ACCO01-ATAA1043

TRAJECTORY GENERATION FOR A CLASS OF NONLINEAR
SYSTEMS WITH INPUT AND STATE CONSTRAINTS®

S. K. Kim' and D. M. Tilbury*
Department of Mechanical Engineering
University of Michigan, 2250 G.G. Brown, 2350 Hayward St.
Ann Arbor, MI }8109-2125

sungk@engin.umich.edu, tilbury@umich.edu

Submitted to the 2001 American Control Conference

Abstract

Autonomous vehicles with nonlinear dynamics need to have a planned reference trajectory and a
feedback controller to accomplish the task of traveling from a launch point to a goal point. Traditionally
the planning stage has either been done from a purely geometrical point of view without regarding the
dynamic constraints of the system, or by time-consuming numerical optimization including the dynamic
constraints and input bounds. This paper presents a new way to generate a trajectory quickly when a
nonlinear system is input-output linearizable while satisfying the dynamic constraints. An example of a
trajectory based on a simplified nonlinear longitudinal helicopter model with minimum time criteria is

presented.

1 Introduction

Although unmanned aerial vehicles (UAV) have been in use for more than 30 years, their potential has
proven to be limitless. They have been considered as an excellent cost-effective and safe way to replace human
operators/pilots in military, civilian, and commercial areas when there exist significant threats to human lives
or when the environment is not suitable for large human-carrying vehicles. For example, UAVs have proven
to be highly effective for many areas including military reconnaissance missions at the front line without
risking lives, surveying remote and hostile areas for commercial/civilian purposes, sports broadcasting, and
more.

Since human pilots are not present on board a UAV, issues such as sensor design for object/obstacle
and terrain recognition, radio link and data acquisition, autonomous navigation, and guidance must be
carefully considered, designed, and programmed. The design must be reliable and proven to work given
the constraints of the environment especially due to lack of immediate and flexible human intervention
available on board. Vehicle design and sensor issues have been studied through university competitions [7]
to accomplish tasks such as recognizing and moving an object to a designated target. Other successful UAV

*This research was supported in part by the Michigan Space Grant Consortium, the Rackham Graduate School, and the
NSF under grant number CMS 98-76039.

tPh.D. Student

f Assistant Professor

works with commercial or military use include Sikorsky Aircraft’s Cypher [18], Tokyo University’s fuzzy-logic
helicopter [16], and Bell helicopter’s Eagle Eye Tiltrotor [8]. A survey of UAVs can be found in [9].

Although there exist many active research programs in regarding sensor performance, image recognition,
and mechanical/electrical system design for UAVs, trajectory generation (path planning) and guidance re-
search has been less popular. Traditionally, path planning methods have used computational geometry to
find obstacle-free geometric paths that may not be feasible given the dynamics of the plant. The planned
path is only constrained with respect to such factors as the terrain obstacles or hostile areas. Given such a
path, the tracking task of the controllers (either an autonomous controller or a human pilot), can be difficult
if not impossible. By considering the dynamics of the plant at the planning stage, the planned path or
further the planned trajectory becomes less demanding for the controller to track. However, including the
dynamic constraints at the planning stage often leads to a time-consuming nonlinear dynamic optimization
that may not be practical especially if the dynamic model is complex. To address these issues, this paper
presents a fast computational method to find feasible trajectories in the case when the nonlinear dynamic
system is input-output linearizable.

The outline of the paper is as follows. First, we briefly review some previous work on path planning.
Section 3 defines the trajectory generation method and gives conditions under which the method is guaranteed
to find a solution. In section 4, we present the longitudinal mathematical model of a helicopter. We conclude
with some discussion of the limitations of the proposed technique, and describe some future work in the area.

2 Previous Work on Path Planning

In general, there have been two different approaches to path planning: one is to consider the planning
problem as a geometric constraint problem, and the other is to consider it as a dynamic constraint problem.
Each method has pros and cons and we will briefly discuss them in this section.

