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Abstract

The variational analysis [11] has been employed in [7]
for order reduction of weakly nonlinear systems. For a rela-
tively strong nonlinear system, this method will mostly lose
efficiency because of the exponentially increased number
of inputs in higher order variational equations caused by
the individual reduction process of the variational systems.
Moreover, the inexact inputs into the higher order varia-
tional equations indispensably introduce extra errors in the
order reduction process. Inspired by the variational analy-
sis, we propose a direct model order reduction method. The
order of the approximate polynomial system of the original
nonlinear system is directly reduced by one project space.
The proposed direct reduction technique can easily avoid
the errors brought by inexact inputs and the exponentially
increased inputs. We show theoretically and experimentally
that the proposed method can achieve much more accurate
reduced system with smaller order size than the conven-
tional variational equation order reduction method.
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1. Introduction

Model Order Reduction techniques have been widely
applied in the fast simulation of large linear and nonlin-
ear systems, such as IC interconnect circuits[1][2][3], high
speed clock network [10], nonlinear analog RF circuits and
MEMS systems [6][7][8][9] etc..

In the case of nonlinear systems, specific model order
reduction techniques have been investigated recently. In
the first category are the polynomial model reduction ap-
proaches [4][5][6]. In these methods, an approximate sys-
tem is first obtained by Taylor expansion of the nonlin-
ear term in the nonlinear system. Then either the linear
part or some of the nonlinear parts in the Taylor expan-
sion are employed to construct the projection space to re-
duce the order of the approximate system. For instance,
the trajectory piece-wise linear method proposed in [4] ap-
proximates the nonlinear system by several linear systems
piece-wisely. Each of the linear system is reduced by pro-
jection based linear order reduction method. The “quadratic
reduction method” presented in [5] tries to approximate the
nonlinear system by two order Taylor expansion to gener-
ate a quadratic system. However, the project space built by
the linear part of the Taylor expansion hasn’t preserved any
nonlinear information. The bilinearization method in [6] de-
rives the bilinear system in terms of Kronecker production
of the state variables by the two order Taylor expansion of
the nonlinear system. The reduction of the bilinear system
is based on the Volterra series representation of bilinear sys-
tem in control theory [11], which contains the nonlinear
contribution in the multimoments. Therefore this method
makes use of the nonlinear information of the original sys-
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tem not only in the bilinearization process but also in the re-
duction process.

The second category of nonlinear model order reduction
techniques [7, 8] is based on the variational analysis the-
ory in [11]. In this method, the original nonlinear system
is transformed into several correlated linear systems, then
model order reduction is performed on each linear system.
Finally state variables of the nonlinear system are approxi-
mated by the linear combination of the state variables of the
respective reduced linear systems. The conventional varia-
tional analysis based order reduction is simple for imple-
mentation since only several linear systems need to be re-
duced. However this method was found to be inefficient for
relatively strong nonlinear systems, where the higher order
variational equations are needed to ensure the reduction ac-
curacy. In the later part of the paper, we will point out the
number of the inputs of the higher order variational equa-
tion will grow exponentially, which makes it difficult to re-
duce the original system to a very small order size. More-
over the error induced in the reduction of the lower order
variational equation will propagate to the higher order vari-
ational equations through the inputs and produce extra er-
rors to the reduced system.

In this paper we propose a direct model order reduc-
tion method base on variational analysis. We show that it is
much more efficient than the conventional variational equa-
tion order reduction methods [7, 8] in both reduction accu-
racy and the smaller order size of the reduced system. In
Section 2, the principle of the conventional variational or-
der reduction approach is reviewed and the limitations of
this method are analyzed. In Section 3, we propose the di-
rect variational order reduction technique. The efficiency of
the proposed method is tested by circuit examples in Sec-
tion 4. Finally we draw conclusions in Section 5.

2. Limitations of Variational Equation Model
Order Reduction Method

In this section, we will at first review the variational
equation model order reduction method and then analyze
its limitations.

