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Projection-Based Approaches for Model Reduction
of Weakly Nonlinear, Time-Varying Systems

Joel R. Phillips

Abstract—The problem of automated macromodel generation that incorporate transistor-level effects, but are suitable for

is interesting from the viewpoint of system-level design because if simulation at system level. These macromodels can be used

small, accurate reduced-order models of system component blocksto perform rapid system-level simulation of engineering
can be extracted, then much larger portions of a design, or more designs that are too complicated to analyze at the detailed
complicated systems, can be simulated or verified than if the anal- g P y

ysis were to have to proceed at a detailed level. The prospect ofcomponent level. It is desirable that the model generation step
generating the reduced model from a detailed analysis of compo- be performed without requiring additional modeling expertise
gen_t blocflf<s is attractive because then the inﬂﬁence oflfecond-orderfrom designers, and without introducing major new steps into
evice effects or parasitic components on the overall system per- 5o 54y tight schedules. The accuracy of the models must be
formance can be assessed. In this way overly conservative design . . . .
specifications can be avoided. pred.|ctable and controllable. The;e constraints m(.)t|vate.|nves-
This paper reports on experiences with extending model tigating automated model extraction procedures, in particular,
reduction techniques to nonlinear systems of differential-alge- model reduction strategies.
braic equations, specifically, systems representative of RF circuit  \odel reduction refers to the procedure of automatic gen-

components. The discussion proceeds from linear time-varying, : . :
to weakly nonlinear, to nonlinear time-varying analysis, relying eration of system macromodels by direct operation on the

generally on perturbational techniques to handle deviations from lower-level, detailed descriptions. Compared to approaCheS
the linear time-invariant case. The main intent is to explore which that attempt to fit models to observed system behavior, model

perturbational techniques work, which do not, and outline some reduction approaches can easily obtain accurate, robust models,
problems that remain to be solved in developing robust, general anq ysually with considerably less effort. Because the macro-
nonlinear reduction methods. . . .
models are obtained by operations on the original system
Index Terms—Circuit noise, circuit simulation, nonlinear sys- jtself, reduction can obtain and exploit information about the
tems, reduced-order systems, time-varying circuits. internal structure of the system to be approximated. For ex-
ample, in a linear system, Krylov-subspace-based reduction
|. INTRODUCTION methods can obtain very accurate information about pole loca-

: : . tions and multiplicities in high-order, multiinput, multioutput
ESIGN of modern mixed-signal systems begins and ené; P g P b

tth tem level. Particularly i icati : stems. Such information is much more difficult to obtain
atthe system level. Farticuiarly in communications appip, analyzing frequency response or time-series data. Second,

cations, such as wireless systems described in signal—procesg use of access to the original system, more effective control

terms, correct operation of the mixed-signal components MUSt. cor in the model is possible. Finally, only by generating

be t\_/enﬂefd n Ithe context Oftth?] overall §ys§ce(rjn (Ijesulgn.tot nacromodels from detailed physical descriptions of compo-
gration of analog components, NOWEVET, 1S lied CloS€ly 10 W&o can the influence of complicated second-order physical

lowest level details of implementation. In a mixed-technologé(ffects ultimately be included at the system level. Thus an

context, it s thus hecessary to _prowde eff|c_|ent mec_:hamsrggsemial feature of reduction approaches is a relatively thor-
for assessing the impact of the implementation details at v?r-

. levels of abstraction. Most critical is final verificat ugh control and assessment of approximation errors that is
lous fevels of abstraction. Wost critical 1S Tihal vertiication Ot%ained by formal analysis of the reduction algorithms.

system performance, including detailed effects of implemen “Reduction algorithms have met with considerable success
tion tradeoffs, process limitations, and parasitic effects. Lackg

. o _ Tor modeling lumped, linear time-invariant (LTI) systems such
effective verification can lead to costly redesigns and multip s electrical interconnect. The most successful algorithms

silicon respins. The premise of this paper is that model-ba: (I‘j reduction of large-scale linear systems have beegec-
approaches that can propagate circuit performance charact [$1-based approaches [1], [2]. Algorithms such as PVL [3],

tics, in a bottom-up manner, to the highest levels of abstractigl?noldi methods [4], and PRIMA [5] obtain reduced models by

W'” provide the nee_ded mechgmsm_ to assess low-level eﬁeﬁ%]ecting the linear equations describing the LTI model system
in system-level design and verification.

The implied d is the ability t ‘ duced into a subspace of lower dimension. The subspace chosen
€ iImplied need 1s the abllity 1o generate reduced Cotgeamines the approximation properties of the reduced model.

Plexity models of the end-to-end behavior of circuit bIOCI(S‘rhese algorithms exploit the connection between Krylov sub-
spaces and rational approximation to develop algorithms that
Manuscript received June 3, 2002; revised September 5, 2002. This paper vaye a known relationship to the frequency-domain characteris-

recommended by Guest Editor G. Gielen. _ tics of the system, for example, matching the transfer function
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such as matrix—vector products and linear system solutions, II. MODEL REDUCTION FORLTI SYSTEMS

they can be applied to.very large systems if efficient algorithms In this section we will review model reduction techniques for
for products and solutions are available. And they usually ar§-T| models. Consider the LTI state-space model

The motivation for the work described in this paper was .
examining the extent to which work on model reduction for LTI E — = Az + Bu(t) y(t) = Cx(t) + Du(t) (1)
systems can be leveraged in analyzing a wider class of systems, dt
as mixed-technology systems generally have parts that canWE‘FreE’ Ae R B € B, O G_qun{ D e Rv
be modeled as LTI. RF circuits form a particularly interesting€fine the model dynamics;(t) € R*, is the internal state,
application area as they illustrate frequency conversion afif) € £ is the inputy(t) € R is the outputp is the system
distortion effects that cannot be predicted by LTI models. ('der, andp andq are the number of system inputs and out-

addition, an effective reduction algorithm must also provide %{Jts’ resdpectlvzl_)f/r. £ N II the ;ystem @) d_escrlbes Ia; set 0::
solution to the difficulty of modeling the multiple timescaleéInear ordinary di _erentla equatlon_s (ODE.S) In horma ‘orm. !

. C E # I butis nonsingular, (1) describes an implicit set of ODEs,
that occur in RF circuits. R . . ; ;
and if £/ is singular, (1) describes a set of differential-algebraic
Many systems that are not LTI can be accurately modelg uations

as linear time-varying (LTV). For example, if a nonlinear cir- A projection-based reduction scheme involves selecting a ma-

cuit model is linearized around a time-varying large signal, tt{ﬁx V whose columns span a “useful” subspace, and drawing an
resulting model is LTV. Clearly, the set of circuits that can bgpproximationi- ~ 4 from this subspace a@s= V z. Equations

accurate_ly modeled as LTV is much larger than the. set that (‘1?'? the reduced system are obtained by defining the residual
be described as LTIl. Many RF components (e.g., mixers and g = A#+ Bu— Edi/dt and requiring the residual to be orthog-

ters) are designed to have a near-linear response in the sigﬂ% to another spad®, WTr = 0. The state-space equations
path, but may have a strongly nonlinear response to other & the reduced model 7are then given by
citations, such as the clock of a switched-capacitor filter, or a

mixer’s local oscillator. Such components are prime candidates E dz = Az + Bu §=Cz+ Du 2)

for LTV model reduction, as several performance metrics, such t

as gain, noise, and bandwidth, can be predicted by analyzing’4re

LTV description of the circuit. A=wTAV B=wWTB E=WTEV C=cCV. (3)
Model reduction algorithms for time-varying §ystems arg is usually (but not always) the case tHat= D. If W = V,

known [6], [7], but not as well-developed or as widely used Re projection is said to berthogonal,as the residual will be

. . f
rr:ode_lr:educ(j:tmn for L;I systems.hMo_rehlmportlantlﬁ/, the know rﬂ:ogonal to the basis space spanned’bye will mostly use
algorithms do not produce quite the right results that are neeiI ogonal projection schemes in this paper.