2.1 Geometric Path Planning

Many researchers have devised ways to find an obstacle free path between two given points in a cluttered
environment. The classic book by Latombe [13] describes many of these geometric planners such as the
roadmap, cell decomposition, and potential field methods that provide a set of waypoints between the start
and goal points which avoid obstacles, although no one method solves all kinds of problems. More recent
work on geometric path planning includes Wang et al. [22], who used an algorithm to define and smooth out
the boundary of obstacles. The algorithm is able to eliminate local minima (“corner” spots) to prevent the
trajectory from getting stuck, a common problem encountered with the potential field method. A numerical
optimization method (sequential quadratic programming) is then used to find the shortest path between the
start and goal point. Vasudevan et al. [21] designed a case-based path planning system which used past route
cases with an annotated map database. New segments are generated if suitable past plans are found. This
strategy has a number of advantages such as fast computation, but is somewhat empirical and uses fuzzy
sets when choosing a route. Jackson et al. [11] considered following predetermined discrete “waypoints”
for aircraft landing maneuvers by optimizing cubic splines to minimize acceleration, curvature, or to obtain
constant velocity. Simple linear models with pseudo inputs served as the aircraft model. Although the
method suggests that the trajectory is more efficient than conventional straight-line flight trajectories, the
advantage of the cubic splines may need more investigation due to its geometry oriented approach. The
author points out for certain aircraft, the trajectory may be hard to follow, suggesting that the minimum
turning radius of the target aircraft must be small enough to follow the path at all. The main limitation of
these geometric planning methods is that they do not take the dynamic model of the vehicle into account;
only a geometrically feasible path is given. Before it can be used by a dynamic system, the feasibility of the

devised path needs to be investigated. In some cases, the geometric path may be simply impossible to follow
for systems with certain dynamic constraints.

It is true that if the system is controllable, any geometric path can be approximated arbitrarily closely
by a feasible path which satisfies the dynamic constraints [17, 19]. Nevertheless, since this method relies on
a given geometric path as the targeting reference, the resulting feasible path may be awkward to follow for
a real system. As shown in [19], the resulting path is extremely oscillatory when small position errors are
required between a straight geometric path and the resulting dynamic path.

2.2 Dynamic Path Planning

In contrast to the geometric planning method, traditional numerical optimization planning methods directly
include the dynamic system model while finding a path which optimizes a performance criteria. Realistic
input/output and state bounds can be included in the optimization routine due to its numerical nature.
Assuming the system model is accurate enough, the resulting path is optimized with respect to the given
criteria and can be easily applied to a real system because it satisfies the dynamic constraints. Though
variations exist, all methods utilize a Newton-based iteration to adjust a finite set of variables [4]. For
example, Lee et al. [14] used a sequential gradient restoration technique to guide a helicopter toward a
safe autorotation trajectory which minimizes touchdown velocity with bounds on rotor thrust and descent
velocity when an engine failure occurs. The author points out that optimal solutions of this type to practical
engineering problems can only be found numerically. Since the dynamic model of the system is included in the
path generation routine, the scheme is fundamentally complicated and numerically intensive. Furthermore,
analytical exact solutions of dynamical optimization problems are only possible when the system equations,
the performance index, and constraints of the problem are very simple.

The optimization method described above determines the input necessary to satisfy the optimality criteria
given certain constraints. The complexity of the numerical method can be relieved by assuming the input
to be a parameterized sinusoidal, polynomial, or piece-wise constant function, then applying it to a system
model transformed into a normal form [20]. Although the resulting trajectory is not optimal, an exact
analytic result can be quickly obtained. However, bounds on states and inputs are not considered.

Some trial and error planning methods also exist. Arinaga et al. [1] devised an algorithm called a bi-
directional motion planning method. First, the waypoints are determined by a global path planning which
considers factors such as obstacle avoidance. Once they are determined, the real vehicle moves step by
step towards a virtual vehicle which departs from goal point. When they meet, the real vehicle backtracks
the path history of the virtual vehicle to reach the goal. This method naturally guarantees the feasibility
(dynamic constraint) of the path, but the convergence is not guaranteed due to the hit-or-miss nature of the
algorithm.

