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Abstract—A compact nonlinear model order-reduction method
(NORM) is presented that is applicable for time-invariant and peri-
odically time-varying weakly nonlinear systems. NORM is suitable
for model order reduction of a class of weakly nonlinear systems
that can be well characterized by low-order Volterra functional se-
ries. The automatically extracted macromodels capture not only
the first-order (linear) system properties, but also the important
second-order effects of interest that cannot be neglected for a broad
range of applications. Unlike the existing projection-based reduc-
tion methods for weakly nonlinear systems, NORM begins with
the general matrix-form Volterra nonlinear transfer functions to
derive a set of minimum Krylov subspaces for order reduction.
Moment matching of the nonlinear transfer functions by projec-
tion of the original system onto this set of minimum Krylov sub-
spaces leads to a significant reduction of model size. As we will
demonstrate as part of comparison with existing methods, the ef-
ficacy of model reduction for weakly nonlinear systems is deter-
mined by the achievable model compactness. Our results further
indicate that a multipoint version of NORM can substantially im-
prove the model compactness for nonlinear system reduction. Fur-
thermore, we show that the structure of the nonlinear system can
be exploited to simplify the reduced model in practice, which is
particularly effective for circuits with sharp frequency selectivity.
We demonstrate the practical utility of NORM and its extension
for macromodeling weakly nonlinear RF communication circuits
with periodically time-varying behavior.

Index Terms—Analog circuits, modeling, model order reduction,
nonlinearity, RF circuits.

I. INTRODUCTION

OVER the past decade a large body of work on model
order reduction of IC interconnect has emerged from

the design automation community [1]–[7]. The purpose of
model reduction is to generate models that are orders of
magnitude smaller than the original system, while accurately
approximating the input–output relationships of the original
system. Compared to the success of model order reduction for
linear time invariant (LTI) resistance–inducatance–capacitance
networks, the problem of reducing nonlinear systems has been
less understood and explored [8]–[10].
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There are numerous applications, however, where abstracting
transistor-level circuit details that include important weakly
nonlinear effects into a compact macromodel is important. For
instance, in RF communication IC design there is a growing
interest in extracting efficient circuit-level models which are
capable of capturing system nonlinear distortion. While circuit
blocks in these applications often exhibit weak nonlineari-
ties, the design specification for linearity is often extremely
important and very stringent. As depicted in Fig. 1, building
compact blackbox type macromodels that accurately capture
nonlinear input–output correspondence not only facilitates
efficient repetitive simulations of the circuit component being
modeled, but also enables the entire-system verification that
would otherwise be impossible.

In terms of nonlinear model generation or reduction, sym-
bolic modeling of weakly nonlinear circuits has been used to
build system-level models [22], [23], [30], [31]. The underlying
mathematical description employed is Volterra series (e.g.,
[12]–[14]), and the resulting model is in a block-diagram form
suitable for signal-flow type simulation using tools such as
Matlab Simulink [19]. Neural network and time series-based
models have also been proposed for nonlinear behavioral
modeling. A review of the related work can be found in [28].

In a different direction, transformation-based model order re-
duction techniques have been stimulated by the progress made
for model order reduction of large linear IC interconnects in the
past decade (e.g., [1]–[7]). A piecewise-linear approximation
based nonlinear systems reduction was proposed in [11], where
a set of linearizations about the state trajectory due to a training
input was used to model a nonlinear system and each lineariza-
tion is reduced using Krylov projection. While having the po-
tential capability of handling large nonlinearities, the limitation
of this approach is its training-input dependency. This piece-
wise-linear approximation was recently extended to a piece-
wise-polynomial approach to better model nonlinear distortion
[27].

For a broad class of weakly nonlinear systems in analog
signal processing and RF communication ICs, the low distor-
tion level, as well as the required modeling accuracy, seemingly
makes Volterra series a more suitable choice for system de-
scription. The application of Volterra series makes it possible
to solve the circuit response of a weakly nonlinear system from
low orders to high orders via a recursive procedure, commonly
referred to as nonlinear current method. More importantly,
frequency-domain characterizations based on Volterra kernels
or nonlinear transfer functions fully describe the input-indepen-
dent system nonlinear properties in a manner analogous to the
use of linear transfer functions for linear system properties. The
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Fig. 1. Macromodeling of nonlinear circuits.

projection-based nonlinear model order-reduction frameworks
for weakly nonlinear systems were first proposed in [8]–[10]
by extending the popular implicit moment-matching projection
techniques used for interconnects, such as PVL [3], the Arnoldi
method [4], and PRIMA [6]. The work of [8] and [10] uses the
Taylor series expansion of nonlinear state equations to represent
a weakly nonlinear system. Then, the nonlinear system model
inherited in the recursive nonlinear current method is employed
to view a weakly nonlinear system as a set of interconnected
linear networks. Some details of this direction is presented in
[26].

The benefit of this perspective is that it immediately allows
the use of existing linear system-reduction techniques to serve
as blackbox tools to reduce each individual linear network
for achieving the goal of overall nonlinear system reduction.
However, converting a nonlinear reduction problem to several
linear reduction problems leaves several important issues
unaddressed. First, it becomes not clear that how the quality
of each linear reduction problem impacts the accuracy of the
overall nonlinear model. Second, the approach does not provide
strategies for optimizing the reduced nonlinear model.

Another approach [9], which provides an interesting theoret-
ical foundation, uses the bilinear form of a nonlinear system
and matches the moments of nonlinear transfer functions anal-
ogously to Padé approximations of LTI systems. The use of
bilinear form allows the nonlinear transfer function moments
to be expressed in a very structured fashion such that a pro-
jection-based moment-matching reduction scheme can be ele-
gantly derived. The critical issue associated with this approach
is that by converting a standard state-equation form to its bi-
linear counterpart, a large number of additional state-variables
are introduced. For instance, the bilinear form of a system in-
cluding up to the third-order nonlinear coefficient matrices has

state variables, where is the number of state variables
in the original state-equation form.

It is very important to note that under the projection frame-
work, the reduced model compactness is critical for effective
nonlinear model reduction. This is because as the order of mo-
ment-matching increases, the size of the reduced order model
increases even more rapidly. At the same time, as the size of the
reduced model grows, it becomes increasingly costly to explic-
itly form the resulting high-order system matrices of the reduced

order model, thereby eliminating any possible benefit of model
reduction.