for mixed-technology modeling. The first task O,f the PAPErWIT nost reduction schemes can be cast into the projection
be to 1) show how models suitable for system simulation can F@ﬁmulation, the various techniques differing in the choice of

describe_d frqm atran;istor—levgl, LTV descriptiqn, and 2) shome matricesV’ and W. Roughly speaking, and in increasing
how projection techniques suitable for reducing large-scalgyer of rigor, three main strategies for choosingnd W’ may
systems can be applied to generate the models. be identified: heuristic schemes, methods based on rigorous
The next step beyond modeling LTV systems is to show hogystem-theoretic analysis [13], [14], and parameter-matching
model reduction algorithms can be applied to systems that @Xchniques. Heuristic schemes include choosifigand V/
hibit weak nonlinear responses. Including effects of weak nopased on eigenvector analysis, which leads to reduced models
linearities generally can extend the range of accuracy beyou@t (exactly) preserve a subset of the poles and residue matrices
that achievable with linear models. Weakly nonlinear analysgs the larger model, but do not necessarily match the frequency
is particularly useful in RF communications circuits because tii@sponse well. Techniques such as truncated balanced real-
signal path is designed to be close to linear, and it is of great ipation [13] have only recently been applied to large-scale
terest to characterize the lowest-order deviation from linearityystems, and rely on a Krylov (i.e., parameter-matching)
In RF systems are also an interesting test case because it is pgghnique as an initial step. As a result, the parameter-matching
essary to combine the weakly nonlinear and time-varying modgihemes are popular because it is often relatively easy to obtain
reduction approaches into a single algorithm. an approximation spac¥ of small dimension that results in
The approach of the paper will be to first review methods feiccurate macromodels. The popular model reduction schemes
reduction of LTI systems and leverage these techniques to pape based on the theory of Krylov subspaces.
duce a method for reduction of LTV systems. Next, approachesDefinition 1—Krylov SubspaceThe Krylov subspace
to nonlinear, but time-invariant systems will be discussed, aiid,, (A, p) generated by a matrixt and vectorp, of order
finally the methods will be combined into a technique for rem, is the space spanned by the set of vectérs Ap,
duction of weakly nonlinear, time-varying systems. While nat?p, ..., A™~p}.
presenting a complete solution to the nonlinear model reduc-The essential elements of Krylov-subspace-based reduction
tion problem, the paper will present some basic first results &me given by
the area, compare and contrast with similar methods developedheorem 1: Suppose{(mgA—l, p) C colspan(V), then
concurrently [8]-[12], and speculate on the most productive aV{VTAV)*VTB = V A=k = A=Fb, for k < m.
enues for future investigation. Proof: See [2]. O
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To see why this is useful, consider writing the state-space [Il. M ODELING LTV SYSTEMS

model in the Laplace-transform domain A. Time-Varying Systems in a Mixed-Technology Context

sExz(s) = Az(s) + Bu(s) y(s) = Cx(s) 4) The time-varying analog to (1) is the state-space model
dz

ory(s) = H(s)u(s) where the transfer functiofl (s) is given F(t) i A(t)z + B(t)u(t) y(t) = C(t)x(t) + D(t)u(t).
> ©
H(s)=C(sE - A)"'B. (5) In integrated circuit applications, the most common origin

of LTV systems is by linearization of a nonlinear system of

The transfer functiod®' (s £ — A)~! B is arational function i, equations around a time-varying operating point. For example,
so it seems logical to approximate it in turn with a rational funge obtain an LTV circuit description, from, say, a set of circuit
tion, such as a Padé approximant [15]. Pade approximants, agdations written using modified nodal analysis [22], first the
most of the other approximants used for model reduction, hagiferential equations describing the circuit are written as
the property that they match the transfer function and some of its ) d ) )
derivatives with respect te. That projection generates rational f (v ) T (“ ) = Bu(1) @)
approximants is clear from the fact that the reduced trans
function H(s) = C(sE — A)~'B is also a rational function,
because the reduced model is also a linear state-space m
Theorem 1 connects the moments to the projection méafrix
and is the key to the model reduction procedure. Note that t
kth derivative, ornomentpf the transfer function is given by wil
C(A™1E)*A~1B. Clearly the approximants we wish to gen
erate are connected with powers of the mattix! £ acting on T . - .
B. These ideas are summarized by the following theorem. ul™ = u® o o) =) 40, (8)

Theorem 2—Krylov-Subspace Model Reductitin:the By linearizing around®), an LTV system of the form
columns ofV’ spank,,,(A~'E, A~!B), then the reduced-order d
transfer functiorC'(s . — A)~! B matches the firsts moments G(th + - (C(t)v) = bu(t) ©)

of the original transfer functio®'(sE — A)~1B. , , ,
Proogf' Follows from the Ta)(/lor expaznsion OfE — A)~1 whereG(t) = 9f(v'2)(1)/0v andO(t) = dq(vt))(t)/dv
and Theor.em 101, [2] o ae the time-varying conductance and capacitance matrices, is
Equally importar,lt is.the following obtained for the small responseTo relate to the standard no-
Theorem 3—Adjoint Krylov-Subspace Model Reductitin: tf?g?t’)vfg](?% make the identificatiali(t) = C(t), A(t) =
the columns of# spank,,(A=TET, A=TCT), then the re- =~ = . .
Formally speaking, we could consider obtaining a reduced

duced-order transfer functiati(s £ — A)~1 B matches the first S . o . .
. . 1 model in similar form by applying a projection operation with
m moments of the original transfer functié(s& — 4) °5. matricesW andV just as in the time-invariant case
For example, in the PVL algorithm [3], which forms a Pade J

(ﬁﬁereu represents the input sources?) describes the node
Fflﬁages,f is the relation between voltages and currents, and
& functiong relates voltages to charges (or fluxes) internals.
e have written the voltage and input variableu with the
perscriptl’ to indicate that they are total quantities that we
| split into two parts, a large-signal part and a small signal
part, in order to obtain an LTV model

approximation and is, thus, equivalent to the asymptotic wave- A(t) =W (B AV (1)
form evaluation [16] technique because of the relation between B(t) =WT(t)B(t)
Lanczos algorithm and Pade approximants [17], the choice of E(t) —WT()EM)V (1)
WandV is W' = WA=V = V,, whereW; andV, .
C(t) =C(t)V(b). (10)

contain the biorthogonal Lanczos vectors, and in one variant
of model reduction based on the Arnoldi method [B]” = This model is of potentially smaller dimension, and thus lower
VIA=1 V = V, whereV, is the orthonormal matrix gener-computational cost, than the original model (6), but it is not in
ated by the Arnoldi process. PRIMA [5] usé8 = V = V,, aform suitable for use in higher level simulation.
where the columns df, span a Krylov space. To motivate the development of a reduction algorithm, let us
More generally, given a low-rank matri® that maps state- first consider two special cases of interest in integrated circuit
space model inputs to the model internal state, by computingaplications. Then we will present a general purpose modeling
matrix V' whose columns spaf,,((soFF — A)~'E, (soE — algorithm. Both example problems are periodic time-varying
A)~!B), we may derive a reduced model such that the trans&rstems, wher& (t+7T) = E(t), A(t+T) = A(t), Bt+T) =
function of the original and reduce system will match up t®(¢), C(¢+7) = C(t) for some fundamental peridd The first
the mth derivative about the point, in the complex plane. example relates to systems with a time-varying operating point
The essential computation in this procedure is the applicatitmat are sampled at the output, the second to systems, such as
of (soE — A)~! to a vector. This approach can be extended ®F transceivers, that convert narrowband communications sig-
the case of multipoint approximants where the transfer functiorals between well defined carrier frequencies.
and some of its derivatives are matched at several points in th&irst, consider a switched-capacitor filter problem. A
complex plane [2], [18]-[21]. In this cad®& andV must con- five-pole low-pass switched capacitor filter, containing 71
tain a basis for the union of the Krylov subspaces constructed®SFETs was simulated and the LTV response to a 1 kHz-si-
the different expansion points. nusoid computed. The results are shown in Fig. 1. The jagged
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been abstracted away, further increasing the efficiency of later
high-level simulation.

A similar abstraction is desirable when modeling RF sys-
tems. Here, because of the presence of a high-frequency car-
rier, the time-variation of the system can be at a very fast rate,
much faster than the data signals passing through the transceiver.
Often, it is desirable to extract a model than represents only the
“baseband-equivalent” behavior of the model. The time-varying
carrier will be abstracted away. In this view, the spectrum of the
signals of interest is concentrated in a narrow band around the
harmonics of the fundamental frequenay (wy = 27 /T if T
is the period of variation) or frequencies. We desire models that
represent the transfer functions between inputs in one frequency
band, and outputs possibly in the same or another frequency

1t . . . 4 band. These transfer functions can be interpreted, as in the LTI
0 02 o4 06 08 1 case, as the system response when a single frequency sinusoid
is applied to the inputs. In circuit problems, since the physical
Fig. 1. Response of the switched-capacitor filter to a small 1-kHz sinusoidinputs and outputs are fixed, the transfer-function model can be
achieved, as in [23], [24], and in most harmonic balance codes,

