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Abstract— We present a method for extracting comprehensive ampli-
tude and phase macromodels of oscillators from their circuit descriptions.
The macromodels are based on combining a scalar, nonlinear phase
equation with a small linear time-varying system to capture slowly-
dying amplitude variations. The comprehensive macromodels are able
to correctly predict oscillator response in the presence of interference at
far lower computational cost than that of full SPICE-level simulation.
We also present an efficient numerical method for capturing injection
locking in oscillators, thereby improving on the classic technique of Adler
[1] in terms of accuracy and applicability to any kind of oscillator. We
demonstrate the proposed techniques on LC and ring oscillators, com-
paring results from the macromodels against full SPICE-like simulation.
Numerical experiments demonstrate speedups of orders of magnitude,
while retaining excellent accuracy.

I. INTRODUCTION

Oscillators are critical components of electronic and optical sys-
tems. They are often used, for example, for frequency-translation of
information signals in communication systems. Phase-locked loops
(PLLs), widely used in both digital and analog circuits for clock
generation and recovery, frequency synthesis, etc., feature voltage-
controlled oscillators as key components. The design of oscillators
and oscillator-based systems is an important part of overall system
design; however, simulating oscillators presents unique challenges
because of their fundamental property of neutral phase stability,
often accompanied (especially in high-Q oscillators) with very slow
amplitude responses that border on instability.

Traditional circuit simulators such as SPICE [11] consume signif-
icant computer time to simulate the transient behavior of oscillators.
This is especially so for jitter simulation, since very small time-steps
are required, and for many simulation cycles. As a result, specialized
techniques based on using macromodels (e.g., [2], [3], [7], [9], [10],
[12]–[16]) have been developed for the simulation of oscillator-based
systems. However, such approaches suffer from serious qualitative
limitations. Most involve simple phase-integrating elements that do
not capture amplitude variations, which can be important for second-
order effects. An exception is the recent work of Vanassche et al [15],
but even this involves linear phase integration, which (as we show in
this paper) is qualitatively inadequate for predicting the important and
fascinating phenomenon of injection locking. Moreover, Vanassche’s
method, developed using perturbation analysis of harmonic (LC)
oscillators, is inapplicable to other topologies such as ring and
relaxation oscillators which are widely used in digital systems, and
increasingly, in high-performance mixed-signal systems as well.

In this paper, we present a method for constructing comprehensive
oscillator macromodels, including both amplitude and phase charac-
teristics, for any kind of oscillator regardless of operating mechanism.
Our method, which is related to a rigorous nonlinear theory for os-
cillator phase noise [5], consists of an algorithm to extract amplitude
and phase responses from an oscillator’s circuit equations provided
at, e.g., the SPICE level. The macromodel produced is a combination
of a scalar nonlinear differential equation [5] and a reduced linear
time-varying system that is computationally simpler and of smaller
size than the original oscillator, resulting in significant speedups in
simulations. The macromodel approximates the totality of the output
characteristics of the original oscillator circuit to perturbations well,
and can be easily encapsulated in MATLAB/Simulink, Verilog-A,
VHDL-AMS, etc., for use in system-level simulation.

We provide comparisons of macromodels generated for LC and
ring oscillators vs the original SPICE-level circuits, under differ-
ent perturbation amplitudes and frequencies. Our numerical results
demonstrate that the macromodels are able to reproduce the wave-
forms of SPICE-like simulation when the perturbation amplitude is
under about 10% of the oscillator’s load amplitude (this is considered
large in most practical applications). Even with very small oscillators,
we obtain speedups in the range of 1-2 orders of magnitude; much
greater speedups are expected with larger circuits and more complex
device models.

Further, we demonstrate the suitability of the nonlinear macro-
model for predicting injection locking. Injection locking is a nonlinear
dynamical phenomenon peculiar to oscillators, in which an oscil-
lator’s natural frequency changes to match that of a small injected
perturbation. The phenomenon is universal to oscillators (manifesting
itself, for example, as the synchronized flashing of fireflies, the locked
swinging of grandfather clocks located close to each other, etc.)
and has been increasingly used in recent years in novel, high-speed,
oscillator designs.

