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Reduced-Order Modeling of Time-Varying Systems
Jaijeet Roychowdhury

Abstract—We present algorithms for reducing large circuits,
described at SPICE-level detail, to much smaller ones with similar
input–output behavior. A key feature of our method, called time-
varying Padé (TVP), is that it is capable of reducingtime-varying
linear systems. This enables it to capture frequency-translation
and sampling behavior, important in communication subsystems
such as mixers and switched-capacitor filters. Krylov-subspace
methods are employed in the model reduction process. The
macromodels can be generated in SPICE-like or AHDL format,
and can be used in both time- and frequency-domain verification
tools. We present applications to wireless subsystems, obtaining
size reductions and evaluation speedups of orders of magnitude
with insignificant loss of accuracy. Extensions of TVP to nonlinear
terms and cyclostationary noise are also outlined.

Index Terms—AHDL, Arnoldi, Krylov, Lanzos, macromod-
elling, nonlinear systems, reduced-order modelling, time-varying
systems.

I. INTRODUCTION

V ERIFYING systems hierarchically at different levels
of abstraction is an important task in communications

design. For this task, small macromodels need to be generated
that abstract, to a given accuracy, the behavior of much bigger
subsystems. For systems with time varying and nonlinear
blocks, macromodels are typically constructed by manually
abstracting circuit operation into simpler forms, often aided
by extensive nonlinear simulations. This process has disadvan-
tages. Simulation does not provide parameters of interest (such
as poles and zeros) directly; obtaining them by inspection
from frequency responses can be computationally expensive.
Manual abstraction can miss nonidealities or interactions that
the designer is unaware of. Generally speaking, manual macro-
modeling is heuristic, time consuming, and highly reliant on
detailed internal knowledge of the system under consideration.

In this paper, we present an algorithmic technique for
abstracting small macromodels from SPICE-type descriptions
of many kinds of subsystems encountered in communication
systems. Named time-varying Padé (TVP), the method reduces
a large linear time-varying (LTV) system to a small one. The
LTV model is adequate for many apparently nonlinear systems,
like mixers and switched-capacitor filters, where the signal
path is designed to be linear, even though other inputs (e.g.,
local oscillators, clocks) may cause “nonlinear” parametric
changes to the system. For capturing distortion and intermod-
ulation effects, we outline extensions for capturing low-order
nonlinear terms in the input–output transfer function. We also
sketch how TVP can be used to produce cyclostationary noise
macromodels of time-varying systems.
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Reduced-order modeling is well established for circuit ap-
plications (e.g., AWE [6], [21], [28], PVL [11]–[13], PRIMA
[26]), but to the best of our knowledge, existing methods are
applicable only to linear time-invariant (LTI) systems. Hence,
they are inadequate for communication blocks with properties
like frequency translation, which cannot be represented by LTI
models. LTV descriptions of a system, on the other hand, can
capture frequency translation and mixing/switching behavior.
LTV transfer functions are often computed in the context
of radio frequency (RF) simulation (e.g., plotting frequency-
responses or calculating cyclostationary noise [23], [35], [39]),
but a formulation suitable for model reduction has not been
available. The basic difficulty in generalizing LTI model-
reduction techniques to the LTV case has been the interference
of system time variations with input time variations. A key
step in this work is to separate the two time-scales, using
recent concepts of multiple time variables and the multirate
partial differential equation (MPDE) [3], [31], [34], resulting
in forms for the LTV transfer function that are suitable for
model reduction.1 Pad́e approximation of this transfer function
results in a smaller system, any desired number of moments
of which match those of the original system.

TVP has several useful features. The computation/memory
requirements of the method scale almost linearly with circuit
size, thanks to the use of factored-matrix computations and
iterative linear algebra [15], [24], [29], [35]. TVP provides
the reduced model as a LTI system followed by a memoryless
mixing operation; this makes it easy to incorporate the macro-
model in existing circuit simulators, as well as in system-level
simulators supporting any analog high-level description lan-
guage (AHDL) with linear elements and ideal multipliers. TVP
itself can be implemented easily in existing simulation tools,
including nonlinear time-domain simulators like SPICE, non-
linear frequency-domain simulators using harmonic balance,
as well as in LTV simulators like SWITCAP and SIMPLIS.
Existing LTI model-reduction codes can be used as black
boxes in TVPs implementation. Like its LTI counterparts,
TVP based on Krylov methods (Section III-B) is numerically
well conditioned and can directly produce dominant poles and
residues. By providing an algorithmic means of generating
reduced-order models, TVP enables macromodels of com-
munication subsystems to be coupled to detailed realizations
much more tightly and quickly than previously possible. This
can significantly reduce the number of iterations it takes to
settle on a final design. Furthermore, since there is no relation
between the topology or components of the original circuit and

1An alternative formulation of this transfer function was also announced
[27] shortly after the present technique first appeared [30], [32], [33].
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the reduced one, macromodels generated by TVP can be used
to protect intellectual property without sacrificing accuracy.