3 Trajectory Generation Methodology

The approach we will take is to assume that a standard geometric planner [13] gives a set of waypoints which
avoid obstacles, and we will find feasible paths which satisfy the input and state constraints on the system
and which connect these waypoints. We define the planning problem as follows.

Problem 1 Given a controllable, nonlinear time-invariant system and initial and final states x,, ¢
i = fla(t),u(t)) ve R, ueR" (1)

Find a control input u (or equivalently, find a trajectory n) which takes the system from the initial position
zo = x(0) to final (goal) position xy = x(ts)

n={(x(t),ut) € R* x R™:0<t <t} 2)

and satisfies the state and input bounds

ay, <@ <y, ugy < uj < Uy, (3)
where all of the inputs are constrained but only some of the states have bounds:

1 C {1,---,TL}, j= {1’...’m},

Basically, the problem is to find a feasible trajectory of the system (1) from an initial state z, to a final
state xy where the final time ¢; may or may not be defined a priori. If there exists such a path n, then there
exist many such paths. If possible, we would like to find one which is optimal is some sense, and assume that
a meaningful cost function of the form J can be defined for the system. This leads us to the next problem.

Problem 2 Given (1), (8), x,, and x5, find a control input u (or trajectory n) which connects the start to

the goal, satisfies the input and state bounds, and minimizes a given cost function J

J =v(z(0),z(ty)) +/0 ' L{z,u] dt

Again, the final time ¢y may be given or free (as in a minimum time optimization problem). This
problem is often called a two point boundary value optimization problem [5]. The solution to this problem
is a trajectory 7 describing the states and inputs over the interval [0,¢;]. However, solving this problem
analytically is not practical for any except very simple systems. Numerical solution methods can be unstable
and/or time-consuming depending on the method used. Most numerical methods require a good initial
guess of the solution, and may not guarantee that the optimal solution is found [4]. However, for linear
systems, much better optimization techniques exist. Consider the special case when the system model can
be expressed as a set of linear ODE’s as in the next problem.

Problem 3 Given a system expressed in the following form with initial and final states Y (0) and Y (ty)

yﬁ’“) U1
(4)
W) = v,
with state dimension w =k + -+ kpn,
Y=y w0 Z/%kl_l) Y2 Y2 - yé’”_l) e Ym G e ylEmTD e R

Find a control input v (or equivalently, find a trajectory ny) which takes the system from the initial position
Y, =Y(0) to final (goal) position Y; =Y (ty)

ny ={(Y(t),v(t)) e R x R™: 0 <t <ts} (5)

satisfies the state and input bounds,

and minimizes the cost function

A solution to this problem for the special case where J;, = ¢y (minimum-time problem) is given by
Baker [3, 2]. Although it seems that finding the time-optimal solution for the linear system (4) should be
simple enough, according to Baker, there is no known analytic method to solve this problem when input and
state bounds are given together. However, this optimization problem can be solved using the differential
inclusion technique [15], which discretizes the equations (4) and (6) and then applies either linear or nonlinear
programming (LP/NLP) to minimize the cost function Jr. If the cost function J, is linear in the states
and inputs, then LP can be used to minimize it; otherwise, such as when a quadratic cost is used, NLP is
required.

LP/NLP is an effective technique when the constraints are linear as in the minimum time problem with
inequality constraints on states and inputs [4]. Discretizing the dynamic equations (4) at N timesteps
between 0 and ¢y, we rewrite Jr, as

N
ty
I v(Y(O»Y(N))+;L[Y<z>,v<z)] N
= F(Y) or 'Y
where
T o= {wO) - u®) ®0) - w®) o oY) o (V) }e RV

Using differential inclusion scheme which discretizes the equation (4):

oy Y1) —y(D)

i) ~ L 7

the derivatives of y (¢, 7, ...) and the inputs v can be written as finite differences of the outputs y and hence
as functions of T. The inequality state and input constraints (6) can thus be expressed as

A YT <y
and the state boundary conditions (initial and final positions) are written in the form
Ay - YT =by

There are advantages for using LP/NLP over the nonlinear optimization via exact or slack variable
methods. LP/NLP often provides a solution more easily, because it deals with bounds (inequality constraints)
more efficiently [5]. If the cost function J is a linear function of the states, LP should be used due to its
faster computation times.

