background for the proposed extended Krylov subspace method. The
basic idea and the mathematical details of the proposed method are
then described in section 3. Practical considerations such as scaling
and error control are described in section 4. Results are presented in
section 5 to substantiate the accuracy and efficiency of the proposed
method. Section 6 concludes the paper and suggests some areas for
future work.

2.Power grid analysis
In general, power grid analysis requires a full chip simulation of both
the transistors and the interconnects. This is a prohibitively expensive
process. Therefore, in a typical chip design, the problem is separated
into a local macro level and global interconnect level. Groups of non-
linear devices, i.e. transistors, performing a particular sub-function are
grouped together with small local interconnect into a module called a
circuit macro. Following this, different functional macros are physi-
cally placed and interconnected with longer metal interconnect lines,
called global interconnects, into the final chip assembly. Each macro,
in addition to being fed by the signal lines from other macros, is fed
on the top by Vdd and Gnd buses. A small example macro is shown in
Figure 1.

Fig. 1 An example macro fed by Vdd and Gnd buses at four input points
on the grid.

When full-chip power grid analysis is performed, each macro is simu-
lated with typical and expected input vectors and its typical (time-
dependent) average current draw at its “pins” is calculated (assuming
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a “perfect”, i.e. stable, Vdd supply). The interest of the designer is to
estimate whether the switching activities of all the these macros in a
typical and/or worst case condition will cause voltage droops on Vdd
lines or ground bounces. In order to manage the computational cost,
each macro is modeled as one or more simple linear time-dependent
current sources using the results of the stand-alone simulation. The
global power grid is extracted and modeled as an R(L)C network and
the macro current sources are attached to the grid as shown in Fig. 2
to form a completely linear network.

Fig. 2  A model of the macro drawing current from the power network
at four points.

A transient analysis of this network allows the assessment of
power supply noise and ground bounce. If necessary, another itera-
tion of the macro design and analysis is performed. This process is
continued until the supply noise is brought within the specified noise
margin. For the purpose of electrical analysis, the circuit model of the
power grid as shown above can be described by the following MNA
equation

(1)

where  and  represent the frequency independent  con-
ductance and susceptence MNA matrices,  is the vector of node
voltages and inductor/source currents,  is the vector of indepen-
dent sources, and  is the input selector matrix mapping the
sources to the internal states. In on-chip power analysis, matrices
and  are large, and  consists of thousands or millions of state
variables while the number of sources contained in  is in the range
of hundreds or thousands.

2.1. Multiport reduced order modeling of the
power grid

Model order reduction is another approach for improving the effi-
ciency of linear circuit modeling and analysis. The present state of
the art model reduction algorithms are typically based on Krylov
subspace methods. In such a method, the following subspace is gen-
erated

The matrix representing this subspace is used to transform the origi-
nal system as given by Equation (1) to a smaller system of the same
form [3][4]

(2)

However, the bottleneck in such approaches is the number of sources
in the input vector . The longer this vector (i.e. the more unique
input vectors exist), the bigger the Krylov subspace to be used
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because of the bigger  matrix. For each extra column in the
matrix, another backward-forward substitution (BFS) is required in
the computation of the Krylov subspace. Therefore, the cost of the
reduction algorithm is directly proportional to the number of inde-
pendent sources (i.e. ports). As a result, model order reduction tech-
niques are only applicable for a small number of sources in power
grid analysis.

2.2.  Input dependent explicit moment matching

In order to avoid the problems associated with multiport model
reduction, an input dependent explicit moment matching [7] has
been developed. In this approach, the moment representation of the
voltage response is computed from the moment representation of
the inputs as well as the moment representation of the system in the
frequency domain. The moment representation of the output voltage
responses is then used to construct the Padé approximation for com-
puting the responses in the time domain. This approach is described
in more detail below. In the frequency domain, Equation (1) can be
rewritten as

(3)

Typically, the independent sources contained in  are represented
by PWL functions. And in the frequency domain, these PWL
sources can be modeled as a sum of delayed ramps:

Let  then  the   moment   representation  of

the input vector can be written as

where  is the kth moment of  and it can be calculated as

Let  be the moment rep-
resentation of the unknown responses, Equation (3) can be rewritten
as

This leads to a recursive relationship between the moments of
 and : . Note,

that the output response can be separated into:

(4)

The first parenthesis contains the ramp and the step responses which
can be converted to a time domain ramp and a time domain step
function. The next parenthesis can be approximated as a partial
expansion in terms of poles and residues by an explicit Padé
approximation. This approximation is obtained by mapping the
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Taylor series to a rational function approximation and then solving
two sets of linear equations, one for the coefficients of the denomi-
nator and one for those of the numerator [2]. The pole/residue form
in the frequency domain is translated into the time domain as

. This approach using explicit moment matching suffers the

well known numerical stability problem especially when higher
order moments are required. In order to overcome this problem, an
extended Krylov subspace method is proposed and described in the
next section.