Given that the primary limitation is the size of the reduced
order models, we have proposed a different path for producing
more compact reduced order models for nonlinear systems in
[18] and [19]. The proposed projection-based nonlinear model
order-reduction techniques start from the same Volterra formu-
lation for weakly nonlinear systems. However, our approach
possesses the following key differences from the prior work.
Unlike the method in [8] and [10], where moment matching
of nonlinear transfer functions are not explicitly considered, as
well as the approach in [9], where large bilinear forms are used,
we begin with the most general matrix-form nonlinear transfer
functions needed for model order reduction. To disclose the
problem structure of nonlinear model order reduction, moments
of nonlinear transfer functions and associated Krylov subspaces
are further derived in the matrix form. This development leads
to a deeper understanding on the interaction between Krylov
subspace projection and the moment matching under nonlinear
context. As has been experienced in model order reduction of
linear systems, we will show in this paper that efficient (im-
plicit) moment matching of nonlinear transfer functions can lead
to compact nonlinear reduced order models. Our analysis allows
us to establish an optimal link between moment matching and
Krylov subspace projection. The efficiency of the proposed non-
linear model order-reduction method (NORM) scheme is based
on an optimal construction of the projection matrix. Under the
projection framework, NORM produces the optimized reduced
order models in the sense that any given number of nonlinear
transfer function moments can be matched by projecting the
original nonlinear system onto a set of minimum Krylov sub-
spaces. As a result, a significant improvement on model com-
pactness is achieved, which is essential to nonlinear model order
reduction. In this paper, we extend our work in [18] and [19]
to a complete reduced-order modeling methodology for weakly
nonlinear analog and RF circuits. In particular, the expressions
of nonlinear transfer function moments, which are essential to
the proposed algorithms, are fully derived. We also prove the
moment matching property of the proposed NORM algorithm.
Furthermore, we extend our nonlinear system formulation to
periodically time-varying systems and demonstrate that time-
varying circuits can be modeled under the same framework.
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The proposed NORM algorithm has several important fea-
tures for controlling the growth of reduced order models. First,
the modeling accuracy for the nonlinear effect at each order can
be selected individually for application-specific needs, while
the overall reduced nonlinear model is optimally constructed
based on the interactions of moment matching for nonlinear
transfer functions of different orders. This is important, as it
avoids the introduction of useless projection vectors for moment
matching, which can potentially be the case in the method of
[8] and [10]. Second, to target the nonlinear system behavior
within the circuit-specific frequency band of interest, the proce-
dure for moment-matching with complex expansion points is ac-
commodated. This is particularly useful for certain narrow-band
RF systems for which it is beneficial to expand the nonlinear
transfer functions along the imaginary axis about the center fre-
quency. Different from the reduction of the LTI system, it is
shown that moment matching of nonlinear transfer functions
at a single frequency expansion point inherits multiple matrix
factorizations. Therefore, special care must be taken in order to
perform the task correctly. Lastly, it is shown that multipoint ex-
pansions for projection-based nonlinear model order reduction
has a very unique advantage against single-point approaches in
terms of model compactness. By trading off computational cost
with model compactness, we demonstrate that a multipoint ver-
sion of the NORM algorithm can further reduces the total di-
mension of the Krylov subspaces used in the projection, thereby
producing a more compact model.

For systems with sharp frequency selectivity, such as high-Q
circuits, a full projection-based approach can still be limited by
the need of forming the reduced high-order system matrices.
This is due to the fact that a large number of projection vectors
may be required to model the nonlinear system frequency do-
main characteristics accurately in the band of interest, leading
to large and dense reduced high-order matrices. To overcome
this difficulty, in this paper, we further explore a novel hybrid
approach where the benefits of nonlinear Padé approximations
and pruning by exploitation of the system’s internal structure
are combined. In this hybrid approach, the low-order system
nonlinear responses are captured efficiently using the aforemen-
tioned projection-based NORM algorithm, while high-order
responses (third order) are approximated via direct matrix
pruning, in conjunction with the projection-based reduction of
a linear adjoint network [19]. The pruning technique is similar
to what was used in symbolic modeling [22], [23], [30], [31],
with the difference being that the pruning is applied directly to
the high-order system matrices in our approach, and the model
order reduction is embedded with the pruning to accelerate this
relatively slow procedure.

This paper is organized as follows. In Section II, we present
a brief introduction to the time-invariant Volterra series used
for time-invariant systems. The prior nonlinear reduction ap-
proach of [8] and [10] is reviewed for comparison purposes in
Section III. In Section IV, we present the general matrix-form
nonlinear transfer functions for time-invariant systems, and de-
rive the expressions for the corresponding transfer function mo-
ments used in NORM. The NORM algorithm is discussed in
detail in Section V. In Section VI, the hybrid approach is pre-
sented. We demonstrate the accuracy of reduced-order models

generated via NORM and the proposed hybrid approach, and
show the orders of magnitude runtime speedup that is possible
in simulation for several circuit examples in Sections V-D and
VI-C. Finally, conclusions are drawn in Section VII. The exten-
sion to the model order reduction of periodically time-varying
weakly nonlinear systems is presented in the Appendix.

II. BACKGROUND ON VOLTERRA SERIES

For simplicity, consider a single-input multioutput system de-
scribed by the following modified nodal analysis (MNA) formu-
lation

(1)

where is the vector of node voltages and branch cur-
rents; is the input to the system, and are nonlinear
functions relating currents of nonlinear resistors and nonlinear
charges/fluxes with is the vector of the output; and
are the input and output matrices, respectively. Assume that the
weakly nonlinear system is perturbed about a dc bias condition

by a small-signal input. Using a Taylor series to expand
and at the bias point , and considering only small-signal
quantities, we obtain

(2)

where is the Kronecker (tensor) product operator, and
are the small-signal response and the input of the system.

are the th-order conductance and capacitance matrices, respec-
tively.

A nonlinear system can be analyzed using Volterra functional
series under weakly nonlinear conditions. In Volterra series, the
response can be expressed as a sum of responses at different
orders

(3)

where is the th-order response. In an intuitive sense, the
order of a response component specifies the cumulative number
of multiplications of the input signal for resulting the corre-
sponding response. In practice, a converging Volterra series of
(3) is truncated to a finite number of terms, and each order of
response is solved recursively. The first order or linear response
of the weakly nonlinear system in (2) is obtained simply by re-
taining only first-order terms in (2)

(4)

Notice that (4) represents a linear time-invariant (LTI) system.
Higher order responses are computed by solving the linearized
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system with different inputs. The second- and the third-order re-
sponses are given by the following two equations, respectively:

(5)

(6)

where . We shall
refer to the systems specified by (4) –(6) as the linearized (first-),
second- and third-order systems for (2), respectively.

More formally, the th-order response can be related to
Volterra kernel of order , which is an exten-
sion to the impulse response function of an LTI system

(7)

Alternatively, a weakly nonlinear system can be analyzed in the
frequency domain, where is transformed into the
frequency domain via Laplace transform

(8)

In (8), is referred to as the nonlinear transfer
function of order . The th-order response, , can also be
related to the input using .

It can be seen that Volterra kernels and nonlinear transfer
functions specify the weakly nonlinear system response due to
an arbitrary input. Thus, they are input-independent properties
of the system, and fully describes the weakly nonlinear system
behaviors. As such, if the original nonlinear transfer functions
are well approximated in a reduced order model using a method
such as moment matching, it would be well expected that orig-
inal nonlinear system properties are accurately modeled by the
reduced model.