At this point, remember that the objective of the planning methodology is to obtain a solution for Problem
2. We consider the special case of this problem when the nonlinear system is input-output linearizable. That
is, there exists a coordinate transformation from the states, inputs, and an appropriate number of input
derivatives into a linear form:

(a0 = (Y,v)

where v’ is a vector consisting of of the original inputs w and the derivatives of u that are needed for the
input-output linearization [10]. After linearization, the original equations (1) can be expressed as (4). We
will use the optimal solution to the linearized system (Problem 3) to get an approximately optimal solution
to the nonlinear problem. Because of the coordinate transformation, we can only approximate the bounds,
and the solution will not be globally optimal. However, the solution to the linear problem is fast and easy
to compute.

The bounds on (Y, v) used in Problem 3 must be carefully chosen so that when the resulting trajectory
is transformed back into the original coordinates (z,u), the given bounds are not violated. However, overly
conservative bounds for (Y, v) would result in an overly conservative solution which is far from optimal.

The original bounds on the states and inputs given by (3) can be considered as a domain D,:

Dy ={(z,u) s 2, < <y, <u' <y}

where ¢ C {1,---,n}, j={1,---,p}. Before mapping this domain through the transformation ®, bounds
on the input derivatives must be determined; these will come from the application specification. The domain
D, can then be mapped into D;, = ®(D,). However, due to the nonlinearity of the transformation @,
this domain cannot typically be described as a set of inequalities. Thus, we want to find a smaller domain
Dy C Dy, which can be described by a set of inequalities. Using this domain in the description of Problem
3, we can find a trajectory 7y optimizing Jy, in the (Y, v) coordinates. The inverse transformation of this
trajectory will be guaranteed to satisfy the original bounds, because

& Y(Dy) C D,

although it may not satisfy the optimality criteria even if Jy, is an exact representation of J in the linear
coordinates. See Figure 1 for a pictorial description of these domains.

Through numerical experimentation, we determined that choosing Dy C ®(D,) results in overly conser-
vative bounds and often no solution. Due the nonlinearity, direct computation of ®(D,,) is time-consuming
and numerically expensive. Hence, we adopt instead an approximate technique to choose the domains Dy to
be used in the linear optimization problem. The following algorithm formalizes this method. After the algo-
rithm, sufficient conditions are given for a solution to be returned. An example application of this algorithm
can be found in Section 4.

Algorithm 1 (Approximately Optimal Solution to Problem 2) Suppose that the system model (1)
is input-output linearizable with choice of output y. Let ® denote the transformation from (x,u’) to (Y, v).
Step 1: Determine appropriate bounds for derivatives of u from the system dynamics and available control

input (this is not given in the original problem formulation).
Step 2: Find points or ranges of values within D, at which the transformation ® is singular [10]. Ez-

cluding these singular values, choose a compact set within D, which includes the initial condition (z,,u,)

/!
x7

and can be described by a set of inequalities. Call this set D!, and the corresponding upper and lower bounds

/ /
'rl,u’ul,u‘

8¢ ! Vi i / !
W # 0,2y, <xp < ahy,uy; <uj <u }

u’ uj

D! ={(z,u') C D, : ‘

where i C {1,---,w}, j={1,---,m}
Step 3: Find a set of bounds for (Y,v). For each pair of upper and lower bounds, zj,,v;,,, and for

each i, compute Y; and v; through ®, and find their mazimum and minimum values. If the upper and lower
bounds are the same for one or more states or inputs, find stationary points with respect to all other states
and inputs by taking partial derivatives; denote these “intermediate points” by x.. and u),. Also take the
mazimum and minimum of Y; and v; over these intermediate points.