3.Extended Krylov subspace method

The basic idea of this approach is similar to the standard Krylov sub-
space method in [4]. The proposed method seeks to build incremen-
tally an orthogonal basis that spans the same subspace as represented
by the finite moment representation of the responses. The computed
orthogonal basis is then used to project the original system to the
smaller subspace spanned by the basis. The difference is that in stan-
dard Krylov subspace method, the inputs are impulse sources for
computing the transfer function of the system. These impulse
sources are constant in the frequency domain and they are captured
in the initial vector for the Krylov iteration. There is no further con-
tribution at subsequent steps of the iteration. This feature allows a
simple orthogonalization scheme. However, for the extended Krylov
subspace method (EKS) proposed in this paper, the sources are gen-
eral PWL sources with full series expansion, i.e. not a constant term,
in the frequency domain. Therefore, the contribution of source
moments must be taken into account at every step of the iteration.
This fact presents a major complication for the orthogonalization
process. This issue will be clarified later in this section.

In the EKS method, the reduced system is then solved in the time
domain by standard integration algorithms. The resulting solution is
then projected back to the original space to provide an approximate
solution to the original system. In other words, let

 be an orthogonal basis of the moment sub-
space . Then, the original system described by
Equation (1) can be reduced to a smaller system of a similar form as
given in Equation (2) where , , and

. Equation (2) can be solved for  in the time
domain by any standard integration algorithm. The solution of this
reduced system can then be projected back to the original space to
give an approximate solution as . Since the extended
Krylov subspace method employs a congruent transformation in the
projection, the passivity of the reduced system is ensured as proven
in [4].

3.1.  Incremetal Orthogonalization algorithm
In order to illustrate the basic idea, the first three steps of the algo-

rithm is described in detail.

At :

, , ,

At :

(5)

However, during the orthonormal vector calculation,  and /or
are never used in order to avoid direct moment generation for the
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reason described in the previous section. Instead the new vector is
computed as

(6)

The orthogonal component of this vector with respect to the previ-
ously computed vector(s) can be generated as follows. First let

. Then the orthogonal component is given by

 and the new normalized basis is

with .

Similarly, at :

(7)

This procedure can be extended easily to  case,

(8)

Equation(5) and Equation(6) are useful for the proof of Theorem 1 but
are not used in the practical calculation. In the algorithm,  is calcu-
lated as

(9)

Then, let , .

Thus  with  and

.

From the previous steps, it is easy to get the relationship between
and ,

(10)

This orthogonalization procedure can be summarized in the follow-
ing algorithm
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 end

end

Theorem 1:[8] The orthonormal vectors generated by the above algo-
rithm span the same space as the original moment vectors:

.

3.2.  Multipoint Extension

In the last subsection, we discuss the extended Krylov subspace
method with input sources’ waveform modeled by Taylor series
expansion at . This is sufficiently accurate when there are
only slowly changing input sources. However, in order to capture
higher frequency content of the input waveforms, moments at other
frequencies should also be considered. Let  where  is
a frequency shift. Then Equation (3) can be written as

The recursive relationship between adjacent moments holds for this
case. However, the input source waveforms modeled by a series of
ramp functions  are now modeled by

 at shifted frequency point . The
moments of the input sources are now scaled . The con-
gruent transformation matrix based on the implicit moment deriva-
tion at different shifted frequency points can then be computed in a
similar manner. The procedure can be best described by the subse-
quent algorithm:

Algorithm 2: Inputs: expansion points and expansion order at each expansion

point

 ( --- number of existing orthonormal vectors)

for k=1: number of expansion points

, ,

for i=1:order at every expansion points

for l=1:  end

if break;
       else

        end

   end

end

The transform matrix for  shifted frequency points has the form
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where  are  shifted frequency expansion points.