The remainder of the paper is organized as follows. In
Section II, the MPDE is used to obtain the LTV transfer func-
tion in forms useful for model reduction. In Section III, Pad´e
approximation and reduced-order modeling of the LTV trans-
fer function is presented. Extensions to nonlinear terms are
described in Section IV. Cyclostationary noise macromodeling
with TVP is described in Section V. Finally, four examples of
the application of TVP are presented in Section VI.

II. LTV T RANSFER FUNCTION

We consider a nonlinear system driven by a large signal
and a small input signal to produce an output

(for simplicity, we take both and to be scalars;
the generalization to the vector case is straightforward). The
nonlinear system is modeled using vector differential-algebraic
equations (DAEs), a description adequate for circuits [7] and
many other applications

(1)

In the circuit context, is a vector of node voltages and
branch currents; and are nonlinear functions describing
the charge/flux and resistive terms, respectively, in the circuit.

and are vectors that link the input and output to the rest
of the system.

We now move to the MPDE [3], [31], [34] form of (1).
Doing so enables the input and system time scales to be
separated and, as will become apparent, leads to a form of
the LTV transfer function useful for reduced-order modeling.
The move to the MPDE (2), below, is justified by the fact
(proved in, e.g., [31], [34]) that any solution of (2) generates
a solution of (1)

(2)

The hatted variables in (2) are bivariate (i.e., two-time) forms
of the corresponding variables in (1).

To obtain the output component linear in, we perform a
linearization around the solution of (2) when . Let
this solution be (note that we can always select to
be independent of ). Linearization about yields the linear
MPDE

(3)

In (3), the quantities and are the small-signal versions
of and respectively; and

are time-varying matrices.
Note that the bi-variate output is linear in the input

but that the relationship is time-varying because of the

presence of . To obtain the time-varying transfer function
from to we Laplace transform (3) with respect to

(4)

In (4), denotes the Laplace variable along thetime axis;
the capital symbols denote transformed variables.

By defining the operator

(5)

we can rewrite (4) as

(6)

and obtain anoperator form of the time-varying transfer
function

(7)

Finally, the frequency-domain relation between the output
and its bi-variate form is

(8)

where is the Laplace transform of and
the two-dimensional Laplace transform of , or equiv-
alently, the Laplace transform of with respect to

.
The operator form (7) is already useful for reduced-order

modeling. We can proceed further, however, by expanding
the dependence in a basis. This leads to matrix forms of
the transfer function, to which existing model reduction codes
can be applied—a very desirable feature for implementation.
Frequency-domain basis functions, considered in Section II-A,
are natural for applications with relatively sinusoidal varia-
tions, while time-domain ones (Section II-B) are better suited
to systems with switching behavior and those that are not
periodic.

A. Frequency-Domain Matrix Form

Assume and to be periodic with angular
frequency . Define to be the operator-inverse in
(7)

(9)
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Assume also to be in periodic steady-state in
and expand and in Fourier series with
coefficients and respectively

(10)

Now define the following long vectors of Fourier coefficients
to be

(11)

By putting (10) into (9) and equating coefficients of it
can be verified that the following block-matrix equation holds:

(12)

where

...
...

...

...
...

...
...

...
...

...
...

...

. . .

. . .

(13)

Now denote

(14)

From (12), (9), and (7), we obtain the following matrix
expression for

(15)

From (14), note that can be written in the Fourier
expansion

(16)

Hence, we can rewrite (15) in a Fourier series

(17)

Equation (17) implies that any linear periodic time-varying
system can be decomposed into LTI systems followed by
memoryless multiplications with . The quantities
will be called baseband-referred transfer functions.

We proceed to re-write (17) for all values ofas a single
block-matrix equation. Define

(18)

Then

...

...

(19)

Equation (19) is a block matrix equation for a single-input
multioutput transfer function. If the size of the LTV system
(3) is and harmonics of the LTV system are considered
in practice, then is a vector of size and

are square matrices of size is a rectangular
matrix of size and is a vector of size .

B. Time-Domain Matrix Form

Consider (9) again

(20)

We collocate (20) over at samples
using a linear multistep formula

(say Backward Euler) to express the differential in terms of
samples. Denote by the long vectors and the
samples of and

(21)

We then obtain the following matrix form for the collocated
equations:

(22)
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where

...

...
...

. . .
(23)

and we have assumed zero initial conditions .
If the system is periodic, then periodic boundary conditions
can be applied; the only change in (22) and (23) is tothe
differentiation matrix, which becomes

...
...

(24)

Define

(25)
Then

(26)

with as in (19). Equation (26) is in the same form as
(19); both can be used directly for reduced-order modeling,
as discussed in the next section.

III. PADÉ APPROXIMATION OF THELTV TRANSFERFUNCTION

The LTV transfer function (7), (19), and (26) can be
expensive to evaluate, since the dimension of the full system
can be large. In this section, methods are presented for
approximating using quantities of much smaller
dimension.

The underlying principle is that of Padé approximation, i.e.,
for any of the forms of the LTV transfer function, to obtain a
smaller form of size whose first several moments match those
of the original large system. This can be achieved in two broad
ways, with correspondences in existing LTI model-reduction
methods. TVP-explicit (TVP-E), roughly analogous to AWE
[6], [28] for LTI systems, involves calculating moments of the

large system explicitly and building the reduced order model
from these moments. The method is outlined in Section III-A.
In Section III-B, we present another procedure called TVP-
Krylov (TVP-K), which uses Krylov-subspace methods to
replace the large system directly with a smaller one, while
achieving moment-matching implicitly. TVP-K is analogous
to LTI model-reduction techniques which use the Lanczos
and Arnoldi processes (e.g., PVL and MPVL [11], [12],
operator-Lanczos methods [4], [5], PRIMA [26], and other
Krylov-subspace-based techniques [9], [22]). As in the LTI
methods, TVP based on Krylov subspaces has significant ac-
curacy advantages over explicit moment matching. Operator-
or matrix-based techniques can be applied to both explicit and
Krylov-based TVP; Section III-A describes an operator-based
procedure and Section III-B a matrix-based one.

A. TVP-E: TVP Using Explicit Moment Matching

Any of the forms (7), (19), and (26) can be used for explicit
moment matching. Here, we illustrate an operator procedure
using (7). Rewrite from (7) as

where denotes the identity operator

(27)

in (27) can be expanded as

where

(28)

in (28) are thetime-varying momentsof .
Note that these moments can be calculated explicitly from
their definition in (28), by repeated applications of. From
its definition in (27), applying corresponds to solving a
LTV differential equation. If the time-varying system is in
periodic steady state, as is often the case in applications,
can be applied numerically by solving the equations that arise
in the inner loop of harmonic balance or shooting methods.
Iterative methods (e.g., [15], [24], [29], [38]) enable large
systems of these equations to be solved in linear time, hence
the time-varying moments can be calculated easily.

Once the moments have been computed, can be
fixed at a given value, and any existing LTI model reduction
technique using explicit moments (e.g., AWE) can be run
steps to produce ath-order reduced model. This step can be
repeated for all values of interest, to produce an overall
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reduced-order model for in the form

(29)

The simple procedure outlined above has two disadvantages.
The first is that model reduction methods using explicit mo-
ment matching suffer from numerical ill-conditioning, making
them of limited value for more than ten or so [11]. The
second is that the form (29) has time-varying poles. It can
be shown (see the Appendix) using Floquet theory that the
transfer function has a potentially infinite number
of poles that are independent of (these poles are simply
the Floquet eigenvalues shifted by multiples of the system
frequency), together with residues that do, in fact, vary with

. It is desirable to obtain a reduced-order model with similar
properties. In fact, this requirement can be met by obtaining a
reduced system in the time-domain form of (3), which is very
desirable for system-level modeling applications. The Krylov-
subspace procedures for TVP in Section III-B eliminate both
problems.

B. TVP-K: TVP Using Krylov Subspace Methods

In this section, we describe the application of block-Krylov
methods [1], [12], [16], [17], [26], [37] to any multi-output
matrix form of the LTV transfer function. Krylov-subspace
methods provide a numerically stable means of obtaining a
reduced-order model; in addition, the reduced transfer func-
tions are in the same form as in (7), with similar
properties like a possibly infinite number of-invariant poles.

Both (19) and (26) are in the form

where

and (30)

Equation (30) can be used directly for reduced-order mod-
eling by block-Krylov methods. We sketch the application of
two popular such methods, Lanczos and Arnoldi.

1) Block Lanczos:Running the block-Lanczos algorithm
[1], [12], [16], [17] with the quantities and produces
the matrices and vectors (of size ), (size

), and (size ). is a small integer related to the
number of iterations the algorithm is run. Define theth-order
approximant by

(31)

Then in the sense that a certain number of
matrix-moments of the two quantities are identical—see [16]
for a precise description of the approximation.

Fig. 1. Floquet from of LPTV system.

2) Block Arnoldi: The block Arnoldi algorithm, described
in, e.g., [26], [37], uses and to produce matrices (of
size ) and (size ). is orthogonal (i.e.,

), and block-Hessenberg. It can be shown
that

(32)

approximates [2].

C. The Reduced Model

Both (31) and (32), in the form

(33)

approximate . In typical applications, adequate approx-
imations are obtained with fairly small ranging from 2 to
30.

Corresponding to (33), a time-domain system of size
can be obtained easily. We illustrate the procedure for the
frequency-domain matrix form of Section II-A; the time-
domain form of Section II-B is similar, differing simply in
the choice of basis functions below. Define

(34)

where is the th row of . The approximate LTV transfer
function is given by

(35)

Equation (35) is the time-varying transfer function of the
following th-order reduced system of time-domain equations

(36)

where is a vector of size , much smaller than that of
the original system (3).

D. Useful Features of TVP-K-Generated Macromodels

The TVP-K procedure in Section III-B has a number of
notable properties, itemized below.

1) Note that (36) represents a lineartime-invariantsystem,
followed by a memoryless multiplication that appears
only in the output equation. The reduced system is illus-
trated in Fig. 1. This feature makes the reduced model
easy to incorporate as AHDL elements in existing tools,
since no time-varying matrices are involved. Only LTI
elements (resistors, capacitors, ideal controlled sources)
and ideal multiplier elements are required to implement
the macromodel.
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2) In practice, only the baseband-referred transfer func-
tions corresponding to harmonics of interest can be
represented in (18), thereby reducing the number of
columns of . Similarly, any postprocessing for averag-
ing/Fourier analysis can be directly incorporated in (25),
thereby reducing the number of time-domain outputs.

3) The form (35) can be shown to imply that
has a possibly infinite number of time-invariant poles,
similar to . Further, the eigenvalues of are
the Floquet exponents of the reduced-order model, which
approximate those of the original LTV system. The poles
and residues of the reduced-order models of can
be easily calculated from the eigenvalues of.

4) Krylov-subspace algorithms such as Lanczos and
Arnoldi require only matrix-vector products with
and linear system solutions with . Though both
these matrices can be large, dense or difficult to
factor, exploiting structure and using iterative linear
algebra techniques can make these computations scale
almost linearly with problem size [15], [24], [29], [35],
[38]. When these fast techniques are employed, the
computation required by the TVP algorithm grows
approximately linearly in circuit size and number of
harmonics or time-points, making it usable for large
problems.

5) The numerical ill-conditioning problem with explicit
moment matching in Section III-A is eliminated using
Krylov methods, hence TVP can be run up to large
values of if necessary.

6) A system with inputs and outputs can be handled
easily, by stacking the extra outputs into(resulting in

of size ), and incorporating the inputs into
(to form a rectangular matrix of size ).

IV. REDUCED-ORDER MODELING OF NONLINEARITIES

In the section, we present an extension of TVP for modeling
signal path nonlinearities described by Volterra series. Volterra
series [25], [36], [40] are a generalization of Taylor series to
systems with memory. Given a nonlinear system with input

and output can be represented in a Volterra
series expansion as

(37)

where

(38)

Equation (37) reduces to a Taylor series if
i.e., an -dimensional delta function

(39)

We observe that the term is the constant term,
the linear term, the quadratic term, and so on.

Furthermore, we note that if the th Volterra
term generates components at theth and lower harmonics.
For example, the term of (39) is

consisting of both first and third
harmonics. Thus, higher Volterra terms are useful not only for
obtaining harmonic components, but also for modeling gain
compression of the linear transfer function.

We outline the procedure for macromodeling nonlinearities
by first considering time-invariant systems.

A. Reducing Time-Invariant Nonlinear Systems

We start by specializing (1) to the case of small perturbations
about a dc operating point

(40)

Let the dc solution of (40) (with ) be . Then, we
can represent the perturbations due to nonzero as

(41)

Expanding the nonlinear functions and in Taylor
series, we obtain

(42)

Here represents the vector direct product . and
represent the th derivative matrices of and ,

respectively. From these definitions, if the size of the original
system (40) is , we have and .