Verifying the presence or absence of injection locking can be
extremely difficult using SPICE-like simulations, especially for small
injections at frequencies close to the oscillator’s natural frequency
(i.e., the typical case). Existing approaches towards understanding and
predicting injection locking are all directly based on Adler’s classic
1946 paper [1], which provides a simplified quantitive explanation of
the phenomenon for simple harmonic oscillators, leading to formulae
for their lock range. Adler’s approach is not general, being limited
to LC harmonic oscillators and relying on analytical simplifications.
Indeed, it requires the Q factor of the oscillator, therefore cannot be
applied to, e.g., ring oscillators, for which Q factors are not defined.
In this paper, we apply the nonlinear macromodels mentioned above
to develop an efficient numerical method for predicting injection
locking. In addition to being generally applicable to all oscillators,
our technique improves significantly on Adler’s method, in terms of
accuracy, even for LC oscillators.

The remainder of the paper is organized as follows. In Section II,
we review nonlinear perturbation analysis of oscillators and the
nonlinear phase macromodel. In Section III, we derive the oscillator
amplitude macromodel. In Section IV, we apply the macromodel to
predict injection locking, and in Section V, we present simulation
results on three oscillator examples.

II. NONLINEAR PERTURBATION ANALYSIS

The standard approach for analyzing perturbed nonlinear systems is
to linearize around an unperturbed trajectory. However, this approach
does not suffice for analyzing oscillators. In [5], a novel phase
macromodel based on nonlinear perturbation analysis was presented
that is suitable for oscillators. Here, we first review the essentials of
this approach.

A. Linear Perturbation Analysis
A general oscillator that is being perturbed can be described by

ẋ + f (x) = Bb(t), (1)

where b(t) is a perturbation applied to the free-running oscillator and
x(t) is a vector composed of the state variables of the oscillator. For



PR
EP

R
IN

T:
 IC

C
A

D
 2

00
4

small perturbations, we can linearize (1) about its unperturbed orbit
as

ẇ(t)≈− ∂ f (x)

∂x
|xs(t)w(t)+ Bb(t)

=A(t)w(t)+ Bb(t),
(2)

where w(t) represents deviations due to perturbations and xs(t) is
the unperturbed steady-state solution of the oscillator. The periodic
time-varying linear system (2) can be solved using Floquet theory
[8] to obtain an expression for its state transition matrix

Φ(t,τ) = U(t)exp(D(t− τ))V (τ). (3)

U(t) and V (t) are T -periodic nonsingular matrices, satisfying
biorthogonality conditions vT

i (t)u j(t) = δi j , and D = diag[µ1, ...,µn],
where µi are the Floquet exponents. As shown in [5], one of the
Floquet exponents must be 0, and ẋs(t) is one of the solutions of
w(t) = A(t)w(t), the homogenous part of (2).

Without loss of generality, we choose µ1 = 0 and u1(t) = ẋs(t). The
perturbation projection vector (PPV) v1(t) satisfies vT

1 (t)u1(t) = 1
[5], [6]. The PPV, which can be thought of as representing the
oscillator’s phase sensitivity to perturbations, is a periodic vector
waveform with period identical to that of the unperturbed oscillator.

The particular solution of (2) is given by

w(t) =
n

∑
i=1

ui(t)
∫ t

0
exp(µi(t− τ))vT

i (τ)Bb(τ)dτ, (4)

where µ1 = 0. A small perturbation b(t) with the same frequency as
v1(t) can always be chosen to satisfy that vT

i (t)Bb(t) has a nonzero
average value; hence w(t) can be made to grow unboundedly with
t, in spite of b(t) always remaining small. This contradicts the basic
assumption for perturbation analysis, i.e., that w(t) is always small.

B. Nonlinear Phase Macromodel

To resolve this contraction, a key innovation of [5] was to rewrite
(1) with the perturbation Bb(t) split into two parts

ẋ + f (x) = b1(t)+ b̃(t), (5)

where
b1(t) = vT

1 (t + α(t))Bb(t)u1(t + α(t)) (6)

was shown to induce only phase deviations to the unperturbed system,
while

b̃(t) =
n

∑
i=2

vT
i (t + α(t))Bb(t)ui(t + α(t)) (7)

was shown to contribute orbital deviations. The solution of ẋ+ f (x) =
b1(t) is in fact given by

xp(t) = xs(t + α(t)), (8)

where α(t) is the phase deviation due to the perturbation b1(t).
Indeed, it can be shown [5] that α(t) is governed by the nonlinear
differential equation

α̇(t) = vT
1 (t + α(t)) ·Bb(t). (9)

With the PPV v1(t) available for a given oscillator, its phase devi-
ations due to perturbations can be efficiently evaluated by solving
the one-dimensional nonlinear equation (9). Effective methods are
available for computing the PPV from a SPICE-level description of
the oscillator [5], [6] in either time or frequency domains.