L by choosing the columns dB(¢) and/or rows ofC(¢) to have
T . sinusoidal time-variation. If we can construct reduced models
¢ ¥(t) = y1(t) sinot ! : .
u(?) that represent these transfer functions, we will have a modeling
eSSV +y>(t) sin20¢ + - - - algorithm that not only reduces the size of the internal systems,
ot but also abstracts away the fast time-varying behavior (Fig. 2).
St ' Therefore now we proceed to see how these transfer functions
may be calculated.
‘ B. Model Reduction for LTV Systems
sinot In model reduction of LTI systems, most progress has been
dx/dt = Ax+Bu @_’ y1(f) sino made in exploiting ratlonal appro>§|mat|ons tothe frequency-pio-
ut) |y, =Cx main transfer functions. Thus motivated, we adopt the formalism
y2 =Cox 3 ®_> ya(1) sin 20 of Zadeh’s va_rlabl_e transfe_r functions [25] that were devel-
oped to describe time-varying systems. In this formalism, the

sin 20¢ responses(t) can be written as an inverse Fourier transform

Fig. 2. Pictorial representation of models for LTV systems. Top: The origin@f th.e product of a time-varying tranSfe_r function and the
circuit contains periodic time-varying sources and nonlinear devices lineariZéourier transform ofu(t) and u(w). That is,
around a time-varying operating point. Inputt) generates outputs at all

harmonics of the fundamental period. The outputs contain fast time-varying e, N o't 1
behavior even if the inputs are simple. Bottom: The LTI-reduced model, which o(t) = h(iw’, thu(w)e™ " dw'. (11)
is smaller, and contains no details of time-varying behavior and no time-variant e

elements. Time-varying behavior (sampling, a fast carrier, etc.) is abstracled obtain the frequency-by-frequency response, we: lbe a

away. The original outputs could be recovered by introducing time-varyi _ ; , — o
components external to the reduced model, but this is not desirable in high-lé%‘erl]gle frequency input., uwé(w w )’ and see that

modeling. v(t) = h(iw, t)u(w)e™". (12)

waveform shape is a result of the strong nonlinearity of the filtdd/"iting s = 4w and substituting into (9), an equation fefis, )
with respect to the clock. Incorporation of such effects is tH&vhich is a matrix with as many columns &shas) is obtained
point-of-time-varying modeling. An LTI system would producéS .

a smooth sinusoid, shifted in phase and scaled in magnitud a _

as a response to this input. The output of the filter, however, i;&(t)h(s’ O+ dt (C{)(s, 1)) +sC(B)h(s, t) = B(H).  (13)
usually followed by a function (e.g., the sample/hold of an A/DDhese equations may also be obtained from the multivariate-par-
converter) that discards the filter output outside some sm#dl-differential-equation formalism [26], [27]. Note that, since
sample time window. To model this system at a higher levél(s, t) comes from a lumped linear system, it will be a rational
we would need a reduced-order model that relates continuofus)ction with an infinite number of poles [28]. For example, in
sinusoidal inputs to the window of output that the following periodically time-varying system with fundamental frequency
circuitry (the sample and hold) needs. This can be achieveg, if n is a pole (in particular, a Floquet multiplier) of the
by choosingB(¢) to be a constant matri®, andC(¢) to be system, them + kwy, k an integer, will be a pole of(s, t).

the sampling function. The outpytt) can then be interpreted This is because signals can be converted by harmomcthe

in a discrete time sense. In the final model, the internal rapiidne-varying description from a frequengy— kwq to the pole
time-variation of the operating point will not appear. It hast.
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Because, for the lumped time-varying systems consider€d Two-Stage Approximate-Solve Computational Scheme
here, the time-varying transfer functions are rational functions, |, [24], the transfer functions from a small-signal sinusoidal

it seems reasonable to believe that reduced models can be;gyt 1 sinusoids at harmonics of the output were obtained by
tained from the same sorts of rational approximation paths “%%tlving the finite-difference equations

have been so profitable for reduction of LTI systems. Therefor N C -
i . . . 1 M
we first seek a representation of the transfer functions in ter SA— +G A a(s) :
of finite-dimensional matrices. 1 . 1 o(t1)
To perform actual computation of the transfer functions, we¢ —=1 =2 Go (ta)
discretize the (13). Because the focus of this paper is on pefi- Az A
odic LTV systems that occur in RF applications, at this poin )
we also introduce explicit assumptions about the time-variatign Cr-1 Cu o(tar)
of the system, and explain how the input—output mappings afe T Ay Ay +Gwm ]
incorporated into the model reduction procedure. 3(37 t1)
Following [29], [23], and [24], in the example case of a back- B(s t2)
ward-Euler discretization, (13) becomes = ; (21)
(sEpry — Ary)h(s) = Bry (14) B(s, tar)
_ where a(s) = e~*", T is the fundamental period, and
with B(s, ty) = et B. The transfer functior (s, #) is then given
C c ) by h(s, t) = e 5to(¢).
=l.q, =M It is now convenient to decomposkyy- into a lower trian-
A A gular and an upper triangular piecéry = L + U. Using the
G O G, expressions fof, andU, (21) becomes
Ay = - Az Ay (15) (L + a(s)U)i = B(s). 22)
' - If we define a small-signal modulation operafofs),
Cu-1 Cu .
—_— — + QJW Ie™
L AM A]\[ A 0 IeSt2
C1 Q(s) = . . (23)
C R
Ery = : (16) 0 Ie™™

then we can make the identification

C -
- . Ws)=Q"(s)i(s)  B(s)=Qs)Brv  (24)
_ T T T
h(s) = [ha(s)" ha(s)™ - hae(s)"] A7) and more importantly we make the identification that
and
Erv — Apy ~ QH(s)[L + UQ(s). 25
BTV = [B%1 B;F . b’JI\j[]T (18) SLTV TV (8)[ 05(8) ] (8) ( )

The left- and right-hand sides of (25) differ because of the way

the small applied test signal was treated. The left-hand side cor-

responds to a spectral discretization, and the right-hand side to

a finite-difference discretization.

Suppose we need to solve (22) for some right-hand Bide
T Again following [24], consider preconditioning with the matrix
Crv =[Ci O -+ Cwm] (19) 1. Becausd. is lower triangular, with a small block bandwidth,

block Gaussian elimination is very efficient at computing the in-

whereC; = C(t;), the matrix of baseband-equivalent transfeferse acting on a vector. In this procedure, oncelthdiagonal

functionsHzv (s) is given by blocks have been factored, an operation that must be performed
exactly once, then every application of the inverse igastep

Hry(s) = Cryh(s) = Cry(sEry — Ary) ' Bry. (20) procedure, at each step needing a backsolve with the factored

diagonal matrices and multiplication by the blocks off the diag-

The discretization procedure has converted the time-varyif§al- There is one off-diagonal block in each row for the simple

system of (13) to an equivalent LTI system, of dimensioHaCkVYard Euler discretization. The preconditioned system can

larger by a factor equal to the number of timepoints in tHge Written as

discretization. At this point, any of the algorithms developed ([ + a(s)L_lU) U= L—lé(s), (26)

for reduction of lumped LTI systems can be applied to t

matrices and vectors defined in (15)—(20). The result will be

LTI state-space model that represents the baseband-equiv

transfer functions iy (s). 1These are different Krylov subspaces than the ones used for model reduction.

whereG; = G(t;), C; = C(t;), B = B(t;), hi(s) =
h(s, tj), andA; is thejth timestep.
With additionally

h§uppose that (26) is solved by a Krylov-subspace-based itera-
;ﬁ‘lg/ﬁtmethod such as GMRES [30]Because the Krylov sub-
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space of a matri¥ is invariant to shifts [31], [24] of the form as the original equations, i.e., linear systems of differential
A — A+ (I, the same Krylov subspace may be used to soleguations, but of much lower dimensionality.

(26) at multiple frequency points. This “recycled Krylov sub- In contrast, consider a system with a nonlinear state-evolution
space” algorithm is made even more efficient [24] by exploitinfunction

the special structural propertiesbf' U, and because the spec- dx

trum of LU, being related to the Floquet multipliers of the E—=f@)+Bu  y=Cz (27)

LTV system, is usually clustered. The recycling of the Krylov ’ o ]

space also accelerates solution with different right-hand sigédere f: R" — R". Circuit equations can always be put
The final point is that systems of the form (22) may be solve@t0 this form, possibly by introducing additional algebraic
very efficiently for different frequencies and right-hand sig¥ariables. We may formally apply the projection recipe to this

vectors. system of equations to obtain a “reduced” model
To see how the finite-difference form can be used to derive an . dz T ; LA
. . - ; E—=V"fV B =C 28
appropriate basis for projecting the matriceésy , E1v, Bry, dt 1(Vz) + Bu Y o (28)

andCry in order to give the final reduced model, consider whaghere £, B, C' are as before. Several difficulties with this
would happen if the matriX” used for the projection was not aapproach are apparent.
basis for the Krylov subspace 6fEryv — Apy) ™!, butinstead  First, it is not at all clear how to choodg, and even less is
a nearby matrix. The reduced model would still be a projectiggthown about efficient computation. Approaches based on anal-
of the original, the difference being that interpolation conditiongsis of the linearized model have been proposed [32], [9], but
would be only approximately satisfied. If the approximation ay definition such approaches do not include information about
the interpolation conditions (or matched moments) was comonlinear model properties. Heuristic approaches based on the
parable to or less than the accuracy desired in the final modghgular value decomposition of a statistically representative
these additional errors would be negligible. This suggests thimpling of the state-spaagt) have met with some success
the basis for the projector in the model-reduction procedure [#3]-[35], but the computations are extensive and little control
obtained by using the finite-difference equations. Because th@r model accuracy is available. Balancing based procedures
basis will be a good approximation to the Krylov subspaces gfist in theory [36], but it is not clear how they may be com-
the spectral operator, good reduced models will be obtainedputed. More importantly, in the general case, interpreting the
The overall algorithm can be seen as an example oft&mV? f(Vz) as areducedmodel is problematic.
two-stage model red~uction scheme. In the first stage, KI’y|OVSincef is a nonlinear function})’ may not be generally
subspacest (L~'U, B(s:)) are accumulated for severa}. passed through the parentheses. It is always possible to evaluate
A single basisV; is constructed to span the union of thesVTf(Vz) by explicitly constructingi: = Vz, evaluating the
spacesV; is constructed such that (22) can be solved to afnlinearityf(z) = f(#) and finally explicitly projecting onto
appropriate tolerance at eaef, by adding in to the overall the reduced space by multiplication with . However, except
basis the Krylov spac& (L~'U, B(s.)) of minimal necessary in special situations (e.g., large linear subnetworks), if there
size. The solutions to (22) are used to construct a second bagis N degrees of freedom in the detailed circuit description,
V3. This basig/; is used to form the reduced modeldf-v via  then evaluation of the model will require(N) operations. As
the projection equations. In addition, because of the recyclgdesult, efficient simulation is not guaranteed. For example,
Krylov scheme, obtaining projectors from expansions abo nonlinear circuit simulation, even for circuits with tens of
multiple frequency points is essentially no more expensive thgfbusands of nodes, roughly half the simulation time is spent in

single-frequency-point expansions. evaluation of the nonlinear functiofi Thus, regardless of the
reduction in the size of the state space, if the original function
V. NONLINEAR SYSTEMS MODELING f must be evaluated, the efficiency gain in moving from the
L , detailed to reduced model will be at most a factor of two or
A. Formal Projection Operations three.

To illustrate some of the difficulties in developing nonlinear For a reduced model, we seek a model evaluation cost that is
reduction algorithms, let us contrast the behavior of generelated only to the complexity of the system input—output rela-
linear and nonlinear state-space models under projection-basedship, not to the size of the underlying system. Suppose that
reduction. The Krylov-subspace-based projection schentbs detailed system description arises from discretization of a
work for large-scale linear systems for four reasons. First, gopdrtial differential equation. As the discretization is refined, the
choices for the subspace defined Byexist. Rational approxi- dimension of the unreduced state-space model grows. However,
mation paradigms suggest matching properties of the trandfar a fixed set of inputs and outputs, and a fixed accuracy re-
function. Second, the columns of the mafrixcan be efficiently quirement, past a certain point, increasingly fine discretization
obtained. Only products witll or solution of linear systems has little effect on the transfer function in a bounded frequency
Axz = b are required, and thus any sparsity or special structuange. Therefore, we expect that if the system transfer function
of the underlying linear system can be exploited. Thereforean be approximated by, say, a fourth-order rational function, a
reduced models can be efficiently obtained as typically onlyraduction algorithm can generally obtain a reduced model with
small number of matrix—vector products are needed. Finally, thember of states not greatly exceeding four, regardless of the
reduced models can be efficiently simulated. This is guarantesde of the underlying detailed description. In a circuit context,
by construction, since the reduced models have the same fdhareduction algorithm should be able to discard states that arise
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from overly detailed representation of parasitic elements, ant

increasing the number of parasitics beyond this point should nc

affect the final model size. These properties must be retained i

effective nonlinear reduction algorithms. —
As a first step to such a viable general-purpose algorithm RS sy

we will first show how to extend the rational approximation L

paradigm to the nonlinear case, thereby providing a sount

theoretical basis for selection of the subspace spannéd.by

Our emphasis is not so much on proposing a specific algorithn ‘

y(t) = Hiu+ Hp(uou)+---
3

@ oF

JT

as in showing that, for sufficiently well-restricted classes of
nonlinear systems, algorithms with provable approximation
properties and finite computation time exist, and that these

alggn}hms g(lengrate models with reduced dimensionality anc ) d%/dt = A% +Bu 30) = Cir + Cafi -
model complexity. - . —>| 4y /dt = Aty + By(81 @ %)) >
Since to obtain reduced descriptions of nonlinear systems
it seems necessary to reduce the complexity of the nonlinee diz/dt =A%z +--
function, we begin by examining how to approximate nonlinear
systems input/output behavior. Fig. 3. Pictorial representation of models and model reduction of weakly

nonlinear systems. Top figure: The original circuit response is expanded
B F . | Series E . in a series of powers of the inputaveformu(t) and the first few terms
unctional Series Expansions retained as an approximation. Bottom: The variational-based reduced model

Consider again the system of ifferential equations in (1 seea uoarams sercs e ot vt oo, " 4 "
This state-space model defines a linear functidndD, ¢]? —
R? that mapsu(t) on the past time interva0, ¢] to the output
y(t) at timet. Specifically, the outpuy(¢) of our LTI system
may be expressed in the time domain using the convoluti8h
representation

that maps:(¢) on the past time intervdd, ¢] to the outputy(¢)
timet.

The Laplace transformy’(s) of the outputy(¢) is likewise
given by a sum of terms

o) = [ Wt~ o) do (29) () =3 Ya(s) (32)
n=0

whereh (o) is the kernel, or in the frequency domain Ya&) =
H(s)U(s) where H(s) is the Laplace transform df(¢). The
nonlinear system of differential equations (27) also deflnes
functional K: [0, t]* — R? that mapsu(t) on the past time 1 o1+ico O Fico
interval [0, ¢] to the outputy(t) at timet, but K is nonlinear Yo(s) = W/ /
becausef(z) is not a linear function. _ 7 7
For a nonlinear system, quantities analogous to the convolu-

tion operator may be obtained by performing a functional seriggth the responses related to the input by the frequency-domain
expansion of the outputthat has the general form [37], [38] kernelsH,,

where eacl,, is related to a multidimensional response func-
tion by

1—100 n—100

Yn(s — 81— Sp—1, S1,-- -, snfl) d8n71 T dsl (33)

st Y.(s1, ..., 8n) = Hu(s1, ..., 8,)U(s1) -
S w ) = Ha( U (s1)

and we have defined the multidimensional Laplace transform
H,(s1, ..., $n) = L(hn(t1, ..., tn)) @S

- U(sn)  (34)

wherey, (t) is thenth-order response

/ / / e on)ult — 1) - £ln(ts / / )

em st =sate qp o dt,. (35)
uw(t —o,)doy - -do,.  (31)

From (33) it is clear than theth kernel H,, representsith
The top system shown in Fig. 3 represents this sort ofder distortion products that result in inputs at frequencies
term-by-term decomposition of the response. Tltleterm in  s1, ..., s, generating an output response at the frequency
(31) represents an-dimensional convolution of. products s = s; + ---s,. If we construct a reduced model whosth
of the inputu with an n-dimensional kerneh,, (o1, ..., 0,). kernel H,(s1, ..., s,) matches the original system kernel
In a circuit context, theuth order term gives rise to theth H,(s1, ..., s,), theng will approximatey for (at least) terms
order distortion products. Series expansions of the form (3ih)thenth order. If the nonlinearity of the system is sufficiently
can be shown to exist for a broad class of nonlinear systemsak and/or the input sufficiently small, matching the first few
[39]. Volterra series, for example, may be considered a Taylkernels will allow the reduced order system to approximate the
series expansion of the nonlinear functiod&l [0, ¢{]» — R? full nonlinear system.
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V. NONLINEAR REDUCTION PROCEDUREUSING and then defining the residuBll = Az + Niu+ Bu — (dz/dt)
BILINEAR FORMS and imposing the Galerkin conditidd” R = 0. We obtain a

It is instructive to begin by examining a special class dr]educed model

nonlinear systems, bilinear state-space models, where the Ed_z — Az + Nzu + Bu §=0Cs (40)
kernels in the functional series expansion are easy to calculate. :

After showing how to calculate the kernels for bilinear systemghere
we will show how to apply Krylov-subspace-based model

reduction to obtain reduced models with accuracy guarantees A =VTAV
on the reduced kernels. Next, we will show how general weakly N=V'NV
nonlinear systems can be embedded in a bilinear system B=vVTRHB
of higher dimensionality, which leads to a general weakly E=vTy
nonlinear model reduction procedure. .
Cc=CV. (41)

A. Bilinear State-Space Models The reduced bilinear system is also bilinear, but of dimension

Bilinear state-space models are nonlinear systems wh@seand if ¢ < n, substantial computational savings can be
state-space equations have a special form, bilinear in the stat@ieved. The key point is that, in contrast to general nonlinear
x and the inputs:. By “bilinear” it is meant linear inc andw  functions, the nonlinear part of the system, as represented by the
individually, but not jointly. Ap-input bilinear system has thematrix V, can be compressed by the projection operation. Now
form (where we will takel’ = I, for now, to simplify notation) we address the choice of the matFix
To see how to extend the rational approximation properties of

d: d - .
d—f = Ax + Z Njzu; + Bu y=Cx (36) the Krylov-subspace methods to bilinear systems, consider the
j=1 second-order regular kernel, given by
whereN; € R™*™ andu;(¢) denotes thgth com_ponentoﬂ(t). H;reg)(sh 52) = O(sol — A) IN(s1] — A) 1B, (42)
The termsV;zu; are responsible for the nonlinear response of
the system. Similarly, the kernel for the reduced system is

For the moment, in order to simplify notation, let us restrict _ (reg) N N—1 . =1 .
the analysis to single-input, single-output systems, and furthed?s (51, s2) = 0(521 - A) N(Slf - A) B. (43)

impose the restriction that0) = 0. A nonzero initial state will o N .
P () The natural generalization of moment-matching is to require

lead to an additional series in what follows. To analyze bilinegr _ - S0 g
systems we construct a functional series representation of %%H(sl’ s?).andH.<81’ 52) agree to,terms '8; 53, 1.€., that
e a multidimensional partial Padé approximatiodiofThe

state response(t). For simplicity, for the moment we restruct di ional Tavl . . cg) .
to the single-input, single-output (SISO) cage= 1, and let Wo-dimensional Taylor series expansionssf **) (s, s2) is
N = Nj. > >
Theorem 4: The Laplace transform of theth order kernel HY (1, 9) = > > CcAT'NATFBshs,. (44)
describing the responsét) of the SISO bilinear system to input k=0 1=0
u(t) is given by We call terms of the fornC A~ N ... NA~1 B a multimo-
Hu(s1, ..., $2) ment We now show how Krylov-subspace algorithms lead to
R . o reduced models that match multimoments.
=C(sn+-s)I = Ay N N(sil = A)"B. (37) " gunnose we constructia such thatd—*B ¢ colsp(V3) for

Proof: See [37]. O k=0---q,ie,R(V1) D K, (AL, B). This is the condi-
It will be convenient to express the frequency-domain kerndion for thefirst-order kernels, i.e., the transfer function of the
in what is called the regular form [37] linearized model, to match up to terms dft (see Theorems

" 1 and 2), or in other words, fad™*B = ViAT* B, k < ¢
n(s1, . sn) whereAd; = VT AVy, B; = V| B. Now construct’; such that
= H{"(s1 482+ 80, s2+--8n, ..., 51) (38) K, (A1, NV;) C R(V,), and construct’ € R"*4 such that

so we have R(V) > R(V1) U R(V2). Then we must have

H,(ng)(sl- . S'n,) AFB = VA_kB7 k<aq (45)
=C(spI — A)"'N(sp_1I = A)"'N---N(s1] — A)"'B.  where nowA = VTAV, B = VT B, becausek(V;) C R(V).

(39) In addition, if we take any: € R(V1), so thatr = Viz; = V2
for somez € RY, we have

B. Reduction of Bilinear Forms A7'Nz = VA 'WINVz = VA 'Nz, 1< qy. (46)
Assuming that an appropriatedimensional subspace ha
been identified as the range aflsp(V) with V' e R™*4, re-
duction by orthogonal projection proceeds precisely as in t o
linear case, by first identifying the approximate state- V z, AT'NA*B=VA'NA*B  k<q,l<q¢ (47)

SThe key point is that, by constructiod, B € R(V;) for k <
ﬂle . Thus,
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so we may conclude that

Héreg)(sl, $2) — Flgreg)(sl, s2) = O (s1's%?) (48)
and thatd, N, etc., is the desired model.
This result is easily generalized.
Theorem 5: Given
dz P
i Az + Z Njzuj + Bu (49)
j=1
y=Cz (50)

whereA € R™*"; x(t) € R*, B € R"*P, N; € R"*",
u(t) € RP, C € R", suppose

R(V1) DKy (A7, B) (51)
p
RV) > | Koy (A1, NiVisy), j>1 (52)
k=1
J
R(V)> [ V. (53)
j=1
Then if
A=vTAv
i = VTNV
B=Vv"'B
E=vTv
¢=cv, (54)

and H{"? are the order regular kernels of the models

(A, N, B, C)and(A, N, B, C) respectively,

HD (s, ..., s0) — HUD (51, ..., 5,) = O(sT - sn)
(59)
forn < J.

Proof: Follows directly from Theorems 1 and 2 via the dt

procedure above. O

Clearly, generating models that match many moments of high
order kernels could be numerically expensive, particularly for
systems with many inputs, and practical implementations will
require careful selection of the minimum number of moments to
be matched at each nonlinear order, deflation procedures, prin-

cipal component selection of the spadéq1], and so forth.

C. Bilinearization of General Nonlinear Forms

Again consider the system of (27), and for simplicity, assume
E = I. Assumef(z) may be expanded in a multidimensional

polynomial series

f@)=>" ¢ule, ..., o) (56)
k=1

where eachy;, is a k-multilinear form. For example (z) is

linear in the argument, and may be written as a matipx (z) =

Aiz. ¢2(z, x) is bilinear in each argument, that iz (az +

By, z) = aps(x, z) + Bda(y, z) and similarly for the second
argument. For now the analysis will proceed by constructi
a bilinear representation of the systéifi(-), B, C) [37]. Our

goal is to guarantee accurate nonlinear representation by in-
cluding information about the higher order nonlinear terms ex-
plicitly in the reduction process. Later in the paper we will con-
sider the prospect [9], [11], [8] of forming reduced models by
applying a projection formalism directly .

A concrete representation of thhg may be obtained by using
Kronecker forms. In particular, define

M =gz P =zez ¥ =z@rear, etc. (57)

The polynomial series expansion ffxz) may be written as

f(@) = Ara™ + Apz® + A32® 4. (58)
so that
fl_i: =A@ 4 Ape® 4 A3® 4o 4By (59)

whereA, € R The coefficients4d, may be obtained via
several means. They may be Taylor series coefficients, obtained
either analytically, via numerical differentiati@npr through
automatic differention of the computer program describing the
function f(z). Or, the coefficientsi;, may represent more gen-
eral polynomial fits, either to available device model behavior,
or to data tables.

In any event, the bilinear model is obtained by defining a new
state variablez®

ey
e

®
JE)

r- =

(60)

To do this, note that the time-derivative of a terffi) is related
to the time-derivative of the original state, and a term of one
order lower,z*=1), For example,

d (@) _ % [xu) - x(l)]

=i®sM +2V @i
- [Alxa) ¥ Apr® 4.y Bu} 2 2V

FIPRCOIS [Alxu) + Ayz® 4oy Bu]
= [(Al ® 1) (w(l) ® g;(”) + - } + (B HzWu

- [(I ® A1) (m(l) ® m(l)) + - ] + (I ® B)xMu
= [(Al QI+T®A)z® 4. ] + (B HxzWu
(61)

WhereA21 = (Al QI+ 1IQ® Al) andB20 = (B ® I)
Continuing this process, we will obtain a bilinear realization
(A(X)? N®7 B®7 C®)
4
dt

:A21;1:<2) 4ot B20x(1)

2% = A%2® 4+ N®2%u + B%u

y=C%"

(62)
(63)

2Accurate numerical differentiation will be limited to relatively low orders,
about two orders more than the highest order expression available analytically.

THdr example, if the Jacobian is available analytically, a fairly accurate approxi-

mation of the third-order coefficients can reasonably be expected.
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for the original nonlinear system, where structured, and efficient algorithms can be developed to solve
Ay A Fhem. For_example, consider inverting the second diqgona} block

Ay Agn in A®: Th_|s block has the forlmtl ®@I+1A. Solvmg this

A® — A As (64) equation is the same as solving the Lyapunov equatian-+

XAT = C for someC [40]. It has recently been shown how
L K to construct low-rank solutions of Lyapunov equations [41] for

-0 0 low-rank right-hand sides, which are the sort that occur in the
Boy O 0O model-reduction procedure. The virtue of the low-rank solutions
N® = Bay 0 (65) isthatif they can be constructed for all the diagonal blocks, then

) the projection vectors can be represented with a number of de-
- - grees of freedom that ©(QN), whereQ is the total number
B of multimoments matched andl the dimension of the original
B® = |0 nonlinear system. It is still true th& will grow exponentially
: with the degree of nonlinear approximation order, but this is un-
avoidable for functional series representations.

C®:[C 0 -] (66)
VI. NONLINEAR REDUCTION PROCEDURE USING

App=Ap,andA; =4, 01Q - @1 +1Q A4, ® - ® POLYNOMIAL FORMS

I4+---+1®I1®---® A, where there arg — 1 Kronecker

products in each term, angdterms. SimilarlyB;, is given by ~ The bilinear system realizations have the advantage that

Bjp=BI® - ®I+I®B®---@I+I®I®---® B. the Volterra kernels are particularly easy to compute once
the system is put in this form. By using the bilinear form,

D. Multimoment-Matching we were able to see that the Krylov projection methods used
The multimoments of the nonlinear system can be expresdgf reduction of LTI systems can also be applied to nonlinear
in terms of the bilinear system quantities as systems, and that it is possible to make rigorous statements
" . @ l . about the approximation properties. However, computationally,
my = C¥(A%)™"B, my,) = C(A®)"'N®(A®)™*B, ... the procedures that rely on bilinear realization are computa-

(67) tionally complicated. In this section, simpler approaches will

. C . . be discussed.
Even though the matrixd® has infinite dimension, due to its

special structure, multimoment calculation is feasible. Becauage Polynomial Approximations and Variational Analysis
A® is block-upper-triangular, and the matriX® is nonzero

On(l,}; on the first lower black subdiagonal, mUItII’nomem%xpanded in a series of multidimensional polynomials (such

my,..., depend only on the submatrices in the fikst< k55 bt not necessarily, a multidimensional Taylor series) as in
size blocks. In particular, note that théh kernel H;, depends (56)—(59), so that

only on the firstk terms in the series expansion, so a bilinear 4
approximate system obtained by dropping terms of order £ — Az + Ayz®@ + A32B) 4.+ By (68)
higher thank in the expansion off(z) will agree with the dt
original system in the first kernelsHy. It is important to keep where A, € R™™" The matrices4y,, representing thé-di-
the distinction between the order of the kernels and the ordeensional tensors needed to expdiid) in multidimensional
of the system in mind, however. For example, we have segeries, are usually extremely sparse and in that case a product
that a general bilinear system will possess kerdélsof all of one of the4; and a vector:(*) can be computed iO(N)
orders and thus even fi(z) can be expressed exactly as, say, @perations ifN is the dimension of the vectorf®).
second-order multinomial, powers of the inpuito every order ~ The key to reduction of the nonlinear system in polynomial
may be significant in the output. series form is to note that with this realization of the multilinear

Computing the multimoments of theh kernel will involve forms, the reduced multilinear form&z, ..., z) can be ex-
1) inversion of the diagonal blocks,;, and 2) products with the pressed as the matrices
off-diagona_l matricesly; for j > L. Since the secqnd operation A =VTA VOV ®- V) (69)
essentially involves products with the tensor series terms, terms
that are sparse in many applications of interest, we expect #gcause of the Kronecker product identity [40]
bu:i('Of th(;,\ nurﬂer:jc?l effortttho ?(;,-hin th_e first sﬁfp. o with A(Vz@ Ve V)

is not so hard to see that the primary difficulty wi e

bilinear forms is that the dimension opf the s};ate spacye grows ex- =4 (VeVe - V)zez®--z). (70)
ponentially with the order of nonlinear approximation. Solving Mechanically speaking, given any projection matrix (69)
linear systems of equations whose size grows exponentiallytédis us how to perform the reduction. To see hdwmay
generally considered difficult. However, it is not actually nedse computed with accuracy comparable to that achievable
essary for the model reduction procedure to compute the extmt Krylov methods acting on linear systems, we adopt a
matrix solutions, only the subspaces needed for projection. Tveriational procedure commonly used for computing Volterra
linear equations involved in the proposed paradigm are highltgrnels [37]. Suppose we introduees a variational parameter

Consider again the system of (27). Assurfie:) may be
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and calculate the response of the system f(z) + B(au) as whereBy = A2(V; @ V1). The key point is that if the first-order

a function ofa. We may expand the response in a power serisgstem was adequately described by a reduced model obtained

in « from a projector matri¥/;, then the inputs to the second-order

) system must lie in the column spacei®f = A5(Vi®V;). Thus

w(t) = amy(t) + a”wo(t) + -+ (71) 1o obtain a spack; that will give a model for the second-order
response, we first compul§ whose columns are a basis for
K, ((soE — A)71E, (soE — A)~1B). Then we computé’

2P (t) =a?s® + 1 @ x2 +ws @ 1]+ -+ (72)  whose columns spali, ((soE—A)~LE, (soE—A)~'B,). The

It is clear that

23 (t) = a%f’) 4. (73) Pprocedure for higher orders c_n.c the nonline.ar expansion follovys
analogously. Note that the bilinear reduction scheme gave rise

and so to a similar nested series of projection spaces to compute.
ady(t) + oPaa(t) + - - This observation also gives us some insight into when re-
— adyy + a2[A1w2 4 Ap(mr @an)] 4. (74) duced models based on strictly linear information are useful. If

a spacd’, perhaps generated from the Kryl&( A, B), has

By comparing terms in the variational parameterwe may small projection onto the range of one of the multilinear forms
obtain a set of differential equations, ea¥khdimensional, that A,(V; ® V; - --®@ V;), then the resulting reduced model will not
describe the time-evolution of each of the likely be a good approximation to thgh order response. The
(75) only way to guarantee an accurate nonlinear representation is to

T, = Az Bu . ) . . .
! 1t include information about the higher order nonlinear terms ex-

g = Ayg + Ag(71 © 1) (76) plicitly in the reduction process as suggested above. Conversely,
i3 =Ajx3 + A1 @ 22 + 22 ® 21] if the span ofd,(V; ® V; --- ® V;) is already contained in the
+ Aslzy ® 11 @ 71] (77) spanofV, thenitis advantageous to “deflate” the spagsb-

. ) . ) . tained at higher order by performing a singular value decompo-
and so on. Each-dimensional set describes the time-evolutioBision, of [ViV, - -] and using the resulting singlé to perform

of anz,, that represents thieh order nonlinear response termsyhe projection. Using this approach, aggressive deflation is es-

The above variational analysis, though not widely familiar, igentia| to obtaining a reasonable size model when matching the

used in the SPICE distortion (.DISTO) analysis. frequency domain response of the higher order nonlinearities,

since, strictly speaking, the number of required terms grows ex-

ponentially with order of the polynomial expansion (just as the
The system describing the first-order response is a standg{inber of degrees of freedom of Volterra kernels does).

linear state-space system. To obtain a model of this system, we

would need to compute a Krylov subspace with starting vee. Time-Varying Weakly Nonlinear Systems

tors glven.by the column space Bf One approach [11.]’ [8] Finally, it is worth noting that the above analysis applies

to computing the matri’ that defines the basis for prOJectlonfOr a general operating point. In particular, by adopting the

is to note that the system describing the second-order respons=e. Jires of Section Ill. a .t'me- arvin ’ eaklv nonlinear

is alsoa linear state-space system with the same system mafiig ey : ' ime-varying weakly !

Ay itonly has different inputs. We may write more suggestivelgmdel reduction procedure can be derived. We omit the details

B. Reduction of Polynomial Forms

s they are straightforward. Essentially the proposed approach
To = A1 + Asus (78) matches “moments” of time-varying Volterra kernels. The
models can thus be used to predict intermodulation distortion
G%r;jd other nonlinear effects in RF circuits operating under
bgeriodic or quasiperiodic bias, as will now be demonstrated.

with the identificationus = x1 ® x1 wherez; is the state
vector from the first-order system. The input to the second-or
system isA, times the “squared” first-order response. To o
tain a reduced model that will match the frequency response of

the second-order component of the response, we must span the

Krylov space of the inputs to the second-order system, describedL TV Systems
by As.

Now suppose that the first-order system was reduced by
thogonal projection, with projection matrl% . The state vector
is approximated as,; = V;z1, wherez; is the state of the re-
duced first-order system. The second-order system become

VII. EXAMPLES

To test the time-varying model reduction procedure, the
%bposed algorithms were implemented in a time-domain RF
circuit simulator. The large-signal periodic steady state is
calculated using a shooting method [23]. The LTV system
Was discretized using variable-timestep second-order backward-
Eo = A1za + As(i1 ® 21) (79) difference formulas.