(Y)

Formally, let the set h = {z], =, =,,, v}, u, ,u,,} where (z,,,u,) = {(z,u) : Flcxrai 0}. Define the

upper and lower bounds on (Y,v) as:

Y,, = maxY;
h

Y, = minY;
‘ h

Uy, = mMaxXv;

Uj h J

v, = minuv;

J B J

X,u'l
(x,u'y)

Figure 1: A conceptual diagram showing the transformation between (x,u’) and (Y,v). The large dashed
box in the right picture is the initial domain Dy which is eventually shrunk to the smaller box inside by
continually reducing a. The smaller box is transformed back to (z,u’) while satisfying the bounds given to
the original states and inputs.

where i C {1,---,w}, j={1,---,m}.
Step 4: Let Dy = {(Y,v) : Y}, <Y; <Yy, v, <wvj <wy,}, wherei C {1,---,w}, j={1,---,m} on

Dy . Solve problem 3 using (non)linear programming and the differential inclusion technique.

Step 5: Transform the solution obtained in Step 4 back into the (z,u) coordinates via ®~1. Check whether

the bounds on (x,u) are satisfied. If so, stop.
If not, reduce the size of Dy as follows. This will reduce the size of the domain from all sides the equal
amount.

Y, v)u = (Y,0)u = [(Y,0)u — (Y 0)i] @
Y,v)r — Yv)i+[(Y,v)u — (Y,v)i]

where 0 < « < 1/2. Choose an appropriate scale factor o, starting with 0 then gradually increasing toward
1/2 until a feasible solution is obtained or a = 1/2.
Go back to Step 4.

The following proposition gives sufficient conditions for the algorithm to terminate successfully.

Proposition 1 If there exists a hypercube ¥ completely enclosed within the set ®(D,), then Algorithm 1
produces a solution to problem 2, although it may not be optimal.

Proof: Since ¥ C ®(D,), and ® is a diffeomorphism, we must have ®~1(¥) C D,. If such a hybercube exists
within ®(D,), the reduction in Step 5 will eventually converge to a subset of this hypercube. A solution to
Problem 3 which satisfies the constraints given by the hybercube ¥ will be transformed by ®~! to a solution
to the nonlinear system which satisfies the constraints given by D,. Because only a subset of the input and
state bounds are used in the linear optimization, optimality in the nonlinear system cannot be guaranteed.

This proof basically guarantees the inverse transformation of the hypercube is indeed a valid trajectory
in the original (x, u) coordinates. Therefore, an optimal trajectory obtained from Problem 3 with constraints
based on W, transformed back to (z,u) coordinates, will satisfy the constraint requirement for Problem 2.
Unfortunately, the method presented here does not guarantee that such a hypercube exists. The method
fails when o — 1/2 and ®~1(Dy) € D,. Figure 2 shows various possibilities for Dy-.

For many practical problems, however, getting a reasonable solution quickly is often sufficient. The
method presented in this section should help find such a solution. In addition, if the sufficient conditions of
Proposition 1 are satisfied, then the same set of linear constraints ¥ and the same linear programming setup

Figure 2: Two extreme cases for initial Dy. The left figure is the case where one cannot find a square within
the initial domain Dy, even when o = 1/2. The right figure is the case when a solution will be found on the
first trial with o = 0.

can be used to solve a family of path planning problems. The linear program will need to be solved for each
new start and goal position of the system, but the input-output linearization and the algorithm to find the
linear bounds needs only to be executed once.

Furthermore, the result of this path planning methodology can be used as an initial guess towards a
more accurate numerically optimal solution. The trajectory we obtain here can also be directly applied to
real-time planning applications due to its fast computation.