In (9), α(t) has units of time; the phase deviation in radians is
easily obtained by multiplying it with the free running oscillation
frequency ω0.

III. AMPLITUDE MACROMODEL

The key utility of the decomposition (5) is that the orbital deviation
does not grow unboundedly if only the b̃(t) component of b(t)
is applied; hence, validity of small-signal perturbation analysis is

restored, provided it is performed around the dynamically phase-
shifted steady state xp(t) = xs(t + α(t)) for it. Given an oscillator
system

ẋ + f (x) = Bb(t), y(t) = CT x(t), (10)

with solution
x(t) = xp(t)+ o(t), (11)

(where xp(t) = xs(t +α(t)), and o(t) represents the orbital deviations
due to the perturbation b̃(t)), (10) can be expressed as

ẋp(t)+ ȯ(t)+ f (xp(t)+ o(t)) = b1(t)+ b̃(t). (12)

Linearizing (12) around xp(t), the orbital deviation o(t) is given by

ȯ(t)≈−∂ f
∂x
|xs(t+α(t))o(t)+ b̃(t)

= A(xs(t + α(t)))o(t)+ b̃(t).
(13)

Since A(xs(t +α(t))) is not periodic, Floquet theory cannot be applied
directly to analyze the linearized system. The transformation t̂(t) =

t + α(t) is therefore applied and ô(t̂) = o(t) and ˆ̃b(t̂) = b̃(t) defined.
(13) can then be rewritten as

dô(t̂)
dt

= A(xs(t̂))ô(t̂)+ ˆ̃b(t̂), (14)

or,
(1 + α̇(t)) ˙̂o(t̂) = A(xs(t̂))ô(t̂)+ ˆ̃b(t̂). (15)

α̇(t) = vT
1 (t)b1(t)� 1 since the perturbation b1(t) is assumed small.

Dividing (15) by 1 + α̇(t) and Taylor expanding, we have

˙̂o(t̂) = A(xs(t̂))ô(t̂)+ ˆ̃b(t̂)+ R(t̂), (16)

where R(t̂) = vT
1 (t̂)b̂(t̂)(A(xs(t̂))ô(t̂)+ ˆ̃b(t̂)) is a quadratic term which

is dropped, keeping only the linearized terms. The orbital deviation
can then be expressed as a linear time-varying (LTV) system

˙̂o(t̂) = A(xs(t̂))ô(t̂)+ ˆ̃b(t̂). (17)

This linear system has the same form as (2), so its solution can be
expressed as

ô(t̂) =
n

∑
i=1

ui(t̂)
∫ t̂

0
exp(µi(t̂− τ))vT

i (τ) ˆ̃b(τ)dτ. (18)

From (7), it is clear that ˆ̃b(t̂) contains no u1 component, so the i = 1
term in (18) can be dropped; the u1 component, in fact, results in the
grown phase deviation α(t). Hence, ˆ̃b(t̂) can be replaced by Bb̂(t̂) in
(18), and o(t) is given by

o(t) = ô(t̂) =
n

∑
i=2

ui(t̂)
∫ t̂

0
exp(µi(t̂− τ))vT

i (τ)Bb̂(τ)dτ, (19)

where t̂ = t + α(t) and b̂(t̂) = b(t). The output of the oscillator can
therefore be expressed as

y(t) = CT xs(t̂)+
n

∑
i=2

CT ui(t̂)
∫ t̂

0
exp(µi(t̂− τ))vT

i (τ)Bb̂(τ)dτ, (20)

with the amplitude deviation being

Â(t̂) =
n

∑
i=2

CT ui(t̂)
∫ t̂

0
exp(µi(t̂− τ))vT

i (τ)Bb̂(τ)dτ. (21)

To develop a reduced macromodel that captures only the important
amplitude components, we define the weighted factor wi(t) for each
Floquet exponent µi to be

wi(t) = CT ui(t)exp(µiT )vT
i (t)B. (22)

A large wi(t) implies that the corresponding Floquet exponent will
have a large contribution to the amplitude deviation. Hence, wi(t) can
be evaluated for each Floquet exponent, and exponents with small
weights can be dropped to obtain a reduced diagonal matrix D̄. If
a Floquet exponent µi is dropped, the corresponding ui(t) and vi(t)
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are also dropped, resulting in a reduced matrices, Ū(t) and V̄ (t). On
completing this process, a reduced system for the amplitude deviation
A(t)

Â(t̂)≈CTŪ(t)
∫ t̂

0
exp(D̄(t̂− τ))V̄ (τ)Bb̂(τ)dτ (23)

is obtained. This can be expressed as a macromodel in ODE form as
˙̂a(t̂) = D̄â(t̂)+V̄ (t̂)Bb(t),

A(t) = Â(t̂) = CTŪ(t̂)â(t̂),
(24)

where D̄ = diag[µ̌1, ..., µ̌m], Ū(t̂) ∈ Rn×m, V̄ (t̂) ∈ Rm×n and m is the
size of the reduced system.

Combining the nonlinear phase equation (9) with the above am-
plitude macromodel, a comprehensive macromodel is obtained. The
flow of the macromodelling process is outlined below:

1) Obtain the steady state xs(t).
2) Calculate U(t), V (t) and Floquet exponents using numerical

methods [4]–[6].
3) Solve (9) for the phase deviation α(t).
4) Solve (24) for the amplitude deviation A(t).
5) The output of the oscillator is given by

y(t) = CT xs(t̂)+ Â(t̂). (25)

IV. PREDICTING INJECTION LOCKING

Injection locking is a nonlinear dynamical phenomenon occurring
in all oscillators. When an oscillator is perturbed by a weak external
signal close to its free-running frequency, the oscillator’s frequency
changes to become identical to that of the perturbing signal. Capturing
injection locking using traditional simulation presents challenges.
SPICE-level simulation of oscillators is usually inefficient, since
oscillators often require thousands of cycles to lock to an injecting
signal, with each simulation cycle requiring large numbers of very
small timesteps for acceptable phase accuracy. If the frequency of the
injected signal is close to oscillator’s free-running frequency, it also
becomes very difficult to distinguish injection locking from observing
time-domain waveforms.

A. The Adler Equation
In [1], Adler derived the following equation for the instantaneous

beat frequency of LC tanks oscillators perturbed by an external signal:

dα
dt

=−Vin j

V0

ω0

2Q
sin(α)+ ∆ω0, (26)

where V0 and ω0 are the output voltage and frequency of the
unperturbed oscillator and dα

dt is the instantaneous beat frequency.
∆ω0 is the frequency difference, which satisfies ∆ω0

ω0
� 1

2Q . When
the oscillator locks to the external injection signal, the beat frequency
vanishes, resulting in the locking condition

sin(α) = 2Q
V0

Vin j

∆ω0

ω0
. (27)

Since the values of sin(α) can only be between −1 and +1, the
maximum locking range of the oscillator is given by

Vin j

V0
> 2Q|∆ω0

ω0
|. (28)

Adler’s equation is widely used for capturing injection locking in
oscillators. However, it suffers from an immediate limitation: it
requires a LC-tank Q factor for (28). For oscillators that rely
on abruptly switching elements, e.g., ring or relaxation oscillators,
Adler’s equation is of limited utility. Furthermore, even for LC
oscillators, the predictive ability of Adler’s equation is typically
limited to a range of Q values.

B. Using the Nonlinear Phase Macromodel for Injection Locking
The nonlinearity of the phase macromodel (9) makes it well suited

for capturing injection locking effects in any oscillator for which the

PPV is available. If the oscillator locks to an injected signal, the
oscillator’s phase follows that of the injected signal; this leads to the
relationship

ω0t + φ(t) = ω1t + θ , or φ(t) = (ω1−ω0)t + θ , (29)

where ω0 is the frequency of the free-running oscillator, ω1 is the
frequency of the injected signal, φ(t) is the phase deviation of the
perturbed oscillator, and θ is a constant which represents the phase
difference between the locked oscillator and the injected signal. It is
clear from (29) that if the oscillator locks to the injected signal, the
phase shift due to the injected signal should grow with time linearly
with a slope of ω1 −ω0. Since α(t) has units of time, the phase
deviation in radians can be expressed as

φ(t) = ω0α(t). (30)

Substituting (30) into (29), we have

ω0α(t) = (ω1−ω0)t + θ , or α(t) =
∆ω0

ω0
t +

θ
ω0
, (31)

where ∆ω0 = ω1−ω0 is the frequency difference between the free-
running oscillator and the injected signal. This relationship provides
a direct means to check for locking behavior in oscillators. For
example, if an oscillator is injected with a signal with frequency
10% higher than its free-running frequency, using (31), the oscillator
locks to the signal if its phase shift α(t) increases linearly with a
slope of 0.1.

Substituting (31) into the nonlinear phase equation (9), we have

∆ω0

ω0
=v1(t +

∆ω0t + θ
ω0

)Ain j sin(ω1t)

= v1(
ω1t + θ

ω0
)Ain j sin(ω1t),

(32)

where Ain j is the amplitude of the injection signal and θ is the phase
difference between the injection signal and the oscillator’s output.
Since v1(t) has the same frequency as the free running oscillator,
the frequency of v1( ω1

ω0
t) must equal the injection frequency ω1. As

∆ω0 in (32) increases, the nonlinear locking mechanism changes the
locked phase difference θ to match the slope ∆ω0

ω0
. Since (32) is T1-

periodic, integrating both sides for one period of T1 leads to
∫ T1

0

∆ω0

ω0
dt =

∫ T1

0
v1(

ω1t + θ
ω0

)Ain j sin(ω1t)dt (33)

or
∆ω0

ω0
=

Ain j

T1

∫ T1

0
v1(

ω1t + θ
ω0

)sin(ω1t)dt. (34)

Hence, the maximum locking range is given by

|∆ω0

ω0
|< ηAin j, (35)

where

η = max
θ=0→2π

(
1
T1

∫ T1

0
v1(

ω1t + θ
ω0

)sin(ω1t))dt

= max
t0=0→1

(

∫ 1

0
v1(

t + t0
f0

))sin(2πt)dt.
(36)

η is independent of the injection frequency f1, and can be easily
calculated by numerical methods if the PPV is available. Note
that (36) has a form similar to the Adler equation. Unlike Adler’s
equation, however, it can apply to any physical oscillator, regardless
of operating mechanism; indeed, the underlying ideas used to derive
(36) appear quite different from Adler’s.

V. NUMERICAL RESULTS

In this section, we apply and validate the techniques presented
above for capturing phase/amplitude variations and injection locking,
using LC and ring oscillators. All simulations were performed using
MATLAB on a Linux machine with an AMD Athlon -2200+ proces-
sor. In what follows, we predict amplitude deviations and injection
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Fig. 1. A simple LC oscillator.

locking of oscillators using our macromodels, and compare the results
with SPICE-like simulations of the full oscillator circuit in the same
MATLAB environment. For injection locking analysis, we plot the
relationship between injection amplitude and maximum locking range
using full simulation and compare with the results by evaluating (35).
These experiments demonstrate that our macromodels work very well
when the amplitude of the perturbation is less than about 10% of the
oscillator’s working load. Speedups of 30–100 times are obtained
using the macromodels.

A. 1GHz LC oscillator
Figure 1 depicts the block diagram of a simple LC oscillator,

whose differential equations are

−C
d
dt

v(t) =
v(t)
R

+ i(t)+ S tanh
(Gn

S
v(t)
)

+ b(t)

L
d
dt

i(t) = v(t).
(37)

L = 4.869× 10−7/(2π) H, C = 2× 10−12/(2π) F , R = 100 Ω, S =
1/R and Gn = −1.1/R. With these parameters, the LC tank has a
resonance frequency of 1 GHz, and the inductor current has amplitude
A0 = 1.2mA.

1) Phase and amplitude macromodel: Since the simple LC oscilla-
tor has only two unknowns, the corresponding system has two Floquet
exponents. So this is a minimum system, and it cannot be reduced
any more. However, using our macromodel, we get a linear equation
for amplitude and a mildly nonlinear equation for phase deviation.
Both of them can be simulated with much larger timesteps. A key
feature of the macromodel is that these two equations are independent
and can be solved separately without matrix computations. In our
simulation, the runtime using the full circuit transient simulation
takes 230 seconds for a simulation time of 200 cycles. However,
it takes only 8 seconds to simulate the same number of cycles using
the macromodel, representing a 29 times speedup. Moreover, as the
original system’s size increases, larger speedups are obtained.

First, we investigate the response of the LC oscillator under a small
impulse perturbation injected at steady state. The amplitude of the
impulse is 0.2mA and its duration is 10% of the period. Comparisons
of results from the macromodels and the full SPICE-level simulation
are shown in Figure 2. As can be seen, there is an excellent match
in both phase and amplitude characteristics.

Now we inject a sinusoidal signal to the LC oscillator. The
injection amplitude is 5% of the oscillator’s load amplitude, and
the injection frequency is 1.03 f0, where f0 is the oscillator’s free
running frequency. Results from a simulation of 100 cycles are
shown in Figure 3(a) (phase deviations) and Figure 3(b) (amplitude
deviations). From the phase and amplitude information obtained
from simulating the macromodel, voltage and current waveforms
are re-constructed using (25) and shown in Figure 3(c). Comparing
these against SPICE-level transient simulations of the original circuit
(shown in Figure 3(d)), the match is observed to be very close. A
more detailed comparison of 15 cycles (from t = 25T to t = 40T ) is
shown in Figure 4.

To test the range of validity of our macromodel with respect to the
amplitude of input perturbations, we increase the injection amplitude
gradually, and plot the results in Figure 5. The macromodel works
well when the injection strength is less than about 10% of A0. When
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Fig. 2. Phase and amplitude deviations under impulse perturbation.
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Fig. 3. Output of the simple LC oscillator under the perturbation iin j =
0.05A0 sin(1.03ω0t).

the injection amplitude increases, the macromodel’s prediction error
increases, resulting in a higher beat frequency. When the injection
amplitude increase to 0.25A0, the oscillator locks to the external
signal, but at these extremely high injection levels, the macromodel
fails to capture lock correctly, because of its underpinnings in small-
signal linearization. Such high injections are usually rare in practice
and do not significantly limit the applicability of our macromodels.

2) Injection Locking Analysis: (35) reveals a linear relationship
between the injection amplitude Ain j and the frequency difference
∆ω0; given the PPV, the slope η in (35) can be calculated using (36).
Figure 6 shows the locking range of the LC oscillator. The nonlinear
phase macromodel can capture injection locking well when the
injection amplitude is below 15% of A0. η , which can be calculated
very quickly (in a few seconds), can be used to predict injection
locking by evaluating (35). In contrast, full SPICE-like simulation
requires four minutes to predict locking on this low-Q oscillator. η
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Fig. 4. Output of the simple LC oscillator under the perturbation iin j =
0.05A0 sin(1.03ω0t).

needs to be calculated only once; it can then be reused to investigate
injection locking under different injection frequencies and strengths.
A similar feature is not available when solving the full system of
equations. Furthermore, when the Q-factor of the LC oscillator is
made high, thousands of cycles elapse before lock. The simulation
time for the full circuit becomes more than one hour on our system,
while that for the macromodel remains unchanged.

B. Three-Stage Ring Oscillator
Figure 7 depicts the block diagram of a three-stage ring oscillator,

described by the differential equations

−C1
d
dt

v1(t) =
v1

R1
− tanh(Gm3v3(t))

R1

−C2
d
dt

v2(t) =
v2

R2
− tanh(Gm1v1(t))

R2

−C3
d
dt

v3(t) =
v3

R3
− tanh(Gm2v2(t))

R3
.

(38)

Each stage of this ring oscillator is identical, we have C1 = C2 =
C3 = 2nF , R1 = R2 = R3 = 1kΩ, and Gm1 = Gm2 = Gm3 =−5. The
oscillator has a natural frequency of 153498Hz and a maximum load
current of A0 = 1.2mA.

1) Phase and amplitude macromodel: This oscillator has the
system size of 3, so it has two Floquet exponents for amplitude
macromodel. In the following, we simulate two macromodels: a
reduced macromodel retaining only the dominant Floquet exponent,
and a ”full” macromodel, which keeps both Floquet exponents. Our
numerical experiments below reveal very little difference between the
two macromodels, indicating that size reduction leads to insignificant
loss of accuracy. Both macromodels match full SPICE-level simula-
tion well, and deliver about a 30 times speedup.

First, we apply a perturbation current with amplitude Ain j = 0.05A0
and frequency fin j = 1.04 f0 to the oscillator, and simulate it for 100
cycles. Figure 8(b) and Figure 8(c) depict the results of the reduced
macromodel and the full macromodel. Both waveforms match full
simulation well, as shown in Figure 8(d). Increasing the injection
amplitude gradually, we show the changes that occur in amplitude
and phase response in Figure 9. We obtain a trend similar to that
for the LC oscillator: the macromodels work well when the injection
amplitude is less than about 10% of A0.

2) Injection locking analysis: As mentioned earlier, a key ad-
vantage of our approach is its general applicability for predicting
injection locking. Using (36), the maximum locking range of this
ring oscillator is easily predicted, as plotted in Figure 10. As before,
locking is predicted well when the injection amplitude is below about
10% of A0. For this case, η is calculated in several seconds, while
full SPICE-like simulation requires five minutes to capture locking.
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Fig. 5. Outputs of the simple LC oscillator under different perturbations.

C. 4GHz LC Oscillator

The circuit and parameters of another LC oscillator are shown
in Figure 11. The oscillator has a free-running frequency of about
4GHz, and the inductor current through L1 has an oscillation ampli-
tude of 15mA.

1) Phase and amplitude macromodel: The size of the LC oscillator
system is 6. We find, somewhat surprisingly, that an amplitude
macromodel of size only 1 captures the oscillator’s dynamics very
well. With only a one-dimensional nonlinear phase equation and
a one-dimensional amplitude equation against a 6-dimensional full
oscillator circuit, large speedups (more than 100 times) are obtained.

Injecting a voltage perturbation in series with the inductor L1
and simulating under different perturbation strengths, we obtain the
results shown in Figure 12. When the perturbation amplitude is
2mV, the amplitude deviation due to this perturbation is about 1mA,
which is 6% of the inductor’s oscillation current. The macromodel
matches full simulation well at this perturbation level, as shown in
Figure 12(a) and Figure 12(b). As the injection amplitude grows to
8mV , the amplitude deviation increases to 4mA, which is about 25%
of the inductor’s oscillation current. The macromodel can still predict
beats in the waveform well; however, the shape of the waveform is
no longer as accurate, as shown in Figure 12(e) and Figure 12(f).

2) Injection locking analysis: Using (36) to calculate the slope
η provides quick prediction of injection locking, as in the previous
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Fig. 6. Locking range of the simple LC oscillator.

Fig. 7. A three-stage ring oscillator.

cases. Comparing against full SPICE-level simulation with different
injection amplitudes in Figure 13, it is evident that the macromodel’s
results match full simulation very well, especially when the injection
amplitude is less than 40mV.

VI. CONCLUSIONS

We have presented a novel technique to extract simple ampli-
tude/phase macromodels from detailed circuit descriptions of any
physical oscillator. The macromodels are able to predict oscillator
phase and amplitude deviations well in the presence of perturbations
and offer significant speedups over full SPICE-like simulation. We
have demonstrated the use of these macromodels for capturing injec-
tion locking in oscillators, a feature that eludes oscillator macromod-
els in common industrial use today. Our injection-locking technique
generalizes and overcomes limitations of the classic Adler equation.
Numerical results demonstrate the ability of the macromodels to
predict the totality of oscillators responses well, while providing
large speedups over full SPICE-level simulation. We are currently
developing efficient, Krylov-subspace-based variants of our method
that will be applicable to large systems, resulting in macromodels
that are expected to yield speedups of 3 or more orders of magnitude
with insignificant loss of accuracy.
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Fig. 12. Outputs of the 4GHz LC oscillator under different perturbations.
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Fig. 13. Locking range of the 4GHz LC oscillator.