2.1. Review of variational equation model order
reduction

The nonlinear systems that we are concerned with in this
paper are of the following form.

dx(t)
dt = f(x(t))+ bu(t)

y = cTx(t)
(1)

x ∈ R n is the state variables and the state-space dimension
n denotes the order of the system. The initial condition is

(x(0) = 0). The input is denoted as u = u(t) and the out-
put response is y = y(t). For simplicity, we only consider
SISO (Single-Input Single-Output) system, where the input
u(t) and the output y(t) are both scalar functions, therefore,
b ∈ R n, c ∈ R n. We also have the assumption that f(x(t))
is smooth enough so that it can be expanded into Taylor se-
ries, which is the precondition for all the polynomial order
reduction methods.

The variational equation approach is a method to de-
rive the various kernels of a nonlinear system in control
theory[11]. In [7][8] this method is used to perform order re-
duction on the nonlinear system given in (1). The detail of
this method is presented as follows. Consider the response
of (1) to the inputs of the form αu(t),

dx(t)
dt = f(x)+ b(αu)

y(t) = cTx(t)
(2)

where α is an arbitrary scalar. x(t) can be written as an ex-
pansion in the parameter α of the form:

x(t) = αx1(t)+ α2x2(t)+ α3x3(t)+ ... (3)

The Taylor series expansion of f(x) in the form of Kro-
necker product of the state variables is given in (4).

f(x) = A1x + A2x⊗x + A3x⊗x⊗x + · · · (4)

Substituting (3) and (4) into the right hand side of (2), and
substituting (3) into the left hand side of (2), we get

α dx1(t)
dt + α2 dx2(t)

dt + α3 dx3(t)
dt + ...

= αA1x1 + α2[A1x2 + A2(x1 ⊗x1)]+ ...+ b(αu)
(5)

Since this equation holds for all α, coefficients of like pow-
ers of α can be equated. This gives the variational equa-
tions:

dx1(t)
dt

= A1x1 + bu(t) (6)

dx2(t)
dt

= A1x2 + A2(x1 ⊗x1) (7)

dx3(t)
dt

= A1x3 +A2(x1 ⊗x2 +x2 ⊗x1)+A3(x1 ⊗x1 ⊗x1)

(8)
...

The idea of this method is that instead of reducing the non-
linear system (1), we only need to reduce the above linear
systems (6), (7) and (8). Then x(t) can be gotten through
xk(t), k = 1,2,3, ... by (3) and the response y(t) is also ob-
tained.

In [7, 8], projection method is used to reduce the order
of the above linear systems. For example, for the first lin-
ear system (6), a projection matrix V1 is computed based on
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A1, b , such that the columns of V1 span the Krylov sub-
space Kq1(A

−1
1 ,A−1

1 b), i.e.

spancolumn{V1} = Kq1(A
−1
1 ,A−1

1 b)

≡ span{A−1
1 b,A−2

1 b, ...,A−q1
1 b}

(9)
For a single input system (6), the number of the columns in
V1 is usually q1. Therefore, through variable change x1 ≈
V1z1, we have z1 ∈ Rq1 , and the reduced linear system of (6)
is obtained in (10),

dz1
dt = Ã1z1 + b̃u(t)

ỹ1 = c̃Tz1
(10)

where Ã1 = (V T
1 A−1

1 V1)
−1, b̃ = Ã1V T

1 A−1
1 b, c̃ = V T

1 c.
For this reduced system, the following theorem is well

known in model order reduction of linear systems [6, 7].

Theorem 1 The first q1 moments of the reduced transfer
function H̃(s) = −c̃T(I − sÃ−1

1 )−1Ã−1
1 b̃ of the system in

(10) are the same as those of the transfer function H(s) =
−cT(I− sA−1

1 )−1A−1
1 b of the original linear system in (6).

From Theorem 1, we see that the precision of the re-
duced model of (6) is directly decided by its order q1. If
q1 is small, the precision of the reduced system may not be
high enough because only small number of moments of the
original transfer function are matched.

2.2. Limitations of variational method

2.2.1. Exponentially increased number of inputs
In this subsection, we will show that the numbers of the in-
puts of the second system (7) and third system (8) grow ex-
ponentially with respect to the order q1 of the first reduced
system (10). The number of inputs of the second linear sys-
tem (7) can be derived from (7) and (10).

x1 ⊗x1 ≈V1z1 ⊗V1z1 = (V1 ⊗V1)(z1 ⊗ z1)

Clearly, the number of inputs in the second linear system
(7) becomes q2

1.
For relatively strong nonlinear systems, order reduction

of the third linear system (8) is necessary to achieve a rea-
sonable accurate output response. This necessity is demon-
strated by the circuit experiments in Figure 2 of Section 4.1.
The third linear system (8) contains the term (z1 ⊗ z1 ⊗ z1)
which denotes the number of the inputs in (8) is at least q3

1.
Although the dimension of the inputs in (8) is decreased
from n3 to q3

1, it is still a large number if q1 is not small
enough.

