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Projection-Based Approaches for Model Reduction
of Weakly Nonlinear, Time-Varying Systems

Joel R. Phillips

Abstract—The problem of automated macromodel generation
is interesting from the viewpoint of system-level design because if
small, accurate reduced-order models of system component blocks
can be extracted, then much larger portions of a design, or more
complicated systems, can be simulated or verified than if the anal-
ysis were to have to proceed at a detailed level. The prospect of
generating the reduced model from a detailed analysis of compo-
nent blocks is attractive because then the influence of second-order
device effects or parasitic components on the overall system per-
formance can be assessed. In this way overly conservative design
specifications can be avoided.

This paper reports on experiences with extending model
reduction techniques to nonlinear systems of differential–alge-
braic equations, specifically, systems representative of RF circuit
components. The discussion proceeds from linear time-varying,
to weakly nonlinear, to nonlinear time-varying analysis, relying
generally on perturbational techniques to handle deviations from
the linear time-invariant case. The main intent is to explore which
perturbational techniques work, which do not, and outline some
problems that remain to be solved in developing robust, general
nonlinear reduction methods.

Index Terms—Circuit noise, circuit simulation, nonlinear sys-
tems, reduced-order systems, time-varying circuits.

I. INTRODUCTION

DESIGN of modern mixed-signal systems begins and ends
at the system level. Particularly in communications appli-

cations, such as wireless systems described in signal-processing
terms, correct operation of the mixed-signal components must
be verified in the context of the overall system design. Op-
eration of analog components, however, is tied closely to the
lowest level details of implementation. In a mixed-technology
context, it is thus necessary to provide efficient mechanisms
for assessing the impact of the implementation details at var-
ious levels of abstraction. Most critical is final verification of
system performance, including detailed effects of implementa-
tion tradeoffs, process limitations, and parasitic effects. Lack of
effective verification can lead to costly redesigns and multiple
silicon respins. The premise of this paper is that model-based
approaches that can propagate circuit performance characteris-
tics, in a bottom-up manner, to the highest levels of abstraction
will provide the needed mechanism to assess low-level effects
in system-level design and verification.

The implied need is the ability to generate reduced com-
plexity models of the end-to-end behavior of circuit blocks,
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that incorporate transistor-level effects, but are suitable for
simulation at system level. These macromodels can be used
to perform rapid system-level simulation of engineering
designs that are too complicated to analyze at the detailed
component level. It is desirable that the model generation step
be performed without requiring additional modeling expertise
from designers, and without introducing major new steps into
already tight schedules. The accuracy of the models must be
predictable and controllable. These constraints motivate inves-
tigating automated model extraction procedures, in particular,
model reduction strategies.

Model reduction refers to the procedure of automatic gen-
eration of system macromodels by direct operation on the
lower-level, detailed descriptions. Compared to approaches
that attempt to fit models to observed system behavior, model
reduction approaches can easily obtain accurate, robust models,
and usually with considerably less effort. Because the macro-
models are obtained by operations on the original system
itself, reduction can obtain and exploit information about the
internal structure of the system to be approximated. For ex-
ample, in a linear system, Krylov-subspace-based reduction
methods can obtain very accurate information about pole loca-
tions and multiplicities in high-order, multiinput, multioutput
systems. Such information is much more difficult to obtain
by analyzing frequency response or time-series data. Second,
because of access to the original system, more effective control
of error in the model is possible. Finally, only by generating
macromodels from detailed physical descriptions of compo-
nents can the influence of complicated second-order physical
effects ultimately be included at the system level. Thus an
essential feature of reduction approaches is a relatively thor-
ough control and assessment of approximation errors that is
gained by formal analysis of the reduction algorithms.

Reduction algorithms have met with considerable success
for modeling lumped, linear time-invariant (LTI) systems such
as electrical interconnect. The most successful algorithms
for reduction of large-scale linear systems have beenprojec-
tion-based approaches [1], [2]. Algorithms such as PVL [3],
Arnoldi methods [4], and PRIMA [5] obtain reduced models by
projecting the linear equations describing the LTI model system
into a subspace of lower dimension. The subspace chosen
determines the approximation properties of the reduced model.
These algorithms exploit the connection between Krylov sub-
spaces and rational approximation to develop algorithms that
have a known relationship to the frequency-domain characteris-
tics of the system, for example, matching the transfer function
and some of its derivatives at various points in the complex
plane. Because the algorithms rely only on simple operations
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such as matrix–vector products and linear system solutions,
they can be applied to very large systems if efficient algorithms
for products and solutions are available. And they usually are.

The motivation for the work described in this paper was
examining the extent to which work on model reduction for LTI
systems can be leveraged in analyzing a wider class of systems,
as mixed-technology systems generally have parts that cannot
be modeled as LTI. RF circuits form a particularly interesting
application area as they illustrate frequency conversion and
distortion effects that cannot be predicted by LTI models. In
addition, an effective reduction algorithm must also provide a
solution to the difficulty of modeling the multiple timescales
that occur in RF circuits.

Many systems that are not LTI can be accurately modeled
as linear time-varying (LTV). For example, if a nonlinear cir-
cuit model is linearized around a time-varying large signal, the
resulting model is LTV. Clearly, the set of circuits that can be
accurately modeled as LTV is much larger than the set that can
be described as LTI. Many RF components (e.g., mixers and fil-
ters) are designed to have a near-linear response in the signal
path, but may have a strongly nonlinear response to other ex-
citations, such as the clock of a switched-capacitor filter, or a
mixer’s local oscillator. Such components are prime candidates
for LTV model reduction, as several performance metrics, such
as gain, noise, and bandwidth, can be predicted by analyzing an
LTV description of the circuit.

Model reduction algorithms for time-varying systems are
known [6], [7], but not as well-developed or as widely used as
model reduction for LTI systems. More importantly, the known
algorithms do not produce quite the right results that are needed
for mixed-technology modeling. The first task of the paper will
be to 1) show how models suitable for system simulation can be
described from a transistor-level, LTV description, and 2) show
how projection techniques suitable for reducing large-scale
systems can be applied to generate the models.

The next step beyond modeling LTV systems is to show how
model reduction algorithms can be applied to systems that ex-
hibit weak nonlinear responses. Including effects of weak non-
linearities generally can extend the range of accuracy beyond
that achievable with linear models. Weakly nonlinear analysis
is particularly useful in RF communications circuits because the
signal path is designed to be close to linear, and it is of great in-
terest to characterize the lowest-order deviation from linearity.
In RF systems are also an interesting test case because it is nec-
essary to combine the weakly nonlinear and time-varying model
reduction approaches into a single algorithm.

The approach of the paper will be to first review methods for
reduction of LTI systems and leverage these techniques to pro-
duce a method for reduction of LTV systems. Next, approaches
to nonlinear, but time-invariant systems will be discussed, and
finally the methods will be combined into a technique for re-
duction of weakly nonlinear, time-varying systems. While not
presenting a complete solution to the nonlinear model reduc-
tion problem, the paper will present some basic first results in
the area, compare and contrast with similar methods developed
concurrently [8]–[12], and speculate on the most productive av-
enues for future investigation.