To obtain the Volterra formulation, we use a perturbational
method. We express as where is a small scalar
parameter. Since DAEs driven by smooth inputs have smooth
solutions, in (41) can be expressed in a Taylor series in

(43)

Substituting (43) in (42), and collecting the coefficients of
powers of the following equations for etc., are
obtained:

terms (44)

terms

(45)

terms (46)

From (44)–(46), we observe that is the solution of the
linearized system; is also a solution of the same linearized
system but with different inputs (“distortion inputs”), which
depend on and similarly, results from solving the
linearized system with distortion inputs derived from and

.
Before investigating how to represent (45) and (46) by

smaller systems, it is instructive to examine the mechanism
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by which a Krylov-subspace-based technique reduces the
linearized system of (44) to a smaller one. Rewriting (44)
first as we obtain the
Laplace-domain transfer function between and to be

(47)

A Krylov-subspace method simply generates a small set of
basis vectors onto which the input and state spaces are
projected [18], [19], resulting in the reduced model. We
illustrate this projection concept using the Arnoldi method.2

Run for steps, Arnoldi generates a rectangular orthonormal
matrix such that where
is a small square Hessenberg matrix. The size-linear system
is now approximated as a size-one

(48)

with

(49)

and

(50)

We observe that the reduction process consists simply of: 1)
projecting the size- input subspace onto a size- subspace
(50); 2) using this as input to a size-linear system (48) to
obtain a size- state-space and finally 3) representing
(i.e., embedding) in the original size- state–space (50).
Equations (48)–(50) can be written in time-domain form as

(51)

with

(52)

and

(53)

An approximation to any output of the
original system can thus be obtained directly from the reduced
state–space as where .

We can now apply the concept of projection and embedding
to the nonlinear reduction problem. Observe that an essential
difficulty in reducing (45) is that, potentially, the direct product
of the entire size- state space with itself is used as input.
We can, however, reduce the dimensionality of this input by
representing as the embedding in (53) from a -sized
subspace. We then have

(54)

Using (54), (45) becomes

(55)

2We thank Alper Demir for pointing out the advantages of Arnoldi over
Lanczos in this context.

Fig. 2. Block structure of reduced system with nonlinearities.

Note that and in other
words, the input to (55) is of size .

For Krylov-based reduction, (55) can be reframed in block-
matrix terms as

(56)

Equation (56) is a LTI system with inputs; it can, therefore,
be reduced to a smaller system, using Arnoldi with multiple
starting vectors. Let the reduced size beand the correspond-
ing subspace be ; define , and let
be the permutation matrix that reorders to produce

for any vectors and . Similar to
(56), (46) can be expressed as

(57)

Equation (57) is a LTI system with inputs. This
system can, in turn, be reduced to a smaller one (of size)
using the Arnoldi method. The overall structure of the reduced
system is shown in Fig. 2.

We note that the effectiveness of size reduction is limited
by the rapidly increasing sizes of the distortion input sources
to the higher order Volterra systems. The actual input sizes,
however, are determined by the numerical rank of the input
coefficient matrices, e.g.,

for (56). Owing to the fact that higher order derivatives of
typical circuit functions are typically very sparse, this rank
can be lower than the nominal size of the input space.
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B. Reducing Time-Varying Nonlinear Systems

The procedure outlined in Section IV-A can be extended to
nonlinear terms of a time-varying system. We start with

(58)

where is a small input perturbation. To analyze perturba-
tions conveniently, we now switch to the MPDE form of the
differential equation (2)

(59)

Let the unperturbed solution of (59) (with ) be
. Then, we can represent the perturbations due

to nonzero as

(60)

Expanding the nonlinear functions and in Taylor
series, we obtain

(61)

Here, and represent the time-varyingth
derivative matrices of and respectively, evaluated
about . Next, we express as with a small
scalar parameter. The solution can now be expressed
in a Taylor series in

(62)
Substituting (62) in (61), and collecting the coefficients of
powers of the following equations for etc., are
obtained:

(63)

(64)

(65)

Equation (63) can be expressed in the operator form already
encountered before in (7)

(66)

As discussed in Section III-B, (66) can be reduced using the
Arnoldi method to the form

(67)

with

(68)

and

(69)

and are as defined in Section III-B; is
defined as

(70)

with being the th block-row of , corresponding to the
th output harmonic or time point.

As in the time-invariant case, we approximate as

(71)

Now, (64) becomes

(72)

Equation (72) can now be expressed in block-matrix form as

(73)

(74)
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Fig. 3. Low-pass filter!mixer!two bandpass filters.

Equation (73) has inputs; it can therefore be reduced to
a smaller system using the techniques of Section III-B for
multiple inputs. Let the reduced size be and the corre-
sponding Arnoldi subspace be define .
Following a procedure similar to that for obtaining (73), (65)
can also be expressed in matrix form as shown in (74).
Equation (74), shown at the bottom of the previous page, is
an LTV system with inputs, which can, in turn, be
reduced to a smaller one (of size) using the techniques of
Section III-B.

V. MACROMODELING CYCLOSTATIONARY NOISE

When a system is macromodeled, it is also desirable to
replace all its noise contributions by a few equivalent noise
sources at the inputs or outputs.3 Usually, the power spec-
tra of the equivalent sources have complicated frequency-
dependence, unlike those of the relatively simple white and
flicker noise models typically used for internal noise gener-
ators. At the macromodel level, representing this frequency
dependence perfectly requires computations with the original
system, thus defeating the purpose of macromodeling. In-
stead, it is preferable to find approximate, but computationally
inexpensive, forms of this frequency dependence. Such a
capability has already been obtained for LTI systems with
stationary noise [13], [14]. In this section, we sketch the
extension to cyclostationary noise in LTV systems, useful
for capturing phenomena such as frequency-translation and
mixing of noise. The extension is achieved by applying the
noise reformulation technique in [13], [14] to a block-matrix
relation for cyclostationary noise [35] to obtain the form (30),
and then applying TVP.

We first recall the cyclostationary noise block-matrix rela-
tion [35]

(75)

where is the incidence matrix of the systems internal noise
sources,4 is a block matrix of HPSDs (harmonic power
spectral densities) from internal noise sources, andis the
block matrix of noise HPSDs within the system, including the
outputs. Analogous to (19) and without loss of generality, we
can select the HPSDs at a single output by

(76)
3Input- and output-referred noise sources are used extensively in circuit

design.
4Not to be confused withA in (30).

Equation (76) is structurally similar to (21) in [14], with
replaced by the rectangular matrix. It is straightforward to
apply the same reformulation steps as for LTI noise [14] to
bring (76) to the form of (30), i.e.,

(77)

TVP can now be applied to (77) to obtain a much smaller
set of equations in the form of (36), which can be used to
compute the noise contributions of the macromodeled system.

VI. A PPLICATIONS OF TVP

In this section, we present four applications of TVP. The
first application is to a small idealized example, for the
purpose of verifying TVP against hand calculations. The
second application is to a switched capacitor integrator block.
The third is to a RF mixer subsystem from the Lucent W2030
RFIC chip. The final application is to a dc/dc power conversion
system.

A. A Hand-Calculable Example

Fig. 3 depicts an upconverter, consisting of a low-pass filter,
an ideal mixer, and two bandpass filter stages. The component
values were chosen to be: k

nF, and
nH. These values result in a low-pass filter with a pole at 100
kHz, and bandpass filters with a center frequency of 10 MHz
and bandwidths of about 10 and 30 kHz, respectively. The LO
frequency for the mixer was chosen to be 10 MHz.

With reference to (17), the baseband-referred transfer func-
tions of interest in this case are and since they
appear in the desired up- and down-conversion paths. It can be
shown that hence, it suffices to consider
only here. The expression for can be derived
easily using intuitive frequency-translation concepts; it is

(78)

Equation (78) is plotted for positive and negative frequencies
in Fig. 4. Also plotted are the transfer functions obtained from
TVP with and . It can be seen that for TVP
produces a reasonable approximation, whereas for the
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(a)

(b)

Fig. 4. Simple circuit:H1(s) from TVP versus hand calculations. (a)�ve frequencies. (b)+ve frequencies.

match is perfect, even though the original system is of order
five.

The poles of the original system and those from TVP are
shown in Table I.

B. Switched Capacitor Integrator Block

Our second application of TVP is to a lossy switched-
capacitor integrator block. The circuit was designed in a 0.35-

TABLE I
POLES (Hz) OF H1(s), ORIGINAL AND REDUCED SYSTEMS
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Fig. 5. Steady-state output of a switched-capacitor integrator (with zero
input).

CMOS process, and modeled using a Lucent MOS model
(ASIM3) specifically intended for high-accuracy analog sim-
ulations. Comprising more than 150 MOS devices, it includes
biasing, common mode feedback and slew-rate enhancement
sections.

The clock signal to the switched-capacitor filter had a time
period of 78 ns (i.e., frequency 12.8 MHz), but some
sections of the circuit operated at twice that frequency, i.e.,
25.6 MHz. The steady-state waveform of the output node (in
the absence of signal input) was obtained using shooting and
is shown in Fig. 5.

The output node did not have switching activity filtered out.
Fig. 6 depicts a multi-time scale plot of the waveform at the
output node in the presence of a 10-kHz sinusoidal input. (For
details on how to interpret multi-time plots of waveforms, see
[31] and [34]. The signal envelope (riding on the switching
variations) is obtained directly from the waveform along a
cross-section parallel to the signal time scale. By shifting the
point of cross-section to along the clock time-scale, the signal
envelope at different points of the clock waveform can be seen.
Note how the (sinusoidal) signal is transmitted in the region
between 60 and 78 ns on the clock time scale, but is cut out
(because switches are off) between about 0–20 and 40–60 ns.
For macromodeling, we chose to sample the output at 70 ns
on the clock time scale, i.e., in the middle of the clock phase
in which the signal is being transmitted. In other words, the
transfer function being modeled is that between the input and
the waveform obtained by taking a cross-section, parallel to
the signal time scale, at 70 ns on the clock time scale in Fig. 6.

A time-domain version of TVP was applied to reduce
this transfer function. The macromodeling algorithm was run
up to order 25. Fig. 7 depicts the input-to-output transfer
functions from the full system ( marks), as well as from
two macromodels of size (dashed line) and
(solid line). As can be seen, even a tiny behavioral model of
size 3 is sufficient to capture the response for input frequencies
up to almost the switching frequency, while the size 25 model
is accurate up to well beyond.

The poles and residues of the system were obtained by
eigendecomposition of the matrices, and used to construct
expressions for the transfer function from the signal input to
the signal output envelope. For , this resulted in the
following analytical expression for the transfer function from
the input to the output envelope:

(79)

From the fact that the poles have negative real parts, it is seen
that the system is stable. Further, we also observe that the
smallest pole (168 kHz) has a much smaller residue than the
one at 1.1 MHz. Such expressions can be useful to incorporate
the precise characteristics of real circuit blocks into simple
spreadsheet-type system design tools. Note that this is a LTI
macromodel that abstracts the underlying continuous filter
from the switching. If detail about the effects of switching is
desired in the macromodel, all the timepoints along the clock
cycle need to be incorporated as outputs to TVP.

C. RF Buffer and Mixer Block

A portion of the W2013 RFIC from Lucent Microelectron-
ics, consisting of an I-channel buffer and mixer, was reduced
by TVP. The circuit consisted of about nodes, and
was excited by a local oscillator at 178 MHz driving the mixer,
while the RF input was fed into the I-channel buffer. The
time-varying system was obtained around a steady state of the
circuit at the oscillator frequency; a total of harmonics
were considered for the time-variation.

Fig. 8 shows frequency plots of , the upconversion
transfer function. The points marked “” were obtained by
direct computation of (17), while the lines were computed
using the TVP-reduced models with and ,
respectively. Even with , a size reduction of two orders of
magnitude, the reduced model provides a good match up to the
LO frequency. When the order of approximation is increased
to ten, the reduced model is identical up to well beyond the
LO frequency. Evaluating the reduced models was more than
three orders of magnitude fasterthan evaluating the transfer
function of the original system.

The poles of the reduced models for easily calcu-
lated on account of their small size, are shown in Table II.
These are useful in design because they constitute excellent
approximations of the full system’s poles, which are difficult
to determine otherwise.

D. PWM DC/DC Converter

Our final application of TVP is to a boost-type dc/dc
converter, featuring PWM feedback for output voltage stabi-
lization. A simplified diagram of the circuit is shown in Fig. 9.
When the switch closes, the inductor current rises linearly
until the switch opens, after which the current is diverted
through the diode into the load resistor. The peak current of
the inductor is related to the amount of time the switch is
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Fig. 6. Multitime plot of switched-capacitor output.

Fig. 7. Frequency response of a switched-capacitor filter.

closed, i.e., the duty cycle of the switch control. This peak
current determines the maximum output voltage, at node 3.

The negative feedback loop operates by comparing the
output voltage at node 3 with a reference to obtain an error
voltage, which is used to control the duty cycle of the control
to the switch. If the output voltage is lower than the reference,
the duty cycle is increased, and vice versa.

The nominal value of the input power source E was set at
1 V, while the reference voltage for the output was set to 1.4 V.
The switching rate was 100 kHz. The resistance–capacitance
(RC) pole formed at the load was at about 20 Hz.

Initially, the loop gain including the PCM unit was set to
ten. The steady state of the system was obtained with shooting

TABLE II
POLES OFH1(s) FOR THE I-CHANNEL BUFFER/MIXER

using about 100 timepoints. TVP (using time-domain steady-
state matrices) was then run for ten steps. Fig. 10 shows
plots of the transfer-function5 from the input source E to the
regulated voltage at node 3. Themarks were obtained from
the full system, while the dashed and solid lines are from
evaluations of the TVP-generated macromodels, as indicated.
Observe that the size-4 macromodel is adequate to capture the
system’s behavior up to the switching frequency. From the
plots, we note that for low frequencies, the ripple rejection of
the system is of the same order as the loop gain. The rejection,
however, deteriorates significantly as the frequency rises; in
fact, a smallgain is seen at about 80 Hz.

The transfer function corresponding to the macro-
model (using poles and residues obtained by eigendecompo-

5This is the0th-harmonic transfer function, i.e., the average over the clock
time scale.
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(a)

(b)

Fig. 8. I-channel mixerH1(s): reduced versus full system.

sition) is

small term (80)

Note that the real parts of the poles are negative, indicating
a stable system.

To improve the supply rejection of the converter, the loop
gain was increased to 1000, the steady-state recomputed using

shooting, and TVP macromodels generated again. The new
transfer plots are shown in Fig. 11. Note that, as expected,
the rejection at dc has improved to a factor of about 1000.
However, the TVP-generated analytic transfer function (for

) is now

small term (81)
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Fig. 9. A dc/dc switching power converter with PWM feedback.

Fig. 10. A dc/dc converter: transfer function for loop-gain 10.

Fig. 11. A dc/dc converter: transfer function for loop-gain 1000.

Note that the complex pole pair now has apositivereal part,
showing that the system is in fact unstable. The instability
is generated by a combination of excessive phase shift and
gain in the PWM feedback look. Using TVP-generated macro-
models, numerical values of such unstable poles are easily
obtained. Note that steady-state methods like shooting and
harmonic balance, on which TVP relies, are indeed able to find

unstable periodic solutions, because they solve boundary-value
problems rather than initial-value (“transient”) problems.

VII. CONCLUSION

We have presented the TVP algorithm for reducing
large LTV systems to much smaller ones with
similar input–output transfer characteristics. The
method is useful for automatic generation of accurate
macromodels from SPICE-level descriptions, especially
of communication system blocks. TVP has applications
in system-level verification, producing analytical
expressions for transfer functions, and intellectual property
protection. We have illustrated TVP with several examples
and obtained size reductions and computational speedups
of orders of magnitude without loss of accuracy. We have
also described extensions of TVP to incorporate signal path
nonlinearities and for cyclostationary noise macromodeling.

APPENDIX

FLOQUET PARAMETERS AND LPTV TRANSFER FUNCTIONS

It is well known that any LPTV system can be reduced to
an LTI system and memoryless time-varying transformations.
This result from Floquet theory (e.g., [10], [20]) implies that
any LPTV system has modes associated with it, the so-
called Floquet parameters, corresponding to the eigenvalues
of the underlying LTI system. In this section, we clarify the
relationship between the Floquet parameters and the time-
varying transfer function of the LPTV system.

We start from the following ordinary differential equation
description of a linear periodic time-varying system6

(82)

(83)

where is periodic with period . Floquet theory [10],
[20] states that there exists a nonsingular-periodic matrix

and a constant diagonal matrix such that (82) is
equivalent to

(84)

Hence, we obtain a system equivalent to (82) and (83)

(85)

Equation (85) can be recognized to be an LTI system with
the inputs and outputs multiplied by the periodic time-varying
quantities and . Since is diagonal, the equations

6The general case of LPTV DAEs can be addressed similarly using Floquet
theory for DAEs [8].



ROYCHOWDHURY: REDUCED-ORDER MODELLING OF TIME-VARYING SYSTEMS 1287

are decoupled into modes. The entries ofare the Floquet pa-
rameters. Following a procedure similar to that in Section III,
the time-varying transfer function for (85) can be shown to be

(86)

Equation (86) can be solved explicitly, becauseis diagonal
and time-invariant. The solution with -periodic boundary
conditions can be shown to be

(87)

where and are the Fourier coefficients of and ,
respectively. Let the diagonal elements of be . Then

in (87) can be written as

(88)

where and are the th elements of and
respectively.

Equation (88) shows that for each, can have
an infinite number of poles, which are simply the Floquet
parameters shifted by multiples of . Moreover, it is clear
that these poles are not time-varying. When (88) is put into
(87), it is also evident that the residues
of are, in fact, time varying.
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