III. PRIOR REDUCTION TECHNIQUES

A projection-based nonlinear model order reduction ap-
proach was proposed in [8] and [10], where reduction tech-
niques for LTI systems were properly extended to take the
weakly nonlinear aspects of a system into consideration. For
simplicity of description, consider the expanded state-space
model of the nonlinear system in (1)

(9)

Similar to (4)–(6), the first-order through the third-order non-
linear responses of the system are given by

(10)

(11)

(12)

The key observation is that (10)–(12) represent three LTI sys-
tems with inputs formed by , and

, respectively. Each of these LTI systems can be,
in turn, reduced to a smaller system using any existing projec-
tion method such as that of [3]–[6]. If the system in (10), with

states, is reduced to a system with states through a Krylov
subspace projection , then the inputs to (11) can
be approximated by

(13)
This suggests that (11) now can be viewed as having inputs
instead of inputs, and can be reduced by a Krylov projec-
tion to a smaller system with states. Now, the
number of inputs to (12) is reduced from to .
Finally, (12) can be reduced to a smaller LTI system with
states via projection . The final reduced nonlinear
model can either be expressed in the form of a collection of re-
duced linear systems, or be described by a smaller set of non-
linear equations using variable embedding , where is
an orthonormal basis of , and
are the states of the final reduced nonlinear model. For the latter
case, for instance, the third-order matrix is reduced to a matrix
of a smaller dimension as . It is impor-
tant to note that the reduced third order matrix is usually dense
and has entries, where is the number of states of the re-
duced model. Therefore, achieving model compactness is cru-
cial for effective model reduction.

The obvious advantage of the above approach is that existing
LTI techniques can be applied directly as a blackbox tool, but
there are three major problems associated with this direct ex-
tension to LTI-based techniques. First, this approach reduces
a weakly nonlinear system by approximating the underlying
linear subsystems. The assumption is that the overall nonlinear
behavior of the original system will be closely replicated in
the reduced system if the corresponding linear circuits are well
approximated. Nevertheless, it is difficult to assess the accu-
racy of the nonlinear system reduction, since it remains un-
clear that how the qualities of reduced linear subsystems in-
teract with the quality of the reduced nonlinear model. Further-
more, there is a lack of guidance on how to optimize nonlinear
model quality by choosing appropriate orders for the reduced
linear models. Second, it can be seen that this method models
a nonlinear system, potentially with small number of inputs, as
several linear systems with many more inputs. Intuitively, this
increase of degrees of freedom leads to unnecessarily large re-
duced models. Finally, the published work in [8] and [10] does
not explicitly explore the flexible selection of expansion points
for approximating nonlinear transfer functions. For instance, to
capture accurately the third-order intermodulation around the
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center frequency of a narrow-band amplifier, it might be de-
sirable to expand the third transfer function at ex-
pansion point . To correctly perform
the moment matching under this case, an understanding in the
interdependency between nonlinear transfer functions of dif-
ferent orders is required. We will address these issues in detail
as we present the proposed nonlinear model reduction algorithm
NORM in the following sections.

IV. MATRIX-FORM NONLINEAR TRANSFER

FUNCTIONS AND MOMENTS

To derive an efficient model order-reduction methodology
for weakly nonlinear systems, an understanding of Volterra
nonlinear transfer functions is needed. In this section, we will
first derive the general matrix-form nonlinear transfer functions
suitable for model order reduction. In what follows, nonlinear
transfer-function moments will also be cast in a matrix form.
Without loss of generality, we consider the MNA formulation
for a single-input multioutput (SIMO)-based weakly nonlinear
system in (1) and its expanded form in (2). The nonlinear
transfer functions presented here are the corresponding ma-
trix-form expressions of the analytical nonlinear current method
used for computing Volterra kernels in [13] and [14]. Before
proceeding, we first introduce the notations used throughout
this paper. For matrices in (2) we define

(14)

and for an arbitrary matrix F, we define

(15)

Additionally, we define the Krylov subspace corre-
sponding to matrix and vector (matrix) as the space spanned
by vectors .

For the system in (1) and (2), the first-order transfer function
for the state-variables is simply the transfer function of the
linearized system

(16)

Defining , it can be shown that the second-order
transfer function is given by

(17)

where
. Similarly, we define as

the arithmetic average of the terms of all possible permutations
of frequency variables in the Kronecker product. With

, the third-order nonlinear transfer function is given by
the following equations:

(18)

(19)

Without loss of generality, we expand (16) at the origin as a
Mclaurin series

(20)

where is the th-order moment of the first order-
transfer function. Expanding at the origin (0, 0), we
have

(21)

where is a th-order moment of the second-order
transfer function. To derive the expressions for the moments
of , substituting (20) into (17) and expanding with
respect to yields

(22)

Comparing (21) with (22), we can express the moments of
as

(23)
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TABLE I
MOMENTS OF H (s ; s )

Similarly, the third-order transfer function can be expanded at
the origin (0, 0, 0) as

(24)

where is a th-order moment given by

(25)

with

(26)

As an example, the first few moments of are
shown in Table I. Clearly, nonlinear model order reduction is
intrinsically more complex and costly than that of LTI systems.
Also note that in (17) and (18), symmetric nonlinear transfer
functions (symmetric w.r.t frequency variable permutations)
are used. This is advantageous for model reduction as the
numbers of moments need to be matched for and are
approximately reduced by a factor of 2 and 6, respectively,
when expanding them at a point with equal coordinates such as
the origin.

V. NORM

In this section, the proposed NORM algorithm is presented.
For simplicity, we limit our discussion to SIMO time-invariant
weakly nonlinear systems. Up to the third-order nonlinear
transfer functions are considered in the reduction. Extension to
more general periodically time-varying systems is presented in
the Appendix (Section VIII-B). To assess the model order-re-
duction quality from a moment-matching perspective, we first
have the following definition.

Definition 1: A nonlinear reduced order model is a th-order
model in ( or ) if and only if up
to th-order moments , (

or
) of the first (second- or third-order) transfer function of

the original system defined in (20), ((21), or (24)) are preserved
in the reduced model.

According to Definition 1, a second-order reduced model in
preserves the moments of which correspond to the coef-

ficients of terms and in the expansion.

A. Single-Point Expansion

To derive a set of minimum Krylov subspaces for the most
compact order reduction, understanding the interaction between
the moments of nonlinear transfer functions at different orders
is important. For the moment matching of , this in-
teraction is manifested in (22). The term in the expansion
of , where are integers, is a consequence of two power
series expansions: expansion of in (20) and that of in
(22) with respect to . As a result, the th-order mo-
ment of depends on the moments of with an order less
or equal to . As such, the final expression for is in a
form as shown in (23). The expression for is derived
similarly in a more complex form in (25).