So far the problem of the conventional variational equa-
tion reduction method is clear. On the one hand if q1 is not
small enough, the input number q3

1 will be large, then it is
difficulty to reduce the order of the third linear system (8)
to a small size. On the other hand if q1 is small enough to

reduce the order of (8) to a reasonable small size, the er-
ror of the reduced model will be unfortunately too large to
be accepted because only very small number of moments of
the original transfer function are matched. We illustrate this
problem with experimental results line(e) and line(f) in Fig-
ure 2 in Section 4.1.

2.2.2. Errors caused by inexact inputs
Besides the problem of large number of inputs, the errors
caused by the order reduction of the lower degree linear
systems will be propagated to the higher degree linear sys-
tems through the inputs. For example, when the order of the
first linear system (6) is reduced, the inputs x1 ⊗x1 into the
second linear system (7) will be approximated by z1 ⊗ z1,
which means the actual inputs into the second linear system
(7) are not exact. These errors in the inputs will induce ex-
tra errors in the second system (7) and will also propagate
to the third system (8). In section 4.2, experimental results
in Table 1 have shown that the errors introduced by the in-
exact inputs are even larger than the errors produced by the
projection reduction of the linear systems.

3. Direct Order Reduction Method with Vari-
ational Analysis

In this section we propose the direct order reduction
method for nonlinear systems to tackle with the problems
of inexact inputs and increased number of inputs in the con-
ventional variational order reduction method.

At first, with the Taylor expansion of f(x) in (4), we ap-
proximate the original nonlinear system (1) into a second
order polynomial system in (11) or a third order polyno-
mial system in (12).

dx(t)
dt = A1x + A2(x⊗x)+ bu

y(t) = cTx
(11)

dx(t)
dt = A1x + A2(x⊗x)+ A3(x⊗x⊗x)+ bu

y(t) = cTx
(12)

From the induction of (3) to (8), when α = 1, it is easy to
see that the solution of (11) is equivalent to

x(t) = x1(t)+ x2(t) (13)

and the solution of (12) is equivalent to

x(t) = x1(t)+ x2(t)+ x3(t) (14)

Instead of reducing the individual linear systems (6,7,8) by
individual projection sub-spaces, we develop a single pro-
jection matrix V to reduce the order of the whole system in
(11) or (12).

Based on the moment matching projection order reduc-
tion methods for linear systems, we first construct a projec-
tion matrix V1 based on the first linear system (6) such that

spancolum{V1} = span{A−1
1 b,A−2

1 b, · · · ,A−q1
1 b}.
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Then we approximate x1 by V1z1, i.e. x1 ≈ V1z1. Similarly,
we generate a projection matrix V2 based on the second lin-
ear system (7) such that

spancolum{V2} = span{A−1
1 A2,A−2

1 A2, · · ·A
−q2
1 A2}.

We also make approximation of x2 ≈ V2z2. For relatively
strong nonlinear systems, if high reduction accuracy is de-
sired, a projection matrix V3 of the third linear system (8)
needs to be derived in a similar way as the construction of
V2 [8]. From (14), we have

x(t) ≈V1z1 +V2z2 +V3z3

which indicates that the solution x(t) of (12) can be approx-
imated by the linear combination of the column vectors in
V1, V2 and V3. Then the final orthogonal projection matrix V
is developed by

spancolum{V} = spancolum{V1,V2,V3}.

The approximate polynomial system (12) is thus reduced by
x ≈V z and multiplying with V T on both sides of (12).

dz(t)
dt = V TA1Vz +V TA2(V z⊗Vz)

+V TA3(Vz⊗Vz⊗Vz)+V Tbu
y(t) = cTVz

(15)

The obtained system (15) can be considered as the reduced
system of the original nonlinear system (1).