The first example considered was the switched-capacitor
filter previously discussed, running at a clock frequency of
25 kHz. This example generated 58 equations in the circuit
To = A129 + A2(Vh @ V)i (80) simulator, and 453 timesteps were needed to describe the
steady-state waveform. For the model reduction procedure, the
input function B(t) [see (14)] was a constant column vector,
Zo = Ayxo + Batlio (81) corresponding to the continuous small-signal input present at

or, by using the identityV121) ® (Viz1) = (V1 @ V1)(21 ® 21),
and with the identificationis = 21 ® 21

or more transparently as
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Fig.5. Receiver macromodel. The frequency of the sin and cosine elements is
the mixer LO frequency, 780 MHz.
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Fig. 4. Time-sampled switched-capacitor filter transfer function.

3
the filter input. To specify an output function, we took a samplz 5
function that was constant over a 200 ns-periqotsbefore the
clock edge at the start of the cycle. Essentially, the final mod
is a real LTI system that represents a transfer function betwe1.5
the continuous analog input and the sampled digital outpt
The amplitude of the transfer function, as a function of inpt
frequency, of the reduced model is shown in Fig. 4. 05p-----
Two nine-state models are shown in Fig. 4. The mod: ¢
shown with a dashed line was generated by matching nine i
moments at the origin. The dash-dot line, virtually identical to
the actual transfer function, was generated from matching thii@ 6. Transfer function of the mixer (solid) and the 15-state mixer model
real moments at the origin, and one moment at 200, 400, df@sh). from RF input to mixer output.
800 kHz on the imaginary axis. As these expansion points were
off the real axis, each complex moment in the Krylov spadéne-domain analysis, so that the matfixhas a rank of almost
generates two states in the final real model, corresponding2@0 000.
the Krylov vector and its complex conjugate. The multipoint A fifteenth order real-valued time-varying model was gener-
approximation is seen to be a better match. ated to represent the receiver conversion path from RF to output.
Another application of the time-varying model reduction maSince a model from multiple sidebands to mixer output was de-
chinery is to obtain reduced models for cyclostationary noiséred, the adjoint matrix was used to generate the model reduc-
[42], [43]. This can be done by computing a reduced modeion. In this case the time-varying elements appear before an
based on the adjoint system, from the point where noise is tolbd filter in the final model, as is shown schematically in Fig. 5.
analyzed to all the noise sources. Once this low-rank reducElde mixing elements shift the input from the RF frequency by
model is available, equivalent noise sources of the same rank @&0 MHz, the mixer LO frequency. Following these elements is
be computed using the standard singular value decompositiormanultiinput LTI filter whose response is shown in Fig. 6. The
QR procedure. Note that because they are based on the adjawer sideband rejection characteristic of this mixer is evidentin
procedure, unlike the approach described in [44], the mod#te model. If the model were used in a suppressed-carrier DSP
suggested here preserve information about noise sources. Insighulator, the mixing elements would simply be omitted.
dition, just as with the large-signal models, the noise modelsTable | shows the statistics for the computational costs for
can be constructed in time or frequency domain. Fig. 7 shott& reduced model extraction and evaluation. 200 frequency
the time-variation of the noise power given by a macromodpbints were considered in the filter example and fifty in the
of the cyclostationary noise from the same switched capacitoixer example. In both examples, the reduced model took
circuit. less time to extract than the single frequency sweep, and the
The second example is the complex image-rejection receiwaluation was vastly more efficient (in fact the overhead
studied in [45]. This receiver is a complicated circuit withn the code was sufficient that it was difficult to determine
several functional component blocks (a low-noise amplifieexactly how much time was consumed in the actual model
a splitting network, two double-balanced mixers, and twevaluation). Note the efficiency in particular of the reduction
broad-band Hilbert transform output filters). The entire ciref the switched-capacitor example. The time-varying model
cuit has 167 bipolar transistors and generates 986 equatibas a rank of 26 274, yet the reduced model was generated in
in the circuit simulator. 200 timesteps were needed for thomly 7 CPU seconds. Table | also demonstrates the efficiency

1..

650 700 750 800 850
RF Input Frequency (MHz)

600
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Fig. 7. Time-variation of sampled noise in the switched-capacitor circuit_, A . . . 1 A 1
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Fig. 8. Poles of linearized polynomial system and reduced models. (0): Poles
of unreduced system. (x):pPoles of linear-based reduced model. (+): poles of
nonlinear-based reduced model.

TABLE |
COMPARISON OF TIME-VARYING MODEL REDUCTION PROCEDURES
AND POINTWISE FREQUENCY SWEEPS THE FREQUENCY SWEEPSWERE
ACCELERATED BY THERECYCLED GMRES ALGORITHM. MVP REFERS TO
EQUIVALENT REAL—REAL MATRIX VECTORSOLVES WITH THE MATRIX L.
“REDUCE’ IS THE MODEL REDUCTION TIME IN SECONDS ORMINUTES, AND
“SoLve” THE CPU TIME REQUIRED TOOBTAIN THE FREQUENCY RESPONSE

distribution, because many of the poles contribute more or
less equally to the transfer functions at low frequencies. Mo-
ment-matching methods, on the other hand, can still capture

Circuit | MOR/Recycle | MOR/Std | Pointwise the transfer function accurately. In other words, Krylov sub-
MVP 45 99 410 spaces for different3, C vectors will be very different, so
SCF | Reduce s 125 - the reduced models are sensitive to the particular subspace
S"i;’; 116S6 I;ZO lz'gg‘ chosen. Because of this, we expect the model accuracy to
. M depend critically on deliberately matching the higher order
Receiver | Reduce 4m 48m - . s .2 .
Solve 2 s 35m multimoments. This is indeed observed in Fig. 9, which shows

the second-order Volterra kernBk (s, s), evaluated using the
variational procedure, along the diagonal in the two-dimen-
of the two-stage (“recycled”) procedure. In the case of thgonal frequency plane. A reduced model was computed using
filter, for an order-nine real model, only 18 applications ofhe polynomial-based procedure, to match two moments of
L~" were required in the recycled GMRES procedure thgie first (linear) and second (quadratic) order subsystems. This
obtained the moments. The remaining matrix vector produgfes a final model of order ten. In addition, another reduced
(or backsolves) were needed to perform the projection or for thghdel, of the same size but matching moments of only the
initial preconditioning steps. Even in the mixer example, whefgear subsystem, was also generated. As expected, the model
GMRES had much more difficulty converging, 124 backsolvagcorporating nonlinear information is a much better match
were needed for the reduction, about eight per model ordgf, jow frequency.
which is still good. The next step is to compare the bilinear- and polyno-
. mial-based procedures on more practical examples. One of the
B. Nonlinear Systems difficulties in testing nonlinear reduction schemes is demon-
The first nonlinear system example is an artificial one, comstrating that the algorithm genuinely reduces nonlinear com-
structed to demonstrate how in some cases information frgoiexity, not just a linear piece of the problem. A network
the linear part of the model alone [10], [9] is insufficient inwith many linear elements can be reduced much more easily
constructing an accurate projection subspace, but that includthgn if every element is nonlinear. Ultimately, we are inter-
nonlinear information in the manner suggested in this paper casted in studying problems such as RF circuits (mixers, power
improve accuracy. amplifiers, etc.) under time-varying bias conditions [11], but
To accomplish this, a random second-order polynomitd illustrate the concepts in this paper, we adapt an example
system, of order sixty, was generated. The poles of the lindamiliar from the linear model reduction literature, tRE€line.
part of the system were constrained to lie on an oval sep&fe introduce strong global nonlinearity by connecting a diode
rated from the origin, as show in Fig. 8. This pole distributiomn parallel with each resistor. This example is motivated by a
was chosen because linear reduction methods that are bgsethlem in [9]. We drive the circuit with a sine wave at one end
on eigenanalysis alone perform poorly for this type of polend observed the transmitted signal. By measuring distortion,
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Fig. 9. Amplitude of second-order volterra kernel of polynomial systenfid- 10. First, second, and third harmonics, in dBm, of nonlirR@rline.
Solid line: original system. Dashed line: polynomial-based model matchiﬂ—d‘e full system response is shown as the solid curves, and an order 11 bilinear

two order-one moments and two order-two moments. Dotted line: model baggduced model as the dotted lines, and an order 11 polynomial-based reduced
on purely linear information. model as the dashed curves.