In summary, the key ingredient in Algorithm 1 is transforming the original nonlinear system expression
into a simple linear expression such that a optimal trajectory in the linear coordinates can be easily obtained.
That is, if the given nonlinear system (1) is input-output linearizable, we can obtain an approximate solution
for Problem 2 by first transforming it into a linear form (4), then solving Problem 3 using Algorithm 1,
and finally transforming the linear solution back to the original (z,u) coordinates. One shortcoming of
Algorithm 1 is that the exact optimization result from the Problem 3 does not imply that the optimal solution
will be obtained for Problem 2. We therefore call this an approximate optimization. Another limitation is
that even a linear cost function J may be nonlinear when transformed through the diffeomorphism ®.
However, a minimum time problem J = t; will remain linear in both coordinate systems.

Since we are attempting to satisfy the cost function J; after the transformation, we need the states of
interest to be optimized as a function of Y. Therefore, optimization problems such as minimum system input
may be difficult to pose correctly in this framework.

4 Helicopter Trajectory Generation

Currently, unmanned autonomous vehicles such as model-scale helicopters are often considered suitable for
reconnaissance missions in hostile areas due to their versatile maneuverability. The mission criteria often
require the vehicle to follow a given trajectory in minimum time while avoiding obstacles such as enemy radar
or terrain. As an example, given start/goal positions and suggested way points that are free of obstacles
between any two points, we could use the method presented in Section 3 to design a trajectory to guide the
helicopter to satisfy the mission requirement.

The model helicopter is capable of moving in 3-dimensional space between any two points. It is an under-
actuated system with 6DOF and 4 inputs, therefore it has a non-holomonic constraint due to the coupling
between the rotational and the translational motions [12]. For example, while at hover, the helicopter cannot
move forward unless the body is first tilted forward.

In this section, we consider a simplified longitudinal model of the helicopter with a hingeless rotor. The

model is written with respect to the earth-fixed inertial coordinates. The horizontal and vertical positions

are x and z; the pitch angle is #. The two inputs, rotor thrust and pitch moment, are T and 7. The dynamics

of the pitch damper, called a flybar, is modeled as 6 = wr. The constant represents that the helicopter is

capable of 180° rotation/sec when the maximum moment input is applied. The mass of the helicopter m is

1.4 kg and the gravity acceleration constant g is 9.8 m/s?.

with input and state bounds

—2mg< T <0
-1< 7 <41

—m/2< 0

T = vy
Uy = —sinf
m
Z = wu,
. T
v, = —cosf+g
m
0 = 771

< 47/2

This nonlinear model is input-output linearizable with outputs (x, z). The choice of these outputs is not

unique and unfortunately there is no known method to choose outputs which will result in an input-output

linearized model.

Taking the third derivatives of each output, we get

T

We then have an input transformation:

which results in the input-output linearized form for the longitudinal helicopter model:

where

T
-

T cos 6 r
o T _
T sin -
o 0

m m

|

sin 6 7T cos 0

m
cos 6 7T sin 6

sin 0

Q

%3

B}

7T cos 0

m
nT sin 6

[0 1 0]l0 0 0] [0]o0
00 1/0 0 0 00
00 0[0 0 0 1
Y + 0
00 0[0 1 0 00
00 0[0 0 1 00
(00 0/0 0 0] 01
T
Y:[mxxzzz}
T
Vv = {x@) z(3)}

The actual inputs to the system, 7' and 7, can be derived from equation (9). The thrust 7' can be found by

integrating T.

Based on the helicopter model presented, we will show how the method presented in Section 3 can be
used to generate a trajectory. Consider the situation when the helicopter starts from a hover, moves 100m
in both the z and z directions, and then hovers again:

Y (0)

(00000 or
Y(t;) = {100 0 0 —100 0 O]T

The optimization criteria is to minimize the time required for this maneuver, given the input and state
constraints. We follow through the steps presented in the last section.

Step 1: The linearization yielded V; = T, which is the derivative of the input 7. We choose the bounds
for T as

—2mg < T < +2mg

The choice assumes the rotor can go from zero to full thrust in 1 second. This quantity should indeed be
finite due to physical limitations of the helicopter.
Step 2: We calculate the Jacobian of @, and its determinant should be non-zero to be nonsingular. That
is,
nT*
m 70

This suggests that when 7' = 0, the transformation ®~! is not defined. The initial inputs with respect to
the choice of initial condition given previously are

T(0) = —mg, 7(0)=0, T(0)=0

We should choose input bounds which exclude T' = 0 but include the above initial input values. They
are

—2mg< T <0
—2mg < T < +2mg
-1< 7 <41

Step 3: We find the upper and lower bounds of Y and V with respect to the input bounds from step 2
and the state bound |0] < 7/2.