From the above analysis, we remark that the direct pro-
jection variational method is more efficient than the conven-
tional variational method in three aspects. At first, the inputs
in the direct method are always the original inputs. There-
fore the direct method can avoid the exponentially increased
dimension of inputs and achieve even lower order reduced
system than the conventional variational method. Secondly,
the direct projection is more accurate than the conventional
variational method because direct projection avoids the er-
rors brought by the inexact inputs z1 ⊗ z1 in (7), probably
also the inexact inputs z1 ⊗ z1 ⊗ z1 in (8). Thirdly, the com-
putation cost of the direct reduction is also saved because
only one reduced system such as (15) needs to be solved.
However, in variational equation order reduction method
two or three reduced systems have to be solved.

In the following section, we demonstrate the efficiency
of the proposed direct projection method by several circuit
experiments.

4. Experiment Results

In this paper, the nonlinear circuit in [5] is employed as
the test example. In the circuit, there are total N nodes,
where we assume N = 100. There is one input current
source i(t) = u(t) flowing into node 1. The output response
is set to be the voltage at node 1.

1 2 3 N-3 N-2 N-1 N

C C C C C C C i(t)

Figure 1. Circuit example

In the following, we use the solution of (1) computed by
Matlab function as the exact response of the original sys-
tem during the comparison. We reduce the three linear sys-
tems (6)(7)(8) to the order of q1,q2,q3 and match the num-
ber of j1, j2, j3 moments of the transfer functions of sys-
tems (6)(7)(8) respectively. We employ four different input
signals to test the accuracy of the reduced model to the orig-
inal nonlinear system (1). The four inputs are a step func-
tion, u1 = 0,when t ≤ 3,else u1 = 1, t ∈ [0,10]; an expo-
nential function u2 = −e−t , t ∈ [0,10]; a cosine function
u3 = (cos(2πt/10)+ 1)/2, t ∈ [0,10] and a sine function
u4 = 1 + sin(2πt)+ sin(10πt), t ∈ [0,1].

4.1. Exponentially increased number of inputs

In this subsection, we first illustrate that for relatively
strong nonlinear systems, the third linear system (8) is nec-
essary to achieve a reasonably accurate reduced system in
the conventional variational model order reduction method.
We will further demonstrate that due to the exponentially
increased number of inputs in the second and third systems
(7) (8), the order of the reduced system may not be small
enough if high reduction accuracy is required. In Figure 2,
the exact output response of the original nonlinear system is
shown in the solid line (c). The exact output response of the
first two linear systems (6)(7) is shown in line (d). Compar-
ing line (c) and (d), one can see that even without order re-
duction, approximating the original system by only two lin-
ear systems (6)(7) will cause a definite error. If we further
reduce the order of the first two linear systems(6)(7), even
larger error will be generated as shown in line (a), where the
first linear system is reduced to order q1 = 12 and j1 = 12
moments are matched, while the second linear system is re-
duced to order q2 = 22 and only one ( j2 = 1) moment is
matched. We can see that even if we increase the order of
the second system, the order reduction accuracy can not be
improved as shown in line (b), where we reduce the second
linear system to order q2 = 32 and match five ( j2 = 5) mo-
ments. This experiment implicates that the third linear sys-
tem (8) is needed to enhance the accuracy of the order re-
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Figure 2. (a) Output response of the varia-
tional equation reduction method with j1 =
12,q1 = 12; j2 = 1,q2 = 22. (b) Output re-
sponse of the variational equation reduction
method with j1 = 12,q1 = 12; j2 = 5,q2 = 32.
(c) Original output response. (d) Output re-
sponse of the first two linear systems without
order reduction. (e) Output response of the
variational equation reduction method with
j1 = 6,q1 = 6; j2 = 1,q2 = 10; j3 = 1,q3 = 28. (f)
Output response of the variational equation
reduction method with j1 = 12,q1 = 12; j2 =
1,q2 = 22; j3 = 1,q3 = 65. Input signal: u1(t)1 =
0, t <= 3; else u1(t) = 1, 10 > t > 3.