3.3.  Solution of the system

Let ,  is the order or column number of
matrix . If we use  as transform on the original system, we get

 then , , .
has dimension ,the number of column vectors in .

If

(11)

then we get

(12)

This system can be solved in the time domain by standard integra-
tion algorithms such as Trapezoidal or Backward Euler. Different
from the typical Krylov subspace based method, the resulting vector
does not have physical meaning unless it is projected back to the
original space to provide the approximate solution

(13)

we get all the node voltage or branch current we want.

Theorem 2: [8]The reduced order model preserves the moments of
the original system. That is: define as the
transform,  as the moment matrix for the
original system’s state variable vector ,
as the moment matrix for  which is the state variable vector for
the reduced order model and as the moment
matrix for  which is the approximation of the original system
variable vector via our Krylov subspace based method. Then

(14)

4.Practical considerations

4.1.  Scaling

The recursive computation of the source moments can be numeri-
cally unstable. The reason is that the delay term  in delayed ramp
functions such as  can be large (much greater than 1).
This may cause  to decrease too fast to ensure the accu-
racy of the moment computation. Recall that  can be
expanded in terms of Taylor series expansion as

This series expansion is generally valid only for values of  less
than 1. For values of  greater than 1, the numerical values of the
moments can quickly explode. Therefore, it is necessary to scale the
temporal variable to avoid this numerical problem. In order to
ensure that all the delays are of values less than 1, the scaling factor
for time can be chosen to be the total simulation time or the largest
end point of all the delayed functions. Another issue to be consid-
ered is the scaling of the ramp function values. Note that when only
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n V

z s( ) 1

s
2

---- x̂ s( )=

Ĝ sĈ+( )z s( ) B̂u s( )=

x t( ) Vz t( )=

V r̂0 r̂1 r̂2 …, , ,{ }=
X m0 m1 m2 …, , ,{ }=

x X̂ m̂0 m̂1 m̂2 …, , ,{ }=
x̂

X̃ m̃0 m̃1 m̃2 …, , ,{ }=
x̃

mi m̃i=

τ i
ri τ is–( )exp

ri τ is–( )exp
ri τ is–( )exp

ri τ is–( )exp 1–( )l 1– riτ i
l 1–

l 1–( )!
-----------------

l 1=

∞

∑=

τ i
τ i

250



the time is scaled to be smaller, the values of the slopes  are made
bigger. This effect makes the waveforms sharper (more high fre-
quency content) and may require more moments to accurately cap-
ture the characteristics of the waveforms. This in turn will impact the
efficiency of the method. Consequently, it is necessary to scale both
the time and the value of the ramp function. In practice, we use two
scaling factors: timing scaling factor and value scaling factor.
Assume that the timing scaling factor is  and the value scaling
factor is . Then the slopes of the input ramps can be written as

where  is the scaled slope which will be used in subsequent com-
putation. Let  where  and . We may
choose  as  and ,thus

.

4.2.  Error control

In this subsection, a simple error criterion is derived to estimate the
accuracy of the reduced order system. The error is based on the
residual of the moments at a frequency which has not been used as
an expansion point. In other words, let

be the transformation matrix obtained at the expansion point .
The issue here is how to estimate the error incurred by using the
reduced order model obtained by this transformation matrix. First
the reduced order system can be described by

(15)

where , , and . The goal
now is to estimate the error at another frequency point, e.g. . Let

 be the zeroth moment of the source at . This
moment can be computed using the procedure described in subsec-
tion 2.2. Then the moment of the reduced system at  can be com-
puted as

and the approximate moment of the response of the original system
can be computed as . This approximate moment can
be compared with exact moment

to give an estimate of the error. However, this computation requires
another expensive LU factorization of . As an alternative,
the approximate source moment is computed as

and the residual error can be defined as . This proce-
dure provides a simple and less expensive way to estimate the error.
Note also that the high oder moments are ignored in the computation
of the error. The rationale is that with proper scaling as discussed in
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subsection 3.1 the zeroth moment of the sources will contain most of
the information at each expansion point.