an intrinsically nonlinear phenomenon, in the frequency-do- 0
main, we can separate the effects of the linear and nonline:
model contributions more cleanly than by observing time-do- _2o}
main simulations. Note that in our problem, nonlinearity and
capacitance is distributed throughout the network and so th  -40r
distortion will vary with frequency in a way that may be difficult
to approximate by approaches that do not explicitly conside § -69|
the nonlinearity in the model-reduction procedure. Harmonic®
balance was used to calculate the response of the original a
reduced system. The original line had thiRL sections, and
was driven sufficiently hard to produce second-order distor-
tion terms 20 dB down from the primary signal, ard0 dB ~120
third-order terms. This is enough distortion to indicate that
the approach presented here is capable of treating nonline _140
effects that occur in practical examples. 0 ) MHz
Fig. 10 shows computed results for two reduced models
as well as the original system. The first reduced model, 6iy. 11. First- second- and third-order response of RF mixer as a function of
order 11, was computed based on the bilinear form, desingéQi‘a' input frequency. The full system response is shown as the solid (0) curves
. nd the reduced model as the dashed (+) curves.
to match four linear moments and two second-order mulfi-
moments. The second reduced model, also of order 11 and
similar construction, was derived via the polynomial/varisstates, where is the rank of the matrixd;, but the bilinear
tional analysis. As expected, at low frequencies, the first- anepresentation hag+ ¢ states.
second-order harmonics are reasonably well approximated. IlNote also, that the bilinear procedure, while conceptually
addition, reasonable approximation of the third order term isore transparent, is more computationally demanding. Without
also observed. This is possible because at lower signal leveising special techniques to invert the diagonal blocks in (64),
the second-order term in the polynomial series expansionfd the small system here, the bilinear reduction procedure was
the dominant contributor to many higher orders of the systeabout sixty times slower than the polynomial method, due the
output response. Finally, note that the model generated diredtlyge increase in the size of the original state space. However,
from the polynomial system is generally more accurate. Thiyy exploiting structure (64) in specifically treating the inversion
is not surprising, because the bilinear representation of a giventhe diagonal blocks as a Lyapunov equation solution, the
polynomial system is always of larger order. For a fixed modeknalty dropped to about a factor of three.
order, we thus expect the polynomial form to give more accu-Next, we demonstrate reduction of weakly nonlinear,
rate models. Conversely, for a fixed degree of approximatidime-varying systems by computing a nonlinear reduced model
to the original nonlinearities, we expect the bilinear form tof an RF mixer. We compute the primary upconversion response
be somewhat more expensive. For example, for a second-ordemell as the first two terms generated by distortion (second-
polynomial expansion, the variational representation s and third-order responses in the formulation above). Fig. 11

-1001




PHILLIPS: PROJECTION-BASED APPROACHES FOR MODEL REDUCTION OF WEAKLY NONLINEAR, TIME-VARYING SYSTEMS 185

Fig. 12. Solid linex®. Dashed line: Second-order Taylor approximatiom®fNote that the Taylor series crosses above unity &t —2.

shows comparisons of the original system and a dimension-38or 2z < —2, the quadratic approximation is positive and
reduced model needed to match the frequency responsdanfier than unity. This means that when using the quadratic ap-
the first- and second-order nonlinearities, respectively, up pooximation in the expressiah= T,(e"/** — 1), forv < —2u;,
fourth and second order, respectively, in the frequency domaive approximate model will predict a (possibly very larép)
series expansion. Harmonic balance was used to calculatewaed current under reverse bias. A nonlinear device with a nega-
response of the original and reduced system. The generatiorivéd current—voltage product corresponds to an operating condi-
the reduced model required about four times as much compi@n where the approximated diode is generating energy; it is not
tation time as generation of the initial operating point and legassiveas all physical devices, including nonlinear ones, must
computation time than an LTV (i.e., first-order small-signalpe. This is a general property of polynomials. They are not well
analysis performed on the detailed circuit at the same dmthaved for large arguments, though the particular pathology
of frequency points. Good agreement is observed for tharies according to the approximation chosen. Neither, then, are
first- and second-order terms and the third-order responsetis reduced models likely to be well behaved, e.g., passive, ex-
interestingly, fairly well-captured, also. Even for this relativelgept by chance.
small circuit, compared to detailed simulation approachesTime-domain simulation of the nonlineRC line illustrates
such as multifrequency harmonic balance (or envelope-baskd behavior more concretely. Fig. 13 shows the origikéal
simulations) needed to capture the distortion induced by tliee and a quadratic polynomial-based reduced model with a
signal tones in the presence of the periodic local oscillator, theedium-strength input sinusoid. The input sinusoid is strong
model reduction procedure results in more than an order efiough to illustrate weak nonlinearity, as evidenced by the slight
magnitude reduction in computational complexity. degree of asymmetry in the response. Fig. 14 shows the same
Finally, we discuss one of the main drawbacks of methodlae with larger input signal. The deviation of the reduced model
based on local polynomial approximations. It is generalfyom the original is clearly visible. More interestingly, if the
appreciated that functional series approximations are onhputamplitude isincreased by a small amount, the time-domain
effective for weak nonlinearities, or, when the system is drivaesponse of the polynomial system diverges at abocut0.8.
by small inputs. Polynomial-based systems have the additioffdde time-domain simulation is unable to proceed beyond this
drawback that they may create pathological simulation behavimwint. Neither the polynomial approximate system, nor the re-
when operated outside the range of accuracy of the polynomdaiced model derived from it, can be used in time-domain sim-
approximation. To see why this is the case, consider examiniuaigtion for large inputs.
a second-order polynomial approximation to an exponential
nonlinearity, as occurs in the diode models for the nonlinear
RC line previously discussed. Fig. 12 shows the exponential
function and a quadratic Taylor approximation. Near zero, it is In this paper we have demonstrated extraction of simple
a good approximation, and becomes progressively worse #ard compact macromodels from nonlinear, time-varying
away. Of particular interest is the behavior of large negatiteansistor-level circuit descriptions. As the switched-capacitor
arguments. and receiver examples demonstrate, the methods presented are

VIII. CONCLUSION
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of linear systems has been concerned with preservation of
o8l 4/ system passivity. In the nonlinear context, an approximation
scheme that would preserve the passivity of networks con-
oer 1 taining nonlinear devices would be very useful.
0.4 E
APPENDIX

CONSIDERATIONS FORDESCRIPTORSYSTEMS

v(t)

While developing most of the nonlinear material, the assump-
tion £ = I was made. Procedures become more complicated
when itis not desirable or possible to put a system into this form
(for example F is not invertible, or nonlinearities appear under
-osf { the time-derivative). For example, in the bilinearization proce-
dure, by following precisely the procedure in Section V-C, we
can obtain the bilinear representation

4 02 0.4 0.6 08 1 12 14 1.6 8 2 Fi1
t
d Eo ®
Fig. 13. Weakly driven line, time-domain response. Dotted line: original E Es3 xz
system. Solid line: reduced model.
! ' ' ' ' ' ' ' ' ' Ann Ar
o8} . Az Aso ®
= Az Az z
06 . .
0.4} E
= = 0 0
By 0 0 i, B
+ Bsy 0 %u+ | 0 [u (82)
= ] e®
y=[C 0 |z (83)
where
Ew=E®E®---QF (84)
1
o oz 04 o5 o8 1 12 4 6 8 2 (k — 1 Kronecker products) and now

Fig. 14. Strongly driven line, time-domain response. Dotted line: original Ajp =400 - QE+EQ A @ - ®F
_system. S(_)Iid line: reduced model. Dashed line: reduced model at 1% large 4+ -+ EQFE®---® A (85)
input amplitude.

and
capable of extracting compact models from large circuits with Bjo=BQE® - QE+EQB®---QF
complicated underlying dynamics. We investigated in some +EQFE®---® B. (86)
detail the potential, and drawbacks, of two approaches for ) ) ) o )
reduction of weakly nonlinear systems. The bilinear-based ap4f @ nonlinearity appears under the time derivative, as in

proach is attractive for analytic work, but the polynomial-based d
approach seems to be computationally more desirable. it g(z) = f(z) + Bu (87)
After this investigation, it seems that most of the advan- y=Cxr (88)

tages of the Krylov-subspace-based schemes, in being able to

approximate system dynamics on a large scale, will be tranistoo, must be expanded in series
portable to the time-varying and the nonlinear setting. The ) @) @)
major challenges appear to be reduced representation of non- g(@) = Giz" + Gor' ¥ + Gz + - (89)

linear functions. The first challenge is efficient representatio(ragain we assume expansion around an equilibrium point) and

of strong nonlinearities. The size of the terms in the polypq aqgitional terms under the time derivative appear in all fol-
nomial expansion grow exponentially with expansion ord%wing expressions, such as the state equation,
in practical terms, limiting their usefulness to order two or

three. The second challenge is to devise a method, with global Giae® 4 Gor® 4 Gar® ...
approximation properties that are well behaved in the sensedtf[ Lo G G ]
not representing nonphysical objects. Much work in reduction = A1z + Ay2® 4+ A32®) + ... + Bu  (90)
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and the equation for the second-order subsystem of the varigg4] ——, “Efficient AC and noise analysis of two-tone RF circuits, Rroc.
tional equations
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7 [z2 + Go(z1 ® 21)] = A122 + Ao (21 ® 21).
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