If we were to use a projection for order reduction, the key
issue would be to find certain Krylov subspaces, which con-
tain all the moments to be matched. To minimize the number
of projection vectors needed, nonlinear transfer function mo-
ments have to be considered explicitly. A close inspection of
(23) reveals that the Krylov subspaces of matrix given in
Table II are the desired Krylov subspaces of the minimum total
dimension for constructing a th-order model in . For the
last row, , and

. We denote the union of Krylov sub-
spaces in Table II as , where in the
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TABLE II
KRYLOV SUBSPACES SPANNED BY MOMENTS OF H

parenthesis indicates the order of moments up to which con-
tained in the subspaces. In an analogous and somewhat more
involved way, a set of minimum Krylov subspaces for
the moment-matching of up to th order can also be de-
rived. More specifically, (25) and (26) show that the required
subspace consists of a collection of
Krylov subspaces of , where the starting vector takes one
of the following forms:

(27)

with

(28)

Using these subspaces we can rigorously prove the following
theorem.

Theorem 1: Let is an orthonormal basis for the union of
subspaces , and , where

. Then, the reduced order model specified by the fol-
lowing system matrices:

(29)

is a th-order model in , a th-order model in and a
th-order model in for the nonlinear system of (1) or (2) if

defined above is full-rank. Namely,

(30)

for all

(31)

Fig. 2. Single-point NORM algorithm.

for all (32)

where , and are the moments of the re-
duced order model.

A proof of the theorem can be found in Section A of the
Appendix. The complete single-point version of NORM algo-
rithm (expanded at the origin) is shown in Fig. 2, where
indicates the QR procedure used for othonormalizing the input
vectors. It should be noted that the Kronecker product form of
the starting vectors of the required Krylov subspace involves
power terms of matrix . This means that a direct computation
of starting vectors which depend on high order power terms of

might not be numerically stable due to the machine round off
errors. A remedy to this problem for reducing is to employ
orthogonalization both within each individual Krylov subspace
and between starting vectors of different Krylov subspaces.
A similar stable orthogonalization procedure can be applied
for the reduction of , however, with an increase in the size
of the reduced model. Nevertheless, as will be demonstrated
in the circuit examples, due to the model size limitation on
nonlinear model reduction, only a low-order moment-matching
(e.g., th order) is feasible in practice. Therefore, numerical
instability is usually not an issue compared to the compactness
of the reduced-order model. This potential numerical instability
can be also ameliorated by using a multipoint approach as
presented later on in this paper which further improves the
model compactness.
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Also note that in Fig. 2, to compute any Kronecker product
term, one can exploit the original problem sparsity such that
the computation takes only a linear time in the problem size.
The requirement is due to the dependence of
high-order nonlinear transfer functions on transfer functions of
lower orders. Provided this condition is satisfied, the order of
moment matching for each nonlinear transfer function can be
flexibly chosen to fit specific needs. For each of these choices, a
reduced-order model of minimum size is produced as described
in the following section. It is worth mentioning that a singular
calue decomposition (SVD) step is commonly used to remove
the redundancy in the projection subspace prior to constructing
the final model as in Step 4 of Fig. 2. However, redundant pro-
jection vectors that do not contribute to the moment matching
introduced by the technique in [8], [10] may not be removed
by this numerical procedure. The reason is simply that these re-
dundant vectors are not necessarily linearly independent of the
useful ones.

B. Size of Reduced-Order Models

Similar to the linear case, we define the size of a nonlinear
model as shown in (2) in terms of its number of unknowns.
Under the context of projection-based framework, the size of
a nonlinear reduced-order model is equal to the total number of
projection vectors employed to approximate nonlinear transfer
functions of different orders. Consider the size of the SIMO-
based reduced-order models generated using the method of [8],
[10] under Definition 1. It can be shown that if the linear net-
works described by (10)–(12) are each reduced to a system pre-
serving up to , and th-order moments of the original
system, respectively, then the overall reduced nonlinear model
is a th-order model in , a th-order model in , where

and a th-order model in , where
. For instance, from (22), the final moment ex-

pressions of are a consequence of expanding with respect
to in (20) and expanding with respect to in (22). Therefore,
the lesser of and determines the order up to which the
moments of are matched. This reveals that for the
method in [8]and [10], the most compact th-order model in

with a size in is achieved by choosing .
In other words, choosing does not necessarily in-
crease the number of moments of matched in the reduced
model. On the other hand, if one would like to have
to increase the accuracy in , the best way is to only make
use of the first moment directions of when reducing

, while the remaining moments are included in the pro-
jection only for matching itself. Similarly, for the method
in [8] and [10], the optimal way to generate a th-order model
in is to choose with a resulting model
size of . Note that these strategies are also employed in
the single-point NORM algorithm. To compare with the above
“optimal” model sizes achievable from the method of [8] and
[10], in single-point NORM the sizes of a th-order model in

and are in and , respectively. This can be
seen by counting the total dimensions of the Krylov subspaces
used in Fig. 2. The exact model sizes for several values of will
be shown in the following section.

C. Multipoint Expansions

To target at a system’s particular input-frequency band of in-
terest, particularly for RF circuits, it might be desirable to ex-
pand both linear and nonlinear transfer functions at points other
than the origin, such as along the imaginary axis. It is crucial
to note that under the nonlinear context, a single-frequency ex-
pansion point along the imaginary axis may inherit multiple ma-
trix factorizations due to the nonlinear frequency mixing effects.
To this end, suppose that the in-band third-order intermodula-
tion of a nonlinear system around center frequency is im-
portant to model. To build the most compact model, one would
opt to expand at . To correctly perform mo-
ment matching for and , the respective expansion points
for high-order transfer functions should be and

for , and for ,
respectively. Here, the use of two expansion points for takes
care of matching second order mixing effects in terms of both
sum and difference frequencies around the center frequency, and
also ensures the moment matching of the third-order in-band in-
termodulations. These choices of expansion points require the
system matrix factorized at dc and in addition to
in (11)–(12) or (17)–(18). Therefore, if every linear system in
(10)–(12) is reduced by expanding at using the
method of [8] and [10], then the intended moment directions
of and are not guaranteed to be matched. Instead, some
other subspace vectors, which are usually not the most desir-
able, might be preserved in the reduced order model.

In addition to the benefit of using specific expansion points, a
multipoint projection, where several expansion points are used
simultaneously, has a unique efficiency advantage in terms of
model compactness over the single-point method. Although
multipoint methods do not bring such an advantage for LTI
system reduction, adopting multipoint methods for nonliner
systems can lead to significantly smaller reduced models. To
see this, first notice the unsurprising fact that the size of the
nonlinear reduced order model grows faster than the order of
moment matching. This stems from the fact that as the order
of moment matching proceeds, significantly more moments
corresponding to various expansion terms emerge for multivari-
able high-order transfer functions. However, it is much more
revealing to recognize that the numbers of up to -th-order
moments of and are and , respectively,
therefore, the dimension of the subspaces used in the projection
grows even faster than the number of moments matched in
the single-point expansion version of NORM.1 This is because
matching a high-order moment of a nonlinear transfer function
would in general require the use of more than one projection
vector. In contrast, to preserve the value of a nonlinear transfer
function at a specific point (a zeroth-order moment), only one
vector needs to be included in the projection, assuming that the
dependency between transfer functions of different orders is
resolved properly. In other words, the reduced model size of a
zeroth-order multipoint method is the same as the number of
moments matched. For the expanded MNA formulation in (2),

1Using the bilinear form can produce models with a size proportional to
number of moments matched, however, this may be offset by the inflated
problem size and the accuracy degradation for reducing a significantly larger
system.
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TABLE III
COMPARISON ON THE REDUCED ORDER MODEL SIZES

we compare the worst-case reduced-order model sizes gener-
ated by three methods, the method of [8] and [10], single-point
NORM and multipoint NORM in Table III, where two different
cases are considered.2 In the first case, we consider the size of
a th-order model in and for various values of , i.e.,
the reduced-order model matches the moments of both transfer
functions up to order . In the second case, we consider the
size of a th-order model in , and . To count the size
of a model (number of unknowns), we sum up the total number
of projection vectors employed to preserve the moments of all
the transfer functions considered. In the table, the “optimal”
strategies outlined in the previous section are used for the
method of [8], [10]. NORM-sp denotes the single-point based
NORM. For these two methods, the expansion point is assumed
to be the origin. In Table III, NORM-mp is the “equivalent”
zeroth-order multipoint method that preserves the same number
of moments as resulted by expanding all the transfer functions
considered to th order at an arbitrary expansion point.3 As
clearly shown, using NORM, the model compactness can be
significantly improved.

With respect to the circuit size, single-point and multipoint
NORM both have a near-linear complexity for typical sparse
circuit problems since the dominant computational cost is due
to the linear system solution(s). Given the same model size, mul-
tipoint methods are more expansive than single-point methods
due to the additional matrix factorizations. In a multipoint ap-
proach, where low-order moment-matchig is performed at sev-
eral expansion points, the computational cost incurred by more
than one matrix factorizations might be alleviated by exploiting
the idea of recycled Krylov-subspace vectors for time-varying
systems [15], [17]. It is also possible to use constant Jacobian
iterations to iteratively solve the resulted linear problems for
narrow band systems, such as certain RF applications. The LU
factorization at one expansion point might be reused as an ap-
proximated Jacobian for another point that is not far away in the
iteration [20]. One additional advantage of multipoint methods
is that they help to eliminate the potential numerical stability
problem of the single-point methods for high order moment
matching.

D. Results

We compared the method of [8] and [10], single-point NORM
(NORM-sp) and zeroth-order multipoint NORM (NORM-mp)

2The model sizes given in [18] and [19] are somewhat different. The corrected
values are shown in Table III.

3To count the total number of up to kth-order moments, we assume the ex-
pansion point is arbitrary. Special expansion points such as the origin will lead
to a less number of nonlinear transfer function moments.

on several examples. For the first two methods, the origin was
chosen as the expansion point. Note that the optimal strategies
presented in Section V-B were applied to the method in [8] and
[10], otherwise, significantly larger models would result with
little accuracy improvement. For all three methods, an SVD pro-
cedure follows the computation of Krylov subspace vectors to
deflate the subspaces as much as possible.

1) Diode Circuit: We first consider the diode circuit in
Fig. 3(a), which is similar to the example studied in [21], but
with one inductor added to each diode/resistor/capacitor stage.
To compare different methods, we created a 751 state variable
problem by adding 250 stages. The input is a small-signal
current source, and the output is the capacitor voltage at
the last stage. Each diode’s nonlinear I-V characteristics is
modeled using a second order polynomial at the bias point.
The method of [8] and [10] generates a model of 45 states
matching five moments of , two moments of both and

. NORM-sp matches five moments of , nine moments
of , four moments of , resulting a reduced model with
23 states. NORM-mp produces a model with 18 states while
matching five moments of , ten moments of , and four
moments of . As can be seen, NORM is able to generate
smaller model while matching more moments due to its im-
proved selection of Krylov subspace vectors. The second-order
transfer function , where
MHz is plotted based on full model and three reduced models
in Fig. 3. The maximum relative errors of the method of [8],
[10], NORM-sp and NORM-mp are about 0.35%, 0.06%, and
0.011%, respectively. For our harmonic balance simulations,
we applied a 5 MHz sinusoidal input with a 1-mV magnitude to
various models. The reduced models due to [8], [10], NORM-sp
and NORM-mp led to a runtime speedup of , and

over the full model, respectively, in a harmonic balance
simulator implemented in MATLAB.

2) Double-Balanced RF Mixer: For more realistic exam-
ples, next, we consider a standard double-balanced mixer in
Fig. 4, modeled as a periodically time-varying weakly non-
linear system. Circuit nonlinearities are modeled using third
order polynomials around the time-varying operating point due
to the large local oscillator (LO) signal. The full model has
2403 time-sampled circuit unknowns and is characterized by
periodically time-varying Volterra series. The 60 state model
generated by the method of [8], [10] matches 4 moments of ,
2 moments of both and . NORM-sp generates a model
with 19 states matching four moments for all of , and

. NORM-mp matches 4 moments of and , 8 moments
of algorithms were implemented using C++ and executed on
an IBM RS6000 resulting a model size of 14. The three
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Fig. 3. (a) Diode circuit. (b) Original H (751 states). (c) Relative error of the method of [8] and [10] (45 states). (d) Relative error of NORM-sp (23 states).
(e) Relative error of NORM-mp (18 states).

Fig. 4. Double-balanced RF mixer.

nonlinear model reduction workstation. It took 641, 12, and
5 CPU seconds to compute the reduced order models for the
method in [8], [10], NORM-sp and NORM-mp, respectively.

For this circuit example, the model generation runtime was
dominated by the time spent on forming the large and dense
third order matrices. As a result, it took less time to generate
the 14-state model of NORM-mp than the 19-state model of
NORM-sp even though more matrix factorizations were per-
formed in the former. Since the double-balanced mixer is fully
symmetric, the second order transfer function is ideally
zero (except for numerical noise). To see the third order inter-
modulation translated by one LO frequency, the corresponding
harmonic of the third order periodically time-varying nonliner
transfer function where 100 MHz

1.5 GHz, MHz is plotted in Fig. 5. The
maximum relative errors are 27%, 13%, and 4.5%, respectively,
for the method of [8] and [10], NORM-sp, and NORM-mp.
These models were also simulated for two-tone third-order
intermodulation tests using a prototyped harmonic-balance
simulator implemented in MATLAB. We first fixed the RF
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Fig. 5. (a) Original H (2403 unknowns). (b) Relative error of the method of [8], [10] (60 states). (c) Relative error of NORM-sp (19 states). (d) Relative error
of NORM-mp (14 states).

input amplitude for both tones at 40 mV, while varying the
frequency of one tone from 100 MHz to 2 GHz (the second tone
was separated from the first one by 800 kHz). Then, we fixed
two tone frequencies at 600 and 600.8 MHz, respectively, but
varied the amplitude of the two tones from 20 to 70 mV. The
simulation results are plotted in Fig. 6. As can be seen from
Fig. 6, the model generated by NORM-mp is the most accurate
and also the smallest one for both cases. The 60-state model
generated by the method of [8] and [10] incurs apparent error
for the first test. Also note that the amount of IM3 (third-order
intermodulation) from the simulation is well predicted by the
corresponding third-order transfer functions.

Simultation runtimes are summarized in Table IV. Due to the
large size of resulting third-order matrices, the 60-state model
of the method of [8] and [10] brought less than five times run-
time speedup over the full model. However, the much smaller
models produced by NORM-sp and NORM-mp brought signif-
icant runtime speedups, respectively.

3) 2.4-GHz Subharmonic Direct-Conversion Mixer: A
2.4-GHz subharmonic direct-conversion mixer used in
WCDMA applications is shown in Fig. 7. It employs six
phases of an LO signal at 800 MHz to generate an equivalent
LO at 2.4 GHz. For direct-conversion mixers, second-order

nonlinear effects are important, which exist when the perfect
circuit symmetry is lost in a balanced architecture. For this
example, we introduced about 2% transistor width mismatch
in the circuit and applied the three methods to reduce the
original periodically time-varying system with 4130 time-sam-
pled circuit unknowns. Each circuit nonlinearity is modeled
using a periodically time-varying third order polynomial. The
zeroth-order harmonic of the time-varying specifying the
mixing of two RF tones directly to the baseband is examined,
where, two RF frequencies vary from 2.6 to 2.2 GHz, and
from 2.2 to 2.6 GHz, respectively. The model produced by
the method of [8] and [10] has 122 states and matches four
moments of , six moments of , and two moments of

with the maximum relative error about 700% or 16.9 dB.
NORM-sp produces a model with 34 states while matching
five moments of , nine moments of , and two moments
of . The maximum relative error for this model is about
14%. For both methods, the origin was used as the expansion
point. The better accuracy obtained in the smaller model of
NORM-sp can be explained by the fact that a larger number of
moments are matched in the reduced model. We anticipate that
both methods will generate more accurate models when the
correct procedure is employed to expand transfer functions at a
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Fig. 6. (a) IM3 as a function of input frequency. (b) IM3 as a function of input amplitude.

TABLE IV
RUNTIME COMPARISON OF THE THREE METHODS ON THE RF MIXER

point close to the center frequency as outlined in Section V-C.
Lastly, NORM-mp generates a compact 22-state model with
the smallest maximum relative error of 4% while matching six
moments of , 12 moments of and four moments of .
The corresponding harmonic of the full model, those of
reduced model due to NORM-mp and NORM-sp are shown in
Fig. 8. Executed on an IBM RS6000 workstation, it took 17
and 14 CPU s to compute the projection matrix and form the
reduced first and second order matrices for the 34-state model
of NORM-sp and the 22-state model of NORM-mp, respec-
tively. In a two-tone harmonic balance simulation in MATLAB,
we applied two RF sinusoidal tones around 2.4 GHz with 2 mV
amplitude. The simulation based on the full model took about
2417 s to complete while explicitly formed reduced models of
NORM-sp and NORM-mp reduced the CPU time to 11.5 and
2.3 s, respectively. Due to the large reduced high-order system
matrices, however, it becomes expensive to use the explicitly
formed 122-state model of the methods of [8] and [10]. Only
the projection matrix was used to reduce the size of the linear

problem solved at each simulation iteration. Consequently,
the corresponding model did not provide a significant runtime
speedup.

VI. HYBRID APPROACH

Many circuits in RF and analog signal processing applica-
tions have sharp frequency selectivity (e.g., containing high-Q
filtering). For these cases, as the nonlinear frequency-domain
system characteristics may vary dramatically within the band of
interest, a full projection-based reduction often requires the use
of a significant number of projection vectors for achieving suf-
ficient accuracy. As a consequence, forming reduced high-order
system matrices can be very expensive due to the large reduced-
order model size. Therefore, other types of model simplification
are needed. Although numerous nonlinearities can exist in a cir-
cuit, there is often a natural tendency for only a few of them to
be dominant due to the specific circuit structure. Thus, identi-
fying these dominant nonlinearities within the original circuit
structure can be a very useful component of model generation.
In the proposed hybrid approach, to cope with stiff circuit prob-
lems such as high-Q circuits, the low-order (first and second) re-
sponses are matched using projection, while high-order (third)
response are approximated by exploiting both the circuit in-
ternal structure and projection-based model order reduction.

A. Approximation of Low-Order Responses

For the hybrid approach, we consider the more general
scenario of the periodically time-varying weakly nonlinear
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Fig. 7. 2.4-GHz subharmonic direct-conversion mixer.

Fig. 8. (a)H of the full model (4130 unknowns) and that of the reduced model due to NORM-mp (22 states). Each reduced model curve is shown in a patterned
line and the corresponding one of the full model is the nearest solid line. (b) H of the reduced model due to NORM-sp (34 states). H of the full model is not
shown.

systems. Instead of using a time-invariant Volterra descrip-
tion, these systems can be characterized by periodically
time-varying nonlinear transfer functions . As dis-
cussed in Section B of the Appendix, can be dis-
cretized using backward-Euler rule based on sample points

within a
period of the system time variation . Analogous to the use
of in (16)–(18), a set of matrices

can be formulated based on the dis-

cretization of the system nonlinear characteristics over a period
of for periodically time-varying systems. Using these ma-
trices, (16)–(18) can be reformulated in terms of .
Each of these equations now has unknowns and can
be reduced directly using NORM, where is the number of
physical circuit unknowns of the system.

Assume that , where, is an integer, and
consider the application of NORM algorithm to approximate
the first and second nonlinear transfer functions. We denote the
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corresponding projection matrix as , where is
the size of reduced order model. We further denote the reduced
first and second order matrices produced by NORM as

(33)

Substituting (33) into (16) and (17), the first- and second-order
transfer functions and of the reduced model can be com-
puted. The time-sampled first- and second-order transfer func-
tions of the original system can be approximated as

(34)

As the reduced model of (33) and (34) represents a time-in-
variant system, the approximation of the first- and second-order
responses of the original periodically time-varying system in-
volves the use of discrete Fourier transform. It can be shown
that the following th-order system is a time-domain realization
of the corresponding reduced model

(35)

where is the DFT matrix converting
time samples to the corresponding Fourier coefficients,

is the identity matrix. The first- and second-order
responses of the original system can be approximated in
time-domain by .

B. Approximation of the Third-Order Response

In a full projection-based approach, nonlinear model order
reduction can be limited by the difficulty in explicitly forming
the projected (dense) third-order system matrices, especially
for relatively large model size. In this section, we show that
pruning-based model simplification can be instead performed in
the original system coordinates. Thus, the sparsity of the orig-
inal circuit problem is not lost, but further enhanced. To ap-
proximate the third-order transfer function based on the reduced
model of (33) and (34) or (35), substitute (33) into (18)

(36)

where

(37)

As seen from the above equations, to compute the third-order
transfer function, one needs to solve a linear system in terms of

and , and form the input to the linear system in terms of
that is a function of high-order system matrices
and low-order transfer functions . As are ap-
proximated using (34), to further reduce (36) requires reduc-
tion of the dimension of the linear problem in (36) as well as
the high-order system matrices . This goal is ac-
complished by a combination of projection-based reduction of
an adjoint network and direct matrix pruning.

In analog signal processing and RF applications, a circuit
block usually has only one or at most a few output nodes. For pe-
riodically time-varying systems, typically only a small number
of sidebands (with respect to clock or LO) for the outputs are of
interest. Thus, (36) can be viewed as a system with potentially
many inputs but few outputs, and can be reduced as an adjoint
network. Without loss of generality, let us assume only the th
sideband of the voltage response at node is of interest (e.g.,

). Define as a vector
that has a 1 at the th location and zeros at all other locations,
and

(38)

The th sideband of the third-order transfer function at node
, (corresponding to the th harmonic of the third order

transfer function for node ) can be obtained from the adjoint
network

(39)

We can apply Krylov subspace projection (such as [6]) to reduce
the linear adjoint network of (39)

(40)
where is a orthonormal basis of the Krylov subspace

with
. As the DFT vector is absorbed into , to perform

a real projection, can be split into real and imaginary parts
before reduction [24]. Based on (39)–(40), we can approximate

as

(41)

To speed up the computation of the third-order transfer func-
tion or response, high-order system matrices
need to be reduced. To avoid forming dense reduced matrices
(particularly for the third-order ones) in a projection-based ap-
proach, here, we exploit the internal structure of the problem
by applying a direct matrix pruning technique, where nonzero
elements of are pruned according to their con-
tributions to the third order tranfer function at the output node of
interest. Although a nonlinear circuit may contain many nonlin-
earities, a few of them tend to be dominant. Therefore, retaining
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the original circuit structural information by avoiding using pro-
jection, and applying pruning to these high-order matrices in the
original coordinates can be very effective for model generation.
A similar idea has been used in symbolic modeling of nonlinear
circuits, where dominant circuit nonlinearities are identified and
kept for building system-level models [22], [23], [30], [31].

The matrix-pruning process proceeds as follows: A set of
sampled frequency points are first selected within the fre-
quency band of interest. Then, for each of these frequency sam-
ples, the third order transfer function is computed, as well as the
individual contributions of nonzeros in . These
contributions are sorted by magnitude, and nondominant ones
are discarded provided that a user-specified error tolerance on

is not exceeded. Notice that the pruning is performed di-
rectly on matrices. A matrix entry is discarded if and only if its
removal does not violate the model accuracy at all the frequency
points. The end products of the process are a set of pruned ma-
trices that satisfy the error tolerance for all
the sampled frequency points in . Notice that these pruned high
order system matrices retain the same dimensions as in the orig-
inal system while their sparsity can be significantly improved as
a result of pruning. As the computation of and individual
contributions may take place on many sample points, matrix
pruning can be a slow process. To speed up this process, we
embed the projection-based model reduction step directly into
the pruning procedure.

To compute at a frequency point, and need to be
computed at related points. As in (37), to form vector , we can
use the reduced-order model in (33) and (34) to compute ap-
proximate first- and second-order transfer functions. Then, in-
stead of solving a potentially large linear problem in (36), the
reduced adjoint network of (41) can be used to find an approxi-
mate vector . Computation of each individual contribution term
is straightforward, based on (37) and (41). For instance, the con-
tribution of the nonzero at location of can be simply
computed as

(42)

where is the value of the nonzeo, is the th element
of , and is the th element of . Since reduced order
models are used, factorizing the original large system matrices
at many sampled points are avoided. The cost for constructing
projection-based reduced-order models of (33) and (41) is
dominated by the cost of a few matrix factorizations, therefore
it is bounded by , where is the number of matrix
factorizations, is the number of sampled points used to
discretize the periodically time-varying transfer functions, and

is the number of physical circuit unknowns. The cost of the

pruning process is dominated by evaluation and sorting of the
different contributions, assuming that the use of reduced order
models makes other cost much less. The overall cost for model
generation is, therefore, bounded by ,
where is the number frequency samples evaluated in the
pruning, and is the number of nonzeros in the high order
matrices being pruned.

Using the pruned matrices , (37) can be
further approximated as

(43)

To derive a time-domain model for generating the desired third-
order response, we substitute (43) into (41) and transpose both
sides of the equation

(44)

Defining

(45)

it is not hard to show that the corresponding time-domain model
is (see (46) at the bottom of the page) where are given in
(35), is the desired time-domain third-order response.
Note that since only the th harmonics of the third order transfer
functions are considered at the output, in the above equa-
tion is complex. To recover the corresponding real signal, we
can simply add the corresponding conjugate component. The
first- and second-order responses at node , and ,
can be obtained from (35) by selecting the proper entries from

. Also note that when more than one output or set of side bands
are of interest, multiple reduced adjoint networks can be incor-
porated into the model in a straightforward way.

C. Results

Switched-capacitor filters are often found in RF receivers
as channel-select filters [25]. If the input signal is small, then
these circuits can be characterized by periodically time-varying
Volterra series. Due to the typical sharp transition between
the passband and stopband, it can be very difficult to apply a
full-projection-based model reduction.

To demonstrate the proposed hybrid approach, let us con-
sider a Butterworth lowpass switched-capacitor biquad that is
shown in Fig. 9. The two-phase clock is at 20 MHz, and the
3-dB frequency of the filter is about 700 KHz. Each circuit non-
linearity in the filter is modeled as a third-order polynomial

(46)
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Fig. 9. Switched-capacitor biquad low-pass filter.

Fig. 10. (a) Original H of the biquad. (b) Relative error of the reduced order model.

about the periodically varying operating point generated by the
clock. The resulting full model has 8142 time-sampled circuit
unknowns. To view the third-order nonlinear effects within and
close to the signal band, we plot the dc component of the pe-
riodically time-varying third order nonlinear transfer function

, where 1 Hz 10 MHz,
Hz, in Fig. 10(a). It is clearly observable that the third

order nonlinear characteristics vary dramatically between pass-
band and stopband. To capture not only the nonlinear distortions
due to the signals within the passband, but also the third order
mixing of the large out of channel interferers into the passband,
the nonlinear frequency-domain characteristics of the filter must
be modeled accurately over a frequency range of seven decades.
As such, a complete projection-based approach becomes ineffi-
cient, since a sufficient number of moments have to be matched
for accuracy, while the resulting model size leads to expensive
dense projected third order matrices.

To apply our hybrid approach, we first used the multipoint
NORM algorithm to accurately capture the first and second
transfer functions using a reduced-order model with 27 states
(SVD was used to deflate the Krylov subspaces), where six
moments of and 24 moments of were matched. The
adjoint network describing the propagation of third-order
nonlinear effects from various nonlinearities to the output was

reduced to an eleventh-order model. Based on these reduced
models, were significantly pruned in the orig-
inal coordinates at 225 frequency points. Running on an IBM
RS6000 workstation, it took 342 CPU s to complete the model
generation. The overall runtime was dominated by the time
spent in pruning. Therefore, the tradeoff between runtime and
accuracy can be made by selecting an appropriate number of
frequency points used for pruning. The original second- and
third-order system matrices have 45 221 and 84 521 nonzeros,
while the pruned matrices have only 196 and 430 nonzeros,
respectively. The final hybrid model has a maximum relative
modeling error less than 6% (or about 0.5 dB) for , as shown
in Fig. 10(b).

This hybrid model was also validated in a frequency-domain
Volterra-like simulation using MATLAB, where six sinusoidals
with various phases were selected from passband, transition
band and stopband as input signals. The simulation result was
compared against that of the full model, as shown in Fig. 11.
As can be seen from the figure, the hybrid model captures the
frequency-domain nonlinear characteristics of the filter over
a wide range of input band very accurately. It took 1400 s to
simulation the full mode, while the runtime of the reduced
model was only 23 s. In this example, only a small number
of input frequencies were considered in the frequency-domain
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Fig. 11. Biquad output due to a six-tone sinusoidal input.

Volterra-like simulation. With respect to the model gener-
ation time, we expect the saving in simulation time would
be more significant for time-domain simulations and larger
frequency-domain simulations where many input frequencies
are included.

VII. CONCLUSION

We have demonstrated that the rapid growth of reduced-order
models for weakly nonlinear systems makes model order reduc-
tion much more difficult than for the case of LTI system-order
reduction. This new challenge originates from the fact the com-
plex nonlinear system effects must be encapsulated in the re-
duced-order model in addition to the first order system proper-
ties. The proposed nonlinear system order reduction algorithm
(NORM) that is based on using a set of minimum Krylov sub-
spaces for moment matching of nonlinear transfer functions, is
shown to produce very compact macromodels. We have also
demonstrated that for nonlinear reduction problems, multipoint
expansion methods can further increase the model compactness
at the expense of more matrix factorizations. Additionally, a
hybrid approach was developed to overcome limitations of a
full projection-based approach for cases where system nonlinear
characteristics is coupled with sharp frequency selectivity. We
have shown the efficacy and practical utility of presented non-
linear macromodeling techniques on various circuit examples.

APPENDIX

A. Proof of Theorem 1

Proof: Since the subspace is contained in
the space spanned by , (30) is valid as proven in [6]. To prove
(31), first notice that any can be expressed as
a linear combination of Krylov subspace vectors in Table II.
Therefore, it suffices to only show that all the Krylov vectors
in Table II are preserved through the projection. For any Krylov

subspace in , where takes the ei-
ther the form or

, using induction we show
its Krylov vectors are preserved in the projection, i.e.,

(47)

Without loss of generality, consider the former case where
. For the reduced order model, we write

(48)

Substituting both (29) and (30) into (48), we obtain

(49)

For the original system, similar to (48), we have

(50)

Since is an orthnormal basis for the subspaces, can be
expressed as a unique linear combination of column vectors of

(51)

Substituting (51) into (50) and multiplying both sides of the
equation by , we get

(52)

Assume is full-rank (the reduced system has defined dc
solutions). Comparing (52) with (49), it is apparent that ,
or , i.e., (47) holds for . Now, suppose (47) holds
for an arbitrary , we have

(53)

(54)

Again, we can express as a unique linear combination
of column vectors of V as , then after multi-
plying both sides by , (54) becomes

(55)

which is the same as . By induction, (47)
is true for all , i.e., (31) is proven. Similarly,
(32) can be shown.
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B. Reduction of Periodically Time-Varying
Weakly Nonlinear Systems

In this Appendix, we show the extension to the reduction
of periodically time-varying weakly nonlinear systems. To this
end, we shall formulate the periodically time-varying nonlinear
transfer functions in a proper matrix form such that essentially
the same procedure used for time-invariant systems can be ap-
plied to reduce a periodically time-varying nonlinear system to
a system of smaller size.

Consider applying a large excitation (e.g., the LO in a
mixer) to the system specified in (1), where is a periodic
signal with a period of . The large excitation introduces
a periodically time-varying operating point to the small-signal
input of the circuit (e.g., the small RF signal to a mixer). To
perform a small-signal analysis while taking into account weak
nonlinearities, expand the system differential equations in (1)
along the -periodic time-varying operating point due to
using a Taylor series

(56)

where is the small-signal input to the system, and
are the -periodic time-varying conductance and capacitance
matrices.

As an extension to the time-invariant case, -periodic
time-varying transfer functions , and

etc. can be used to describe the system in
(56). The linearized system corresponding to (56) is a linear
periodically time-varying (LPTV) system and is obtained by
dropping higher order terms in (56)

(57)

The LPTV transfer function of (57) is determined by

(58)

Use a backward-Euler discretization over collocation time
points within one period of the varying operating
point, the LPTV transfer function of (58) is given by
[8], [17]

(59)

where are
samples of

. . .

. . .
(60)

. . .
. . .

(61)

and

(62)

Additionally, the output matrix associated with this time-do-
main discretization is .

To derive the second- and third-order matrix-form periodi-
cally time-varying nonlinear transfer functions, in contrast to
(17) and (18) of the time-invariant case, we have

(63)

and

(64)

where ,
and are defined as the arith-
metic average of the terms due to the permutations of the fre-
quency variables. Now, for the second-order periodically time-
varying transfer functions of (63), a backward-Euler discretiza-
tion yields

(65)

where
are samples of within one

period

. . .

. . .

(66)

(67)

(68)

Note that , but the dimension of matrices
and is instead of , where
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is the number of circuit unknowns. Thus, (66) is a compact
representation of the second order transfer function.

Similarly for the third order nonlinear transfer functions, de-
fine

with

(69)

with

(70)

. . .

. . .

(71)

Discretizing (64) using backward-Euler leads to

(72)

Notice that (66) and (72) are in the same structure as (17)
and (18), respectively, therefore, the previously presented
model order-reduction approach can be directly applied. Now,
assume that the system matrices
of the original periodically time-varying systems specified
are reduced to , a set of matrices
of smaller dimensions, using NORM. It can be shown that a
time-domain realization of the above-reduced model matches
the moments of original periodically time-varying transfer
functions in the sense of Definition 1 is

(73)

(74)

where in which
is the DFT matrix converting a vector of time samples to the
corresponding Fourier coefficients, is the frequency
of the periodically time-varying operating point.
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