II. M ODEL REDUCTION FORLTI SYSTEMS

In this section we will review model reduction techniques for
LTI models. Consider the LTI state-space model

(1)

where , , , ,
define the model dynamics, , is the internal state,

is the input, is the output, is the system
order, and and are the number of system inputs and out-
puts, respectively. If , the system (1) describes a set of
linear ordinary differential equations (ODEs) in normal form. If

but is nonsingular, (1) describes an implicit set of ODEs,
and if is singular, (1) describes a set of differential–algebraic
equations.

A projection-based reduction scheme involves selecting a ma-
trix whose columns span a “useful” subspace, and drawing an
approximation from this subspace as . Equations
for the reduced system are obtained by defining the residual

and requiring the residual to be orthog-
onal to another space , . The state-space equations
for the reduced model are then given by

(2)

where

(3)

It is usually (but not always) the case that . If ,
the projection is said to beorthogonal,as the residual will be
orthogonal to the basis space spanned by. We will mostly use
orthogonal projection schemes in this paper.

Most reduction schemes can be cast into the projection
formulation, the various techniques differing in the choice of
the matrices and . Roughly speaking, and in increasing
order of rigor, three main strategies for choosingand may
be identified: heuristic schemes, methods based on rigorous
system-theoretic analysis [13], [14], and parameter-matching
techniques. Heuristic schemes include choosingand
based on eigenvector analysis, which leads to reduced models
that (exactly) preserve a subset of the poles and residue matrices
of the larger model, but do not necessarily match the frequency
response well. Techniques such as truncated balanced real-
ization [13] have only recently been applied to large-scale
systems, and rely on a Krylov (i.e., parameter-matching)
technique as an initial step. As a result, the parameter-matching
schemes are popular because it is often relatively easy to obtain
an approximation space of small dimension that results in
accurate macromodels. The popular model reduction schemes
are based on the theory of Krylov subspaces.

Definition 1—Krylov Subspace:The Krylov subspace
generated by a matrix and vector , of order

, is the space spanned by the set of vectors
.

The essential elements of Krylov-subspace-based reduction
are given by

Theorem 1: Suppose , then
, for .

Proof: See [2].
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To see why this is useful, consider writing the state-space
model in the Laplace-transform domain

(4)

or where the transfer function is given
by

(5)

The transfer function is a rational function in ,
so it seems logical to approximate it in turn with a rational func-
tion, such as a Padé approximant [15]. Pade approximants, and
most of the other approximants used for model reduction, have
the property that they match the transfer function and some of its
derivatives with respect to. That projection generates rational
approximants is clear from the fact that the reduced transfer
function is also a rational function,
because the reduced model is also a linear state-space model.
Theorem 1 connects the moments to the projection matrix
and is the key to the model reduction procedure. Note that the

th derivative, ormoment,of the transfer function is given by
. Clearly the approximants we wish to gen-

erate are connected with powers of the matrix acting on
. These ideas are summarized by the following theorem.
Theorem 2—Krylov-Subspace Model Reduction:If the

columns of span , then the reduced-order
transfer function matches the first moments
of the original transfer function .

Proof: Follows from the Taylor expansion of
and Theorem 1 [1], [2].

Equally important is the following.
Theorem 3—Adjoint Krylov-Subspace Model Reduction:If

the columns of span , then the re-
duced-order transfer function matches the first

moments of the original transfer function .
For example, in the PVL algorithm [3], which forms a Pade

approximation and is, thus, equivalent to the asymptotic wave-
form evaluation [16] technique because of the relation between
Lanczos algorithm and Pade approximants [17], the choice of

and is , where and
contain the biorthogonal Lanczos vectors, and in one variant
of model reduction based on the Arnoldi method [4],

where is the orthonormal matrix gener-
ated by the Arnoldi process. PRIMA [5] uses ,
where the columns of span a Krylov space.

More generally, given a low-rank matrix that maps state-
space model inputs to the model internal state, by computing a
matrix whose columns span ,

, we may derive a reduced model such that the transfer
function of the original and reduce system will match up to
the th derivative about the point in the complex plane.
The essential computation in this procedure is the application
of to a vector. This approach can be extended to
the case of multipoint approximants where the transfer function
and some of its derivatives are matched at several points in the
complex plane [2], [18]–[21]. In this case and must con-
tain a basis for the union of the Krylov subspaces constructed at
the different expansion points.

III. M ODELING LTV SYSTEMS

A. Time-Varying Systems in a Mixed-Technology Context

The time-varying analog to (1) is the state-space model

(6)

In integrated circuit applications, the most common origin
of LTV systems is by linearization of a nonlinear system of
equations around a time-varying operating point. For example,
to obtain an LTV circuit description, from, say, a set of circuit
equations written using modified nodal analysis [22], first the
differential equations describing the circuit are written as

(7)

where represents the input sources, describes the node
voltages, is the relation between voltages and currents, and
the function relates voltages to charges (or fluxes) internals.
We have written the voltage and input variable with the
superscript to indicate that they are total quantities that we
will split into two parts, a large-signal part and a small signal
part, in order to obtain an LTV model

(8)

By linearizing around , an LTV system of the form

(9)

where and
are the time-varying conductance and capacitance matrices, is
obtained for the small response. To relate to the standard no-
tation, we may make the identification

.
Formally speaking, we could consider obtaining a reduced

model in similar form by applying a projection operation with
matrices and just as in the time-invariant case

(10)

This model is of potentially smaller dimension, and thus lower
computational cost, than the original model (6), but it is not in
a form suitable for use in higher level simulation.

To motivate the development of a reduction algorithm, let us
first consider two special cases of interest in integrated circuit
applications. Then we will present a general purpose modeling
algorithm. Both example problems are periodic time-varying
systems, where , ,

, for some fundamental period. The first
example relates to systems with a time-varying operating point
that are sampled at the output, the second to systems, such as
RF transceivers, that convert narrowband communications sig-
nals between well defined carrier frequencies.

First, consider a switched-capacitor filter problem. A
five-pole low-pass switched capacitor filter, containing 71
MOSFETs was simulated and the LTV response to a 1 kHz-si-
nusoid computed. The results are shown in Fig. 1. The jagged
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Fig. 1. Response of the switched-capacitor filter to a small 1-kHz sinusoid.

Fig. 2. Pictorial representation of models for LTV systems. Top: The original
circuit contains periodic time-varying sources and nonlinear devices linearized
around a time-varying operating point. Inputu(t) generates outputs at all
harmonics of the fundamental period. The outputs contain fast time-varying
behavior even if the inputs are simple. Bottom: The LTI-reduced model, which
is smaller, and contains no details of time-varying behavior and no time-variant
elements. Time-varying behavior (sampling, a fast carrier, etc.) is abstracted
away. The original outputs could be recovered by introducing time-varying
components external to the reduced model, but this is not desirable in high-level
modeling.

waveform shape is a result of the strong nonlinearity of the filter
with respect to the clock. Incorporation of such effects is the
point-of-time-varying modeling. An LTI system would produce
a smooth sinusoid, shifted in phase and scaled in magnitude,
as a response to this input. The output of the filter, however, is
usually followed by a function (e.g., the sample/hold of an A/D
converter) that discards the filter output outside some small
sample time window. To model this system at a higher level,
we would need a reduced-order model that relates continuous,
sinusoidal inputs to the window of output that the following
circuitry (the sample and hold) needs. This can be achieved
by choosing to be a constant matrix , and to be
the sampling function. The output can then be interpreted
in a discrete time sense. In the final model, the internal rapid
time-variation of the operating point will not appear. It has

been abstracted away, further increasing the efficiency of later
high-level simulation.

A similar abstraction is desirable when modeling RF sys-
tems. Here, because of the presence of a high-frequency car-
rier, the time-variation of the system can be at a very fast rate,
much faster than the data signals passing through the transceiver.
Often, it is desirable to extract a model than represents only the
“baseband-equivalent” behavior of the model. The time-varying
carrier will be abstracted away. In this view, the spectrum of the
signals of interest is concentrated in a narrow band around the
harmonics of the fundamental frequency ( if
is the period of variation) or frequencies. We desire models that
represent the transfer functions between inputs in one frequency
band, and outputs possibly in the same or another frequency
band. These transfer functions can be interpreted, as in the LTI
case, as the system response when a single frequency sinusoid
is applied to the inputs. In circuit problems, since the physical
inputs and outputs are fixed, the transfer-function model can be
achieved, as in [23], [24], and in most harmonic balance codes,
by choosing the columns of and/or rows of to have
sinusoidal time-variation. If we can construct reduced models
that represent these transfer functions, we will have a modeling
algorithm that not only reduces the size of the internal systems,
but also abstracts away the fast time-varying behavior (Fig. 2).
Therefore now we proceed to see how these transfer functions
may be calculated.

B. Model Reduction for LTV Systems

In model reduction of LTI systems, most progress has been
made in exploiting rational approximations to the frequency-do-
main transfer functions. Thus motivated, we adopt the formalism
of Zadeh’s variable transfer functions [25] that were devel-
oped to describe time-varying systems. In this formalism, the
response can be written as an inverse Fourier transform
of the product of a time-varying transfer function and the
Fourier transform of and . That is,

(11)

To obtain the frequency-by-frequency response, we letbe a
single-frequency input, , and see that

(12)

Writing and substituting into (9), an equation for
(which is a matrix with as many columns ashas) is obtained
as

(13)

These equations may also be obtained from the multivariate-par-
tial-differential-equation formalism [26], [27]. Note that, since

comes from a lumped linear system, it will be a rational
function with an infinite number of poles [28]. For example, in
a periodically time-varying system with fundamental frequency

, if is a pole (in particular, a Floquet multiplier) of the
system, then , an integer, will be a pole of .
This is because signals can be converted by harmonicin the
time-varying description from a frequency to the pole
at .
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Because, for the lumped time-varying systems considered
here, the time-varying transfer functions are rational functions,
it seems reasonable to believe that reduced models can be ob-
tained from the same sorts of rational approximation paths that
have been so profitable for reduction of LTI systems. Therefore,
we first seek a representation of the transfer functions in terms
of finite-dimensional matrices.

To perform actual computation of the transfer functions, we
discretize the (13). Because the focus of this paper is on peri-
odic LTV systems that occur in RF applications, at this point
we also introduce explicit assumptions about the time-variation
of the system, and explain how the input–output mappings are
incorporated into the model reduction procedure.

Following [29], [23], and [24], in the example case of a back-
ward-Euler discretization, (13) becomes

(14)

with

...
...

(15)

...
(16)

(17)

and

(18)

where , , ,
, and is the th timestep.

With additionally

(19)

where , the matrix of baseband-equivalent transfer
functions is given by

(20)

The discretization procedure has converted the time-varying
system of (13) to an equivalent LTI system, of dimension
larger by a factor equal to the number of timepoints in the
discretization. At this point, any of the algorithms developed
for reduction of lumped LTI systems can be applied to the
matrices and vectors defined in (15)–(20). The result will be an
LTI state-space model that represents the baseband-equivalent
transfer functions in .

C. Two-Stage Approximate-Solve Computational Scheme

In [24], the transfer functions from a small-signal sinusoidal
input to sinusoids at harmonics of the output were obtained by
solving the finite-difference equations

...
...

...

...
(21)

where , is the fundamental period, and
. The transfer function is then given

by .
It is now convenient to decompose into a lower trian-

gular and an upper triangular piece, . Using the
expressions for and , (21) becomes

(22)

If we define a small-signal modulation operator ,

...
...

(23)

then we can make the identification

(24)

and more importantly we make the identification that

(25)

The left- and right-hand sides of (25) differ because of the way
the small applied test signal was treated. The left-hand side cor-
responds to a spectral discretization, and the right-hand side to
a finite-difference discretization.

Suppose we need to solve (22) for some right-hand side.
Again following [24], consider preconditioning with the matrix

. Because is lower triangular, with a small block bandwidth,
block Gaussian elimination is very efficient at computing the in-
verse acting on a vector. In this procedure, once thediagonal
blocks have been factored, an operation that must be performed
exactly once, then every application of the inverse is anstep
procedure, at each step needing a backsolve with the factored
diagonal matrices and multiplication by the blocks off the diag-
onal. There is one off-diagonal block in each row for the simple
backward Euler discretization. The preconditioned system can
be written as

(26)

Suppose that (26) is solved by a Krylov-subspace-based itera-
tive method such as GMRES [30].1 Because the Krylov sub-

1These are different Krylov subspaces than the ones used for model reduction.
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space of a matrix is invariant to shifts [31], [24] of the form
, the same Krylov subspace may be used to solve

(26) at multiple frequency points. This “recycled Krylov sub-
space” algorithm is made even more efficient [24] by exploiting
the special structural properties of , and because the spec-
trum of , being related to the Floquet multipliers of the
LTV system, is usually clustered. The recycling of the Krylov
space also accelerates solution with different right-hand sides.
The final point is that systems of the form (22) may be solved
very efficiently for different frequencies and right-hand side
vectors.

To see how the finite-difference form can be used to derive an
appropriate basis for projecting the matrices , , ,
and in order to give the final reduced model, consider what
would happen if the matrix used for the projection was not a
basis for the Krylov subspace of , but instead
a nearby matrix. The reduced model would still be a projection
of the original, the difference being that interpolation conditions
would be only approximately satisfied. If the approximation of
the interpolation conditions (or matched moments) was com-
parable to or less than the accuracy desired in the final model,
these additional errors would be negligible. This suggests that
the basis for the projector in the model-reduction procedure be
obtained by using the finite-difference equations. Because the
basis will be a good approximation to the Krylov subspaces of
the spectral operator, good reduced models will be obtained.

The overall algorithm can be seen as an example of a
two-stage model reduction scheme. In the first stage, Krylov
subspaces are accumulated for several .
A single basis is constructed to span the union of these
spaces. is constructed such that (22) can be solved to an
appropriate tolerance at each, by adding in to the overall
basis the Krylov space of minimal necessary
size. The solutions to (22) are used to construct a second basis

. This basis is used to form the reduced model of via
the projection equations. In addition, because of the recycled
Krylov scheme, obtaining projectors from expansions about
multiple frequency points is essentially no more expensive than
single-frequency-point expansions.

IV. NONLINEAR SYSTEMS MODELING

A. Formal Projection Operations

To illustrate some of the difficulties in developing nonlinear
reduction algorithms, let us contrast the behavior of generic
linear and nonlinear state-space models under projection-based
reduction. The Krylov-subspace-based projection schemes
work for large-scale linear systems for four reasons. First, good
choices for the subspace defined byexist. Rational approxi-
mation paradigms suggest matching properties of the transfer
function. Second, the columns of the matrixcan be efficiently
obtained. Only products with or solution of linear systems

are required, and thus any sparsity or special structure
of the underlying linear system can be exploited. Therefore,
reduced models can be efficiently obtained as typically only a
small number of matrix–vector products are needed. Finally, the
reduced models can be efficiently simulated. This is guaranteed
by construction, since the reduced models have the same form

as the original equations, i.e., linear systems of differential
equations, but of much lower dimensionality.

In contrast, consider a system with a nonlinear state-evolution
function

(27)

where : . Circuit equations can always be put
into this form, possibly by introducing additional algebraic
variables. We may formally apply the projection recipe to this
system of equations to obtain a “reduced” model

(28)

where are as before. Several difficulties with this
approach are apparent.

First, it is not at all clear how to choose, and even less is
known about efficient computation. Approaches based on anal-
ysis of the linearized model have been proposed [32], [9], but
by definition such approaches do not include information about
nonlinear model properties. Heuristic approaches based on the
singular value decomposition of a statistically representative
sampling of the state-space have met with some success
[33]–[35], but the computations are extensive and little control
over model accuracy is available. Balancing based procedures
exist in theory [36], but it is not clear how they may be com-
puted. More importantly, in the general case, interpreting the
term as areducedmodel is problematic.

Since is a nonlinear function, may not be generally
passed through the parentheses. It is always possible to evaluate

by explicitly constructing , evaluating the
nonlinearity and finally explicitly projecting onto
the reduced space by multiplication with . However, except
in special situations (e.g., large linear subnetworks), if there
are degrees of freedom in the detailed circuit description,
then evaluation of the model will require operations. As
a result, efficient simulation is not guaranteed. For example,
in nonlinear circuit simulation, even for circuits with tens of
thousands of nodes, roughly half the simulation time is spent in
evaluation of the nonlinear function. Thus, regardless of the
reduction in the size of the state space, if the original function

must be evaluated, the efficiency gain in moving from the
detailed to reduced model will be at most a factor of two or
three.

For a reduced model, we seek a model evaluation cost that is
related only to the complexity of the system input–output rela-
tionship, not to the size of the underlying system. Suppose that
the detailed system description arises from discretization of a
partial differential equation. As the discretization is refined, the
dimension of the unreduced state-space model grows. However,
for a fixed set of inputs and outputs, and a fixed accuracy re-
quirement, past a certain point, increasingly fine discretization
has little effect on the transfer function in a bounded frequency
range. Therefore, we expect that if the system transfer function
can be approximated by, say, a fourth-order rational function, a
reduction algorithm can generally obtain a reduced model with
number of states not greatly exceeding four, regardless of the
size of the underlying detailed description. In a circuit context,
the reduction algorithm should be able to discard states that arise
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from overly detailed representation of parasitic elements, and
increasing the number of parasitics beyond this point should not
affect the final model size. These properties must be retained in
effective nonlinear reduction algorithms.

As a first step to such a viable general-purpose algorithm,
we will first show how to extend the rational approximation
paradigm to the nonlinear case, thereby providing a sound
theoretical basis for selection of the subspace spanned by.
Our emphasis is not so much on proposing a specific algorithm
as in showing that, for sufficiently well-restricted classes of
nonlinear systems, algorithms with provable approximation
properties and finite computation time exist, and that these
algorithms generate models with reduced dimensionality and
model complexity.

Since to obtain reduced descriptions of nonlinear systems,
it seems necessary to reduce the complexity of the nonlinear
function, we begin by examining how to approximate nonlinear
systems input/output behavior.

B. Functional Series Expansions

Consider again the system of differential equations in (1).
This state-space model defines a linear functional:

that maps on the past time interval to the output
at time . Specifically, the output of our LTI system

may be expressed in the time domain using the convolution
representation

(29)

where is the kernel, or in the frequency domain, as
where is the Laplace transform of . The

nonlinear system of differential equations (27) also defines a
functional : that maps on the past time
interval to the output at time , but is nonlinear
because is not a linear function.

For a nonlinear system, quantities analogous to the convolu-
tion operator may be obtained by performing a functional series
expansion of the output that has the general form [37], [38]

(30)

where is the th-order response

(31)

The top system shown in Fig. 3 represents this sort of
term-by-term decomposition of the response. Theth term in
(31) represents an-dimensional convolution of products
of the input with an -dimensional kernel .
In a circuit context, the th order term gives rise to theth
order distortion products. Series expansions of the form (31)
can be shown to exist for a broad class of nonlinear systems
[39]. Volterra series, for example, may be considered a Taylor
series expansion of the nonlinear functional:

Fig. 3. Pictorial representation of models and model reduction of weakly
nonlinear systems. Top figure: The original circuit response is expanded
in a series of powers of the inputwaveformu(t) and the first few terms
retained as an approximation. Bottom: The variational-based reduced model
(Section VI-B) has one set of linear-state-space equations for each order in the
truncated functional series expansion of the circuit response.

that maps on the past time interval to the output
at time .

The Laplace transform of the output is likewise
given by a sum of terms

(32)

where each is related to a multidimensional response func-
tion by

(33)

with the responses related to the input by the frequency-domain
kernels

(34)

and we have defined the multidimensional Laplace transform
as

(35)

From (33) it is clear than theth kernel represents th
order distortion products that result in inputs at frequencies

generating an output response at the frequency
. If we construct a reduced model whoseth

kernel matches the original system kernel
, then will approximate for (at least) terms

in the th order. If the nonlinearity of the system is sufficiently
weak and/or the input sufficiently small, matching the first few
kernels will allow the reduced order system to approximate the
full nonlinear system.
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V. NONLINEAR REDUCTION PROCEDUREUSING

BILINEAR FORMS

It is instructive to begin by examining a special class of
nonlinear systems, bilinear state-space models, where the
kernels in the functional series expansion are easy to calculate.
After showing how to calculate the kernels for bilinear systems,
we will show how to apply Krylov-subspace-based model
reduction to obtain reduced models with accuracy guarantees
on the reduced kernels. Next, we will show how general weakly
nonlinear systems can be embedded in a bilinear system
of higher dimensionality, which leads to a general weakly
nonlinear model reduction procedure.

A. Bilinear State-Space Models

Bilinear state-space models are nonlinear systems whose
state-space equations have a special form, bilinear in the state

and the inputs . By “bilinear” it is meant linear in and
individually, but not jointly. A -input bilinear system has the
form (where we will take , for now, to simplify notation)

(36)

where and denotes theth component of .
The terms are responsible for the nonlinear response of
the system.

For the moment, in order to simplify notation, let us restrict
the analysis to single-input, single-output systems, and further
impose the restriction that . A nonzero initial state will
lead to an additional series in what follows. To analyze bilinear
systems we construct a functional series representation of the
state response . For simplicity, for the moment we restruct
to the single-input, single-output (SISO) case, , and let

.
Theorem 4: The Laplace transform of theth order kernel

describing the response of the SISO bilinear system to input
is given by

(37)

Proof: See [37].
It will be convenient to express the frequency-domain kernels

in what is called the regular form [37]

(38)

so we have

(39)

B. Reduction of Bilinear Forms

Assuming that an appropriate-dimensional subspace has
been identified as the range of with , re-
duction by orthogonal projection proceeds precisely as in the
linear case, by first identifying the approximate state ,

and then defining the residual
and imposing the Galerkin condition . We obtain a
reduced model

(40)

where

(41)

The reduced bilinear system is also bilinear, but of dimension
, and if , substantial computational savings can be

achieved. The key point is that, in contrast to general nonlinear
functions, the nonlinear part of the system, as represented by the
matrix , can be compressed by the projection operation. Now
we address the choice of the matrix.

To see how to extend the rational approximation properties of
the Krylov-subspace methods to bilinear systems, consider the
second-order regular kernel, given by

(42)

Similarly, the kernel for the reduced system is

(43)

The natural generalization of moment-matching is to require
that and agree to terms in , i.e., that

be a multidimensional partial Padé approximation of. The
two-dimensional Taylor series expansion of is

(44)

We call terms of the form a multimo-
ment. We now show how Krylov-subspace algorithms lead to
reduced models that match multimoments.

Suppose we construct a such that for
, i.e., . This is the condi-

tion for thefirst-order kernels, i.e., the transfer function of the
linearized model, to match up to terms in (see Theorems
1 and 2), or in other words, for ,
where . Now construct such that

, and construct such that
. Then we must have

(45)

where now , , because .
In addition, if we take any , so that
for some , we have

(46)

The key point is that, by construction, for
. Thus,

(47)
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so we may conclude that

(48)

and that , , etc., is the desired model.
This result is easily generalized.
Theorem 5: Given

(49)

(50)

where ; , , ,
, , suppose

(51)

(52)

(53)

Then if

(54)

and are the order- regular kernels of the models
and respectively,

(55)

for .
Proof: Follows directly from Theorems 1 and 2 via the

procedure above.
Clearly, generating models that match many moments of high

order kernels could be numerically expensive, particularly for
systems with many inputs, and practical implementations will
require careful selection of the minimum number of moments to
be matched at each nonlinear order, deflation procedures, prin-
cipal component selection of the spaces[1], and so forth.

C. Bilinearization of General Nonlinear Forms

Again consider the system of (27), and for simplicity, assume
. Assume may be expanded in a multidimensional

polynomial series

(56)

where each is a -multilinear form. For example is
linear in the argument, and may be written as a matrix

. is bilinear in each argument, that is,
and similarly for the second

argument. For now the analysis will proceed by constructing
a bilinear representation of the system [37]. Our

goal is to guarantee accurate nonlinear representation by in-
cluding information about the higher order nonlinear terms ex-
plicitly in the reduction process. Later in the paper we will con-
sider the prospect [9], [11], [8] of forming reduced models by
applying a projection formalism directly to.

A concrete representation of the may be obtained by using
Kronecker forms. In particular, define

etc. (57)

The polynomial series expansion for may be written as

(58)

so that

(59)

where . The coefficients may be obtained via
several means. They may be Taylor series coefficients, obtained
either analytically, via numerical differentiation,2 or through
automatic differention of the computer program describing the
function . Or, the coefficients may represent more gen-
eral polynomial fits, either to available device model behavior,
or to data tables.

In any event, the bilinear model is obtained by defining a new
state variable,

...

(60)

To do this, note that the time-derivative of a term is related
to the time-derivative of the original state,, and a term of one
order lower, . For example,

(61)

where and .
Continuing this process, we will obtain a bilinear realization

(62)

(63)

2Accurate numerical differentiation will be limited to relatively low orders,
about two orders more than the highest order expression available analytically.
For example, if the Jacobian is available analytically, a fairly accurate approxi-
mation of the third-order coefficients can reasonably be expected.
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for the original nonlinear system, where

...

(64)

...

(65)

...

(66)

, and
where there are Kronecker

products in each term, andterms. Similarly is given by
.

D. Multimoment-Matching

The multimoments of the nonlinear system can be expressed
in terms of the bilinear system quantities as

(67)

Even though the matrix has infinite dimension, due to its
special structure, multimoment calculation is feasible. Because

is block-upper-triangular, and the matrix is nonzero
only on the first lower block subdiagonal, multimoments

depend only on the submatrices in the first
size blocks. In particular, note that theth kernel depends
only on the first terms in the series expansion, so a bilinear
approximate system obtained by dropping terms of order
higher than in the expansion of will agree with the
original system in the first kernels . It is important to keep
the distinction between the order of the kernels and the order
of the system in mind, however. For example, we have seen
that a general bilinear system will possess kernelsof all
orders and thus even if can be expressed exactly as, say, a
second-order multinomial, powers of the inputto every order
may be significant in the output.

Computing the multimoments of theth kernel will involve
1) inversion of the diagonal blocks , and 2) products with the
off-diagonal matrices for . Since the second operation
essentially involves products with the tensor series terms, terms
that are sparse in many applications of interest, we expect the
bulk of the numerical effort to be in the first step.

It is not so hard to see that the primary difficulty with the
bilinear forms is that the dimension of the state space grows ex-
ponentially with the order of nonlinear approximation. Solving
linear systems of equations whose size grows exponentially is
generally considered difficult. However, it is not actually nec-
essary for the model reduction procedure to compute the exact
matrix solutions, only the subspaces needed for projection. The
linear equations involved in the proposed paradigm are highly

structured, and efficient algorithms can be developed to solve
them. For example, consider inverting the second diagonal block
in . This block has the form . Solving this
equation is the same as solving the Lyapunov equation

for some [40]. It has recently been shown how
to construct low-rank solutions of Lyapunov equations [41] for
low-rank right-hand sides, which are the sort that occur in the
model-reduction procedure. The virtue of the low-rank solutions
is that if they can be constructed for all the diagonal blocks, then
the projection vectors can be represented with a number of de-
grees of freedom that is , where is the total number
of multimoments matched and the dimension of the original
nonlinear system. It is still true that will grow exponentially
with the degree of nonlinear approximation order, but this is un-
avoidable for functional series representations.

VI. NONLINEAR REDUCTION PROCEDUREUSING

POLYNOMIAL FORMS

The bilinear system realizations have the advantage that
the Volterra kernels are particularly easy to compute once
the system is put in this form. By using the bilinear form,
we were able to see that the Krylov projection methods used
for reduction of LTI systems can also be applied to nonlinear
systems, and that it is possible to make rigorous statements
about the approximation properties. However, computationally,
the procedures that rely on bilinear realization are computa-
tionally complicated. In this section, simpler approaches will
be discussed.

A. Polynomial Approximations and Variational Analysis

Consider again the system of (27). Assume may be
expanded in a series of multidimensional polynomials (such
as, but not necessarily, a multidimensional Taylor series) as in
(56)–(59), so that

(68)

where . The matrices , representing the-di-
mensional tensors needed to expand in multidimensional
series, are usually extremely sparse and in that case a product
of one of the and a vector can be computed in
operations if is the dimension of the vector .

The key to reduction of the nonlinear system in polynomial
series form is to note that with this realization of the multilinear
forms, the reduced multilinear forms can be ex-
pressed as the matrices

(69)

because of the Kronecker product identity [40]

(70)

Mechanically speaking, given any projection matrix, (69)
tells us how to perform the reduction. To see howmay
be computed with accuracy comparable to that achievable
for Krylov methods acting on linear systems, we adopt a
variational procedure commonly used for computing Volterra
kernels [37]. Suppose we introduceas a variational parameter
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and calculate the response of the system as
a function of . We may expand the response in a power series
in

(71)

It is clear that

(72)

(73)

and so

(74)

By comparing terms in the variational parameter, we may
obtain a set of differential equations, each-dimensional, that
describe the time-evolution of each of the

(75)

(76)

(77)

and so on. Each-dimensional set describes the time-evolution
of an that represents theth order nonlinear response terms.
The above variational analysis, though not widely familiar, is
used in the SPICE distortion (.DISTO) analysis.

B. Reduction of Polynomial Forms

The system describing the first-order response is a standard
linear state-space system. To obtain a model of this system, we
would need to compute a Krylov subspace with starting vec-
tors given by the column space of. One approach [11], [8]
to computing the matrix that defines the basis for projection
is to note that the system describing the second-order response
is alsoa linear state-space system with the same system matrix

; it only has different inputs. We may write more suggestively

(78)

with the identification where is the state
vector from the first-order system. The input to the second-order
system is times the “squared” first-order response. To ob-
tain a reduced model that will match the frequency response of
the second-order component of the response, we must span the
Krylov space of the inputs to the second-order system, described
by .

Now suppose that the first-order system was reduced by or-
thogonal projection, with projection matrix . The state vector
is approximated as , where is the state of the re-
duced first-order system. The second-order system becomes

(79)

or, by using the identity ,
and with the identification

(80)

or more transparently as

(81)

where . The key point is that if the first-order
system was adequately described by a reduced model obtained
from a projector matrix , then the inputs to the second-order
system must lie in the column space of . Thus
to obtain a space that will give a model for the second-order
response, we first compute whose columns are a basis for

. Then we compute
whose columns span . The
procedure for higher orders of the nonlinear expansion follows
analogously. Note that the bilinear reduction scheme gave rise
to a similar nested series of projection spaces to compute.

This observation also gives us some insight into when re-
duced models based on strictly linear information are useful. If
a space , perhaps generated from the Krylov , has
small projection onto the range of one of the multilinear forms

, then the resulting reduced model will not
likely be a good approximation to theth order response. The
only way to guarantee an accurate nonlinear representation is to
include information about the higher order nonlinear terms ex-
plicitly in the reduction process as suggested above. Conversely,
if the span of is already contained in the
span of , then it is advantageous to “deflate” the spacesob-
tained at higher order by performing a singular value decompo-
sition of and using the resulting single to perform
the projection. Using this approach, aggressive deflation is es-
sential to obtaining a reasonable size model when matching the
frequency domain response of the higher order nonlinearities,
since, strictly speaking, the number of required terms grows ex-
ponentially with order of the polynomial expansion (just as the
number of degrees of freedom of Volterra kernels does).

C. Time-Varying Weakly Nonlinear Systems

Finally, it is worth noting that the above analysis applies
for a general operating point. In particular, by adopting the
procedures of Section III, a time-varying weakly nonlinear
model reduction procedure can be derived. We omit the details
as they are straightforward. Essentially the proposed approach
matches “moments” of time-varying Volterra kernels. The
models can thus be used to predict intermodulation distortion
and other nonlinear effects in RF circuits operating under
periodic or quasiperiodic bias, as will now be demonstrated.

VII. EXAMPLES

A. LTV Systems

To test the time-varying model reduction procedure, the
proposed algorithms were implemented in a time-domain RF
circuit simulator. The large-signal periodic steady state is
calculated using a shooting method [23]. The LTV system
was discretized using variable-timestep second-order backward-
difference formulas.

The first example considered was the switched-capacitor
filter previously discussed, running at a clock frequency of
25 kHz. This example generated 58 equations in the circuit
simulator, and 453 timesteps were needed to describe the
steady-state waveform. For the model reduction procedure, the
input function [see (14)] was a constant column vector,
corresponding to the continuous small-signal input present at
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Fig. 4. Time-sampled switched-capacitor filter transfer function.

the filter input. To specify an output function, we took a sample
function that was constant over a 200 ns-period 1s before the
clock edge at the start of the cycle. Essentially, the final model
is a real LTI system that represents a transfer function between
the continuous analog input and the sampled digital output.
The amplitude of the transfer function, as a function of input
frequency, of the reduced model is shown in Fig. 4.

Two nine-state models are shown in Fig. 4. The model
shown with a dashed line was generated by matching nine real
moments at the origin. The dash-dot line, virtually identical to
the actual transfer function, was generated from matching three
real moments at the origin, and one moment at 200, 400, and
800 kHz on the imaginary axis. As these expansion points were
off the real axis, each complex moment in the Krylov space
generates two states in the final real model, corresponding to
the Krylov vector and its complex conjugate. The multipoint
approximation is seen to be a better match.

Another application of the time-varying model reduction ma-
chinery is to obtain reduced models for cyclostationary noise
[42], [43]. This can be done by computing a reduced model,
based on the adjoint system, from the point where noise is to be
analyzed to all the noise sources. Once this low-rank reduced
model is available, equivalent noise sources of the same rank can
be computed using the standard singular value decomposition or
QR procedure. Note that because they are based on the adjoint
procedure, unlike the approach described in [44], the models
suggested here preserve information about noise sources. In ad-
dition, just as with the large-signal models, the noise models
can be constructed in time or frequency domain. Fig. 7 shows
the time-variation of the noise power given by a macromodel
of the cyclostationary noise from the same switched capacitor
circuit.

The second example is the complex image-rejection receiver
studied in [45]. This receiver is a complicated circuit with
several functional component blocks (a low-noise amplifier,
a splitting network, two double-balanced mixers, and two
broad-band Hilbert transform output filters). The entire cir-
cuit has 167 bipolar transistors and generates 986 equations
in the circuit simulator. 200 timesteps were needed for the

Fig. 5. Receiver macromodel. The frequency of the sin and cosine elements is
the mixer LO frequency, 780 MHz.

Fig. 6. Transfer function of the mixer (solid) and the 15-state mixer model
(dash), from RF input to mixer output.

time-domain analysis, so that the matrixhas a rank of almost
200 000.

A fifteenth order real-valued time-varying model was gener-
ated to represent the receiver conversion path from RF to output.
Since a model from multiple sidebands to mixer output was de-
sired, the adjoint matrix was used to generate the model reduc-
tion. In this case the time-varying elements appear before an
LTI filter in the final model, as is shown schematically in Fig. 5.
The mixing elements shift the input from the RF frequency by
780 MHz, the mixer LO frequency. Following these elements is
a multiinput LTI filter whose response is shown in Fig. 6. The
lower sideband rejection characteristic of this mixer is evident in
the model. If the model were used in a suppressed-carrier DSP
simulator, the mixing elements would simply be omitted.

Table I shows the statistics for the computational costs for
the reduced model extraction and evaluation. 200 frequency
points were considered in the filter example and fifty in the
mixer example. In both examples, the reduced model took
less time to extract than the single frequency sweep, and the
evaluation was vastly more efficient (in fact the overhead
in the code was sufficient that it was difficult to determine
exactly how much time was consumed in the actual model
evaluation). Note the efficiency in particular of the reduction
of the switched-capacitor example. The time-varying model
has a rank of 26 274, yet the reduced model was generated in
only 7 CPU seconds. Table I also demonstrates the efficiency



PHILLIPS: PROJECTION-BASED APPROACHES FOR MODEL REDUCTION OF WEAKLY NONLINEAR, TIME-VARYING SYSTEMS 183

Fig. 7. Time-variation of sampled noise in the switched-capacitor circuit
reduced model.

TABLE I
COMPARISON OFTIME-VARYING MODEL REDUCTION PROCEDURES

AND POINTWISE FREQUENCYSWEEPS. THE FREQUENCYSWEEPSWERE

ACCELERATED BY THERECYCLED GMRES ALGORITHM. MVP REFERS TO

EQUIVALENT REAL–REAL MATRIX VECTORSOLVES WITH THE MATRIX L.
“REDUCE” IS THE MODEL REDUCTION TIME IN SECONDS ORMINUTES, AND

“SOLVE” THE CPU TIME REQUIRED TOOBTAIN THE FREQUENCYRESPONSE

of the two-stage (“recycled”) procedure. In the case of the
filter, for an order-nine real model, only 18 applications of

were required in the recycled GMRES procedure that
obtained the moments. The remaining matrix vector products
(or backsolves) were needed to perform the projection or for the
initial preconditioning steps. Even in the mixer example, where
GMRES had much more difficulty converging, 124 backsolves
were needed for the reduction, about eight per model order,
which is still good.

B. Nonlinear Systems

The first nonlinear system example is an artificial one, con-
structed to demonstrate how in some cases information from
the linear part of the model alone [10], [9] is insufficient in
constructing an accurate projection subspace, but that including
nonlinear information in the manner suggested in this paper can
improve accuracy.

To accomplish this, a random second-order polynomial
system, of order sixty, was generated. The poles of the linear
part of the system were constrained to lie on an oval sepa-
rated from the origin, as show in Fig. 8. This pole distribution
was chosen because linear reduction methods that are based
on eigenanalysis alone perform poorly for this type of pole

Fig. 8. Poles of linearized polynomial system and reduced models. (o): Poles
of unreduced system. (x):pPoles of linear-based reduced model. (+): poles of
nonlinear-based reduced model.

distribution, because many of the poles contribute more or
less equally to the transfer functions at low frequencies. Mo-
ment-matching methods, on the other hand, can still capture
the transfer function accurately. In other words, Krylov sub-
spaces for different vectors will be very different, so
the reduced models are sensitive to the particular subspace
chosen. Because of this, we expect the model accuracy to
depend critically on deliberately matching the higher order
multimoments. This is indeed observed in Fig. 9, which shows
the second-order Volterra kernel , evaluated using the
variational procedure, along the diagonal in the two-dimen-
sional frequency plane. A reduced model was computed using
the polynomial-based procedure, to match two moments of
the first (linear) and second (quadratic) order subsystems. This
gives a final model of order ten. In addition, another reduced
model, of the same size but matching moments of only the
linear subsystem, was also generated. As expected, the model
incorporating nonlinear information is a much better match
at low frequency.

The next step is to compare the bilinear- and polyno-
mial-based procedures on more practical examples. One of the
difficulties in testing nonlinear reduction schemes is demon-
strating that the algorithm genuinely reduces nonlinear com-
plexity, not just a linear piece of the problem. A network
with many linear elements can be reduced much more easily
than if every element is nonlinear. Ultimately, we are inter-
ested in studying problems such as RF circuits (mixers, power
amplifiers, etc.) under time-varying bias conditions [11], but
to illustrate the concepts in this paper, we adapt an example
familiar from the linear model reduction literature, theRC line.
We introduce strong global nonlinearity by connecting a diode
in parallel with each resistor. This example is motivated by a
problem in [9]. We drive the circuit with a sine wave at one end
and observed the transmitted signal. By measuring distortion,
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Fig. 9. Amplitude of second-order volterra kernel of polynomial system.
Solid line: original system. Dashed line: polynomial-based model matching
two order-one moments and two order-two moments. Dotted line: model based
on purely linear information.

an intrinsically nonlinear phenomenon, in the frequency-do-
main, we can separate the effects of the linear and nonlinear
model contributions more cleanly than by observing time-do-
main simulations. Note that in our problem, nonlinearity and
capacitance is distributed throughout the network and so the
distortion will vary with frequency in a way that may be difficult
to approximate by approaches that do not explicitly consider
the nonlinearity in the model-reduction procedure. Harmonic
balance was used to calculate the response of the original and
reduced system. The original line had thirtyRC sections, and
was driven sufficiently hard to produce second-order distor-
tion terms 20 dB down from the primary signal, and40 dB
third-order terms. This is enough distortion to indicate that
the approach presented here is capable of treating nonlinear
effects that occur in practical examples.

Fig. 10 shows computed results for two reduced models
as well as the original system. The first reduced model, of
order 11, was computed based on the bilinear form, designed
to match four linear moments and two second-order multi-
moments. The second reduced model, also of order 11 and
similar construction, was derived via the polynomial/varia-
tional analysis. As expected, at low frequencies, the first- and
second-order harmonics are reasonably well approximated. In
addition, reasonable approximation of the third order term is
also observed. This is possible because at lower signal levels,
the second-order term in the polynomial series expansion is
the dominant contributor to many higher orders of the system
output response. Finally, note that the model generated directly
from the polynomial system is generally more accurate. This
is not surprising, because the bilinear representation of a given
polynomial system is always of larger order. For a fixed model
order, we thus expect the polynomial form to give more accu-
rate models. Conversely, for a fixed degree of approximation
to the original nonlinearities, we expect the bilinear form to
be somewhat more expensive. For example, for a second-order
polynomial expansion, the variational representation has

Fig. 10. First, second, and third harmonics, in dBm, of nonlinearRC line.
The full system response is shown as the solid curves, and an order 11 bilinear
reduced model as the dotted lines, and an order 11 polynomial-based reduced
model as the dashed curves.

Fig. 11. First- second- and third-order response of RF mixer as a function of
signal input frequency. The full system response is shown as the solid (o) curves
and the reduced model as the dashed (+) curves.

states, where is the rank of the matrix , but the bilinear
representation has states.

Note also, that the bilinear procedure, while conceptually
more transparent, is more computationally demanding. Without
using special techniques to invert the diagonal blocks in (64),
for the small system here, the bilinear reduction procedure was
about sixty times slower than the polynomial method, due the
large increase in the size of the original state space. However,
by exploiting structure (64) in specifically treating the inversion
of the diagonal blocks as a Lyapunov equation solution, the
penalty dropped to about a factor of three.

Next, we demonstrate reduction of weakly nonlinear,
time-varying systems by computing a nonlinear reduced model
of an RF mixer. We compute the primary upconversion response
as well as the first two terms generated by distortion (second-
and third-order responses in the formulation above). Fig. 11
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Fig. 12. Solid line:e . Dashed line: Second-order Taylor approximation ofe . Note that the Taylor series crosses above unity atx = �2.

shows comparisons of the original system and a dimension-38
reduced model needed to match the frequency response of
the first- and second-order nonlinearities, respectively, up to
fourth and second order, respectively, in the frequency domain
series expansion. Harmonic balance was used to calculate the
response of the original and reduced system. The generation of
the reduced model required about four times as much compu-
tation time as generation of the initial operating point and less
computation time than an LTV (i.e., first-order small-signal)
analysis performed on the detailed circuit at the same set
of frequency points. Good agreement is observed for the
first- and second-order terms and the third-order response is,
interestingly, fairly well-captured, also. Even for this relatively
small circuit, compared to detailed simulation approaches
such as multifrequency harmonic balance (or envelope-based
simulations) needed to capture the distortion induced by the
signal tones in the presence of the periodic local oscillator, the
model reduction procedure results in more than an order of
magnitude reduction in computational complexity.

Finally, we discuss one of the main drawbacks of methods
based on local polynomial approximations. It is generally
appreciated that functional series approximations are only
effective for weak nonlinearities, or, when the system is driven
by small inputs. Polynomial-based systems have the additional
drawback that they may create pathological simulation behavior
when operated outside the range of accuracy of the polynomial
approximation. To see why this is the case, consider examining
a second-order polynomial approximation to an exponential
nonlinearity, as occurs in the diode models for the nonlinear
RC line previously discussed. Fig. 12 shows the exponential
function and a quadratic Taylor approximation. Near zero, it is
a good approximation, and becomes progressively worse far
away. Of particular interest is the behavior of large negative
arguments.

For , the quadratic approximation is positive and
larger than unity. This means that when using the quadratic ap-
proximation in the expression , for ,
the approximate model will predict a (possibly very large)for-
wardcurrent under reverse bias. A nonlinear device with a nega-
tive current–voltage product corresponds to an operating condi-
tion where the approximated diode is generating energy; it is not
passive,as all physical devices, including nonlinear ones, must
be. This is a general property of polynomials. They are not well
behaved for large arguments, though the particular pathology
varies according to the approximation chosen. Neither, then, are
the reduced models likely to be well behaved, e.g., passive, ex-
cept by chance.

Time-domain simulation of the nonlinearRC line illustrates
the behavior more concretely. Fig. 13 shows the originalRC
line and a quadratic polynomial-based reduced model with a
medium-strength input sinusoid. The input sinusoid is strong
enough to illustrate weak nonlinearity, as evidenced by the slight
degree of asymmetry in the response. Fig. 14 shows the same
line with larger input signal. The deviation of the reduced model
from the original is clearly visible. More interestingly, if the
input amplitude is increased by a small amount, the time-domain
response of the polynomial system diverges at about .
The time-domain simulation is unable to proceed beyond this
point. Neither the polynomial approximate system, nor the re-
duced model derived from it, can be used in time-domain sim-
ulation for large inputs.

VIII. C ONCLUSION

In this paper we have demonstrated extraction of simple
and compact macromodels from nonlinear, time-varying
transistor-level circuit descriptions. As the switched-capacitor
and receiver examples demonstrate, the methods presented are
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Fig. 13. Weakly driven line, time-domain response. Dotted line: original
system. Solid line: reduced model.

Fig. 14. Strongly driven line, time-domain response. Dotted line: original
system. Solid line: reduced model. Dashed line: reduced model at 1% large
input amplitude.

capable of extracting compact models from large circuits with
complicated underlying dynamics. We investigated in some
detail the potential, and drawbacks, of two approaches for
reduction of weakly nonlinear systems. The bilinear-based ap-
proach is attractive for analytic work, but the polynomial-based
approach seems to be computationally more desirable.

After this investigation, it seems that most of the advan-
tages of the Krylov-subspace-based schemes, in being able to
approximate system dynamics on a large scale, will be trans-
portable to the time-varying and the nonlinear setting. The
major challenges appear to be reduced representation of non-
linear functions. The first challenge is efficient representation
of strong nonlinearities. The size of the terms in the poly-
nomial expansion grow exponentially with expansion order,
in practical terms, limiting their usefulness to order two or
three. The second challenge is to devise a method, with global
approximation properties that are well behaved in the sense of
not representing nonphysical objects. Much work in reduction

of linear systems has been concerned with preservation of
system passivity. In the nonlinear context, an approximation
scheme that would preserve the passivity of networks con-
taining nonlinear devices would be very useful.

APPENDIX

CONSIDERATIONS FORDESCRIPTORSYSTEMS

While developing most of the nonlinear material, the assump-
tion was made. Procedures become more complicated
when it is not desirable or possible to put a system into this form
(for example, is not invertible, or nonlinearities appear under
the time-derivative). For example, in the bilinearization proce-
dure, by following precisely the procedure in Section V-C, we
can obtain the bilinear representation

...

...

...
...

(82)

(83)

where

(84)

( Kronecker products) and now

(85)

and

(86)

If a nonlinearity appears under the time derivative, as in

(87)

(88)

it, too, must be expanded in series

(89)

(again we assume expansion around an equilibrium point) and
the additional terms under the time derivative appear in all fol-
lowing expressions, such as the state equation,

(90)
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and the equation for the second-order subsystem of the varia-
tional equations

(91)
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