duction.
We further demonstrate the problem of large number of

inputs when the third linear system is included in order re-
duction. At first, we reduce the first linear system (6) to the
order of q1 = 6 and match j1 = 6 moments. For the reduc-
tion of the second linear system (7), if we only match the
first moment ( i.e. j2 = 1 ), we get a reduced system of or-
der q2 = 10. In order to reduce the third linear system to
a moderate size, we only match the first moment and ob-
tain a reduced order q3 = 28. The resulting output response
of this reduction is shown in the crossing line (e) in Fig-
ure 2, which is far away from the exact solution in the solid
line (c). On the other hand, if a more precise reduction is re-
quired, we must increase the order of the first system q1.
For example, if we increase q1 from q1 = 6 to q1 = 12, we
have to reduce the second linear system to q2 = 22 and the
third linear system to q3 = 65, where only the first moments
of the transfer functions of (7) and (8) are matched respec-
tively. Now the accuracy of this reduction is much higher as

u1 u2 u3 u4

error1 0.0012 0.0049 0.0017 0.0173
error2 0.0014 0.0100 0.0024 0.0201

Table 1. Comparison of the inexact input er-
rors with projection reduction errors.

shown in the dashed line (f) in Figure 2. However, the or-
der of the reduced system is q3 = 65, which is much close
to the original system order n = 100. Clearly it is not a re-
ally reduced system, which makes the whole order reduc-
tion process much more inefficient. In the end, we point out
that the problems of large dimension of inputs and inex-
act inputs still exist for other testing input signals such as
u2, u3, u4. Due to the space limitation, we omit the experi-
ment results here.

4.2. Errors caused by inexact inputs

In the following, we show how much error induced by
the inexact inputs z1 ⊗ z1.

We first compute the error caused by the reduction of
the first linear system (6). Denote y1 = cTx1 the exact out-
put response of system (6) without reduction. Denote ỹ1 =
cT(V1z1) the approximate output response of the first linear
system computed through its reduced system in (16). De-
note error1 = ‖ỹ1 − y1‖2/‖y1‖2 the relative error between
ỹ1 and y1, i.e., the error caused by the projection reduction
of the first linear system (6). Here, we reduce the first lin-
ear system to the order of q1 = 12.

dz1
dt = Ã1z1 + b̃u(t) (16)

Secondly, we compute the error induced only by the in-
exact input (z1 ⊗ z1) in (17). Denote y2 = cTx2 the exact
output response of system (7) without reduction. Denote
ŷ2 = cTx̂2 the approximate output response in (17). Denote
error2 = ‖ŷ2−y2‖2/‖y2‖2 the relative error between ŷ2 and
y2, i.e., the error induced only by the inexact input (z1 ⊗z1)
in (17).

dx̂2(t)
dt = A1x̂2 + A2(V1z1 ⊗V1z1) (17)

The errors error1, error2 for the four different input sig-
nals u1, u2, u3, u4 are listed in Table 1. We can see that
the error error2 brought by the inexact inputs (z1 ⊗ z1) is
even larger than the error induced by reduction projection
x1 ≈ V1z1 (error1). Fortunately, in the direct project reduc-
tion method, there are no inexact inputs, therefore the inex-
act input error error2 is easily avoided.
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u1 u2 u3 u4

ε1 0.0071 0.0229 0.0049 0.0183
ε2 0.0097 0.0437 0.0204 0.0912

Table 2. Comparison of the errors between
direct reduction and the conventional varia-
tional reduction.

4.3. Accuracy of the direct reduction method

Finally, we compare the direct reduction method with
the conventional variational reduction method. As shown in
Figure 3, the response of the reduced system by the direct
reduction method with order 10 in line (o) are more accu-
rate than that by the conventional variational order reduc-
tion with order 65 in line (e) with testing input signal u1.

The 65th order and the 10th order reduced systems are
further tested with the other three testing inputs u2, u3 and
u4. Compared to the exact response of the original system,
the relative error ε1 of the direct reduction method and the
relative error ε2 of the conventional variational order re-
duction method are listed in Table 2. We can see that the
direct reduction method is more accurate than the conven-
tional variational method in all of the test inputs.

5. Conclusion

For relatively strong nonlinear systems, the conventional
variational order reduction method will lose efficiency due
to the inexact input errors and the exponentially increased
number of inputs. Based on the variational analysis prin-
ciple, we propose in this paper a direct method to reduce
the order of the approximate polynomial system by only
one projection space. Both theoretical and experiment re-
sults have demonstrated the efficiency of the proposed di-
rect projection method in both reduction accuracy and the
smaller size of the reduced order system. Although the di-
rect reduction method is derived for the time invariant non-
linear system, it definitely can be employed to deal with the
order reduction of nonlinear time varying systems.
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