5.Experimental results

The extended Krylov subspace (EKS) method presented in this
paper has been implemented in a prototype power grid simulator. A
standard sparse matrix package is used for the solution of the linear
system of equations. The power grid is modeled as linear RC(L) net-
works with independent current sources representing the switching
activities of the circuit macros. The accuracy and efficiency of the
power grid simulator is compared with circuit simulation. The simu-
lation results for a number of test circuits of various sizes are summa-
rized in Table 1. As shown in this table, the speed up of the EKS

method over circuit simulation is about one order of magnitude (~
10X-25X). This speed up is less impressive than the speed up for con-
ventional model reduction techniques (up to ~1000X). However, the
difference is that in conventional model reduction, one is interested in
the responses at a small number of ports (usually less than 20). For
example, one is interested in the pin to pin delay in timing analysis or
clock tree analysis and not in the responses at the intermediate nodes.
Therefore, conventional model reduction can abstract away a large
number of internal nodes and only need to compute the responses at
only a small number of ports. However, in power grid analysis, one is
generally interested in the transient responses at all the nodes of the
power grid. The number of responses can be reduced to a subset of
nodes for monitoring the supply noise. In any case, this number of
nodes is usually much larger than the number of ports in conventional
model reduction. As a result, there is no luxury in abstracting away a
large number of variables. In oder to demonstrate the accuracy of the
EKS method, a number of representative waveforms from some of the
test circuits above are shown. For example, the voltage at a ground
node of circuit 1 is shown in Fig. 3.

Fig. 3        The voltage response at a ground node of circuit 1

Table 1:

name #of nodes #of sources Cir
sim

ESK

Circuit 1 16 9 0.13s 0.01s

Circuit 2 100 81 0.31s 0.02s

Circuit 3 2000 200 362s 21s

Circuit 4 10400 824 952s 67s

Circuit 5 20309 2475 3678s 140s

Circuit 6 80200 4102 N/A 420s
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This circuit is the model of a section of a power grid over one
circuit macro. The graph shows the inductive effect of the package.
Another example waveform for circuit#3 is shown in Fig.4.

Fig. 4     Waveform at node 200  (The voltage of the power is 1.8 v)

This circuit represents a larger section of the power grid. The wave-
form shows the effect of significant switching on the power rail some
time after the initial power up. .

Fig. 5 (a) Absolute errors of various low order approximations of 100
RC chain; (b)The time domain waveform comparison for order 10
and order 20 versus circuit simulation

In order to illustrate the effect of error control, a 100 RC chain with a
number of current sources inserted along the chain. This is not a grid
topology of typical power grid. It is used to check the neccessity of
error control. For this particular circuit, it requires an order 20 to
give accurate results. The absolute errors at different orders of
approximation and the time domain waveform comparison for order
10 and 20 versus circuit simulation result are shown in Fig.5. This
example shows that the efficiency of the method is somewhat depen-
dent on the topology as well as the values of the elements in the lin-
ear circuit model of the power grid.

6.Conclusion and future work

An extended Krylov subspace (EKS) method for general reduced
order analysis of linear circuits with a large number of independent
sources has been presented. This method includes an incremental
orthogonalization procedure to compute an orthogonal basis of the
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response moment subspace. It was proved that the reduced system
preserves passivity as well as the moments of the responses. The
EKS method allows for an arbitrary number of sources with general
PWL representation and avoids the numerical problem of explicit
moment matching. Experimental results show that the proposed
method achieves a moderate speed up over circuit simulation with
good accuracy for global low frequency variations of the power dis-
tribution network. For high frequency variations, high order approx-
imations may be required. Note also that the achieved speed up is
less impressive than the speed up for conventional model reduction
techniques. The reason is that in power grid analysis, one is usually
interested in computing the responses at all the nodes or at least a
large number of nodes in the power distribution network. As a
result, there is no luxury in abstracting away a large number of
internal nodes in order to compute efficiently the responses at a
small number of ports as done in conventional model reduction.

For future work, a number of improvements can be investigated.
The computational cost of the EKS method is dominated by the ini-
tial LU factorization of the MNA matrix and the orthogonalization
process. A more efficient linear solution method such as path trac-
ing can be employed. Moreover, currently a general MNA formula-
tion is used to model the power grid. It is possible to use the nodal
formulation to produce a positive definite matrix for the resulting
linear system with some loss of accuracy. This formulation allows
the more efficient Cholesky decomposition for the solution of the
linear system. For orthogonalization, a full back orthogonalization
with respect to all previous vectors is currently implemented. A
Lanczos type method which allows partial back orthogonalization is
under investigation.
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