
Perturbation analysis of TBR model reduction in application to
trajectory-piecewise linear algorithm for MEMS structures.

Dmitry Vasilyev, Micha�l Rewieński, Jacob White
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ABSTRACT

In this paper we use perturbation theory approach to
analyze using truncated balanced realization (TBR) lin-
ear reduction in a Trajectory-Piecewise linear (TPWL)
nonlinear model reduction method. We show that the
most important factor affecting perturbation properties
of the reduction basis of TBR is a spacing of Hankel sin-
gular values. The result is applied to choosing an order
of reduction basis.
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1 INTRODUCTION

MEMS devices generate challenging test cases for
nonlinear model order reduction methods, due to their
strongly nonlinear behavior. One of the model order re-
duction methods which can handle this nonlinear behav-
ior is a Trajectory-Piecewise linear model order reduc-
tion (TPWL MOR) algorithm [1]. In our previous paper
[2] we addressed one of the most important questions for
TPWL MOR, namely the choice of linear reduction pro-
cedures. In the above mentioned paper we have showed
that a truncated-balanced realization (TBR) linear re-
duction produces much more accurate reduced TPWL
models than ones in which the Krylov-subspace linear
reduction methods were used. However, for the case of a
micromachined switch example (figure 1), we observed
unexpected behavior. Some of the reduced models were
very accurate, but some were unstable. This observation
raised a totally new question - how can we choose a cor-
rect order for linear reduction in such way as to account
for perturbations in linear model caused by nonlinear-
ity?

The paper is organized as follows. In the section 2 we
summarize trajectory piecewise-linear model order re-
duction for nonlinear systems, in section 3 we describe
the TBR linear reduction procedure. In section 4 we
analyze the TBR reduction algorithm from the pertur-
bation point of view, which is the main contribution
of this paper. In the next section we illustrate our in-
sights with computational results for the case of micro-
machined switch reduced simulation.

2 TRAJECTORY PIECEWISE
LINEAR MACROMODELS

In this paper we consider a class of nonlinear dynami-
cal systems which can be represented using the standard
state space form:{

ẋ(t) = f(x(t)) + Bu(t)
y(t) = Cx(t) (1)

where x(t) ∈ RN is a vector of states at time t, f :
RN → RN is a nonlinear vector-valued function, B is
an N ×M input matrix, u : R → RM is an input signal,
C is an N × K output matrix and y : R → RK is the
output signal.

In the context of nonlinear systems, the ultimate
goal of model order reduction techniques is construct-
ing macromodels capable of approximately simulating
the input-output behavior of systems in form (1) at
a significantly reduced numerical cost. We are using
the following quasi-piecewise-linear approximate repre-
sentation of the nonlinear function f , which has been
proposed in [1]:

f(x) ≈
s−1∑
i=0

w̃i(x) (f(xi) + Ai(x − xi)) , (2)

where xi’s (i = 1, . . . , (s − 1)) are some linearization
points (states), Ai are the Jacobians of f evaluated
at states xi, and w̃i(x)’s are state-dependent weights
(
∑s−1

i=0 w̃i(x) = 1 for all x). Applying the above approx-
imation, and performing a projection of system (1) with
biorthonormal matrices V and W yields:

{
ż = (

∑s−1
i=0 wi(z)Air)z + γ · w(z) + Bru

y = Crz
, (3)

where:

γ =
[
WT (f(x0) − A0x0), . . . , WT (f(xs−1) − As−1xs−1)

]
,

w(z) = [w0(z) . . . ws−1(z)]T (
∑s−1

i=0 wi(z) = 1 for all z)
is a vector of weights, Air = WT AiV , Br = WT B,
and Cr = CV . One should note that evaluation of the
right hand side of equation (3) requires at most O(sq2)
operations, where s is the number of linearization points
used.
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As proposed in [1], linearization points xi used in
system (3) are picked from a ‘training trajectory’ of the
initial nonlinear system, corresponding to some appro-
priately selected ‘training input’.

In order to obtain a reduced system in form (3)
one also needs to pick suitable biorthonormal projec-
tion bases V and W . This issue is addressed in more
detail in the following section.

3 GENERATION OF THE
REDUCTION BASIS

In the simplest projection strategy we consider lin-
earization of (1) at the initial state x0:

{
ẋ = Âx + f(x0) − Âx0 + B̂u

y = Ĉx
(4)

The projection basis can be obtained using any linear
MOR procedure. To this end, the following square-root
TBR procedure [3] is applied:

TBR(Â, B̂, Ĉ)
Input: System matrices Â, B̂, and Ĉ.
Output: Projection bases V and W .
(1) Find observability Gramian P :

ÂP + PÂT = −B̂B̂T ;
(2) Find controllability Gramian Q:

ÂT Q + QÂ = −ĈT Ĉ;
(3) Using eigenvalue decomposition, compute

Cholesky factors of P and Q:
P = ZcZ

T
c , Q = ZoZ

T
o ;

(4) Compute SVD of Cholesky product: UΣV =
ZT

o Zc;
(5) Compute V and W :

V = ZcV TΣ−1/2, W = ZoUTΣ−1/2;
where T = [I(q×q)0]T is an N × q truncation
matrix.

The obtained projection bases V and W are then
used to compute the reduced order Jacobians Air (cf. (3)).

As an extended approach, we can also combine sev-
eral projection bases from different linearization points
and then aggregate them into one single basis using a
biorthogonalization algorithm.

4 PERTURBATION ANALYSIS FOR
TBR-BASED MACROMODELS

Assume the projection bases V and W are computed
using TBR reduction, obtained at a single linearization
point. The analysis can readily be extended to the case
where we use aggregation of bases from different lin-
earization points.

The key issue is whether or not the TBR basis ob-
tained at one linearization point is still suitable for ob-
taining piecewise-linear reduced models further along
the trajectory. To understand this issue, consider two
non-reduced linear models (A,B, C) (initial) and (Ã, B,C)
(perturbed). Suppose TBR reduction is used on both
of these models, resulting in projection bases V,W and
Ṽ , W̃ respectively. We can say that if these bases are
not significantly different, we can still use V and W for
reducing the perturbed system.

Next, consider how perturbation in the system af-
fects the projection basis for TBR reduction algorithm.

4.1 Effect of Perturbation on Gramians

We shall perform calculations for controllability gramian
P only, the results are valid for Q as well. Given A =
A0 + δA, P = P0 + δP , where P0 is an unperturbed
gramian corresponding to unperturbed matrix A0. We
assume δA is relatively small such that δP is also small.

Now plug in perturbed values of A and P into the
Lyapunov equation. Note that term δPδA may be ne-
glected (since it is a second order term). We get:

A0δP + δPAT
0 + (δAP0 + P0(δA)T ) = 0. (5)

This is a Lyapunov equation with the same matrix
A0 as for unperturbed system. This equation has a
unique solution, since we assume initial system to be
stable. The solution to (5) satisfies the following equa-
tion:

δP =
∫ ∞

0

eAT
0 t(δAP0 + P0(δA)T )eA0tdt. (6)

Assuming A is diagonalizable, we can obtain the fol-
lowing bound on δP :

||δP || ≤ 2(cond(T ))2||δA||||P0||
∫ ∞

0

e2Re(λmax(A0))tdt.

(7)
Here T is the matrix, which diagonalizes A. Since A is
stable, the integral exists and finally we get an upper
bound on infinitesimal perturbations of the gramian:

||δP || ≤ 1
|Re(λmax(A0))| (cond(T ))2||P0||||δA|| (8)

The norm of δP increases as the maximal eigenvalue
of A0 approaches imaginary axis. We evidently see that
small perturbations in A will result in small perturba-
tions in gramians.

4.2 Effect of perturbation of gramians
on Cholesky factors

In our implementation we used an eigenvalue decom-
positions of P and Q in order to obtain Cholesky fac-
torizations Zc and Zb.
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P = UDUT (9)

Here D is a diagonal matrix. And we write Cholesky
factorization to be

ZB = UD1/2UT = (ZB)T ; (10)

This means that we actually compute a square root of P ,
which is symmetric and positive semidefinite. Let’s rep-
resent P = P0 + δP , ZB = Z0

B + δZB where Z0
B , ZB , P0

and P are symmetric positive semidefinite. Neglecting
second-order terms, we get:

δZBZ0
B + Z0

BδZB − δP = 0; (11)

Assuming the unperturbed system to be controllable,
which implies a positive definite ZB , this equation has a
unique solution. Moreover, similarly to the previous sec-
tion, the 2-norm of the infinitesimal perturbation δZB

will be:

||δZB || ≤ 1
2|Re(λmin(Z0

B))| ||δP || (12)

As one may expect, the closer matrix Z0
B to singu-

lar, the bigger the expected perturbation of Cholesky
factors. Again, small δP will result in small δZB .

4.3 Balancing transformation

Consider that UL satisfies a symmetric eigenvalue
problem:

ULΣ2UT
L = ZT

CPZC ; (13)

Below we summarize a perturbation theory for a
symmetric eigenvalue problem with nondegenerate spec-
trum.

Consider a symmetric matrix M = M0 + δM , where
M0 is unperturbed matrix with known eigenvalues and
eigenvectors, and no repeated eigenvalues. Eigenvectors
of M can be represented as a linear combinations of
eigenvectors of M0:

xk =
N∑

i=1

ck
i x0

i , (14)

where xk is a k-th eigenvector of perturbed matrix M
and x0

i is an i-th eigenvector of the unperturbed matrix.
Coefficients ck

i show how eigenvectors of matrix M0 are
intermixed due to perturbation δM . We have:

(M0 + δM)
N∑

i=1

ck
i x0

i = λk

N∑
i=1

ck
i x0

i ⇒

N∑
i=1

ck
i δMji = (λk − λ0

j )c
k
j , (15)

x

Si substrate

2 um of poly Si

0.5 um of poly Si deflection

2.3 um gap

filled with air
0.5 um SiN

z

y

y(t) − center point

u=v(t)

Figure 1: Micromachined switch (following Hung et
al. [4]).

where λk and λ0
k are k-th eigenvalues of M and M0 con-

sequently and δMij = (x0
i )

T δMx0
j is a matrix element of

the perturbation in basis of unperturbed eigenvectors.
Now we assume small perturbations and represent

λk = λ0
k + λ

(1)
k + λ

(2)
k + ... and cn

k = δkn + c
n(1)
k + c

n(2)
k ...

where each subsequent term represents smaller orders in
magnitude. For the first-order terms we get:

λ
(1)
k − λ0

k = δMjj (16)

and
cn
k =

δMkn

λ0
n − λ0

k

, k �= n; (17)

The greater the separation between eigenmodes, the
less they tend to intermix due to small perturbations.
If some modes have eigenvalues which are close, they
change rapidly with perturbation. Keeping this in mind,
we propose the following recipe for choosing an order of
projection basis:

Recipe for using TBR as a linear reduction for
TPWL framework: We need to pick a reduced order
to ensure that the remaining Hankel singular values are
small enough and the last kept and first removed Hankel
singular values are well separated.

5 COMPUTATIONAL RESULTS

In order to illustrate the importance of the described
approach, we consider a micromachined switch device
(fixed-fixed beam) shown in Figure 1. Following Hung
et al. [6], the dynamical behavior of this coupled electro-
mechanical-fluid system can be modeled with 1D Euler’s
beam equation and 2D Reynolds’ squeeze film damp-
ing equation [6]. Spatial discretization of those equa-
tions using a standard finite-difference scheme leads to
a nonlinear dynamical system in form (1) with N = 880
states. For the considered example we select our output
y(t) as the deflection of the center of the beam from the
equilibrium point (cf. Figure 1).

We applied a TBR-based trajectory piecewise linear
MOR procedure, using a single TBR reduction at the
system initial state. Figure 2 shows the error in the
output signal ‖yr − y‖2, where yr is the output signal
computed with TBR-based TPWL reduced order model,
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Figure 2: Errors in output computed by TPWL models
generated with different MOR procedures; N = 880;
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Figure 3: Hankel singular values of the balancing trans-
formation at the initial state.

and y is computed with full order nonlinear model, for
different orders q of the reduced model. The dashed
line corresponds to a different choice of projection basis,
namely the Krylov-subspace linear reduction.

Evidently, macromodels with odd orders behave very
differently than the macromodels with even orders. Mod-
els of even order are substantially more accurate than
models of odd order, the latter being unstable and inac-
curate. This effect is perfectly consistent with our per-
turbation results if we take a look at figure 3, where the
Hankel singular values of the balancing transfromation
are plotted. The Hankel singular values for our example
are arranged in pairs of values, and evidently, even-order
models violate our recipe for choice of reduction basis.

6 CONCLUSIONS

In this paper we have analyzed the choice of order
for TBR linear reduction for trajectory piecewise-linear
nonlinear model order reduction. We showed that Han-

kel singular values of balancing transformation deter-
mine perturbation properties of the obtained projection
basis. We suggested a simple recipe which helps to en-
sure that all linearizations are stably reduced.
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