}/l3 = _29a Yu3 = 29

‘/11 = 7293 Vul = 29
‘/ZQ = _2971-’ Vu2 = 297.['

We realize V), = Y,, = 0. We take partial derivatives of Y5 = Z with respect to § and 7', to find the
stationary point 8 = 0 within the bounds of § and T, and substitute into Y5 to find distinct upper and lower
bounds:

‘/26 = -9, Vua =g

Step 4: We now know the initial domain Dy with the bounds found from step 3, and can solve problem 3

using the input and state constraints found above. Although finding the time-optimal solution analytically for
a linear system should be simple enough, according to Baker [3, 2], there is no known pure analytic method

10

for this problem when arbitrary input and state bounds are given together. As suggested by Baker, we
approach this minimum time problem from a maximum range problem view point by guessing a sufficiently
large final time ¢y, then obtaining a bang-bang input sequence using the linear programming method.

Meanwhile, we note that Y7, Y, and their corresponding inputs Vi, V5 are decoupled from each other and
the bounds found in step 4 are not the same for matching states and controls. For the given final condition of
(Y1,Y,) = (100, —100), this will obviously result in different minimum time results for « and z since Y; and
Y, have the same magnitude. One easy way to solve this problem is to simply assume the same state and
control bounds for each direction. Similar to the strategy in Algorithm 1, we choose the maximum possible
bounds for both. That is,

Vitie = —2gm, Viut,u2 = 2gm
Yisie = —29, Yuzue =29

Using these bounds, we solve a linear programming problem for the xz-coordinate. The result for the z-
coordinate can be found by simply multiplying by —1. The input sequence is found to be

VIZ[QQ 0 —29 0 2g

Using this sequence data and the boundary condition, we use the well-known solution formula for a linear
system to obtain an accurate time sequence.

ty
Yl(tf)zl()O:/ At =) BV, (s)ds (10)
0
where
010 0
A=|0 0 1|, B=1|0
00 0 1

There are 4 different points where input-stepping occurs, and they are

tostep = {0 t1 to t3 t4 tf}

[O 0.32 2.11 274 4.53 4.85}

Step 5: Starting from « = 0, we gradually increase o until all of the states and inputs (x, u) stay within

the given bounds. We stop at a = 0.375, at which point the bounds are

|V1,2| § 2g7T * (0.25
Ys6] < 2¢9%0.25

As shown in Figure 3, the V; 5 input is bang-bang with switching times and final time

tstep = 0 032 436 5.00 9.04 9.36}

The final time ¢4 is found as 9.36 sec. See Figure 4 for the final result after transforming the linear (Y, V)
trajectory back to the original (x,u) coordinates. The top figure shows the trajectory of the helicopter with
respect to the z-z axis. Small line segments represents the pitch angle §. The minimum principle [6] suggests
when the input appears linearly in the state equation, the time-optimal input must be bang-bang. Since the
resulting system inputs 7' and 7 do not show this shape and the maximum values are less than the bounds,

11

Linear Programming Result for J:tf
100 T T T T T

80

60~

y,(m)

40+

30

20 P 1]

- T~ _ _ ddy
101 - ~ 1] |
Jomerr \ .|
o= =

time (sec)

Figure 3: After the linear programming and solving for ¢; - - - t; using the equation (10), we can obtain an
accurate time-optimal trajectory for each state of interest.

the solution is not truly time-optimal. Nevertheless, since one can obtain this solution without referring to
the nonlinear system dynamics during optimization, the solution was obtained much faster than using a pure
numerical nonlinear optimization method within the nonlinear coordinate.

As mentioned in the previous section, when solving a traditional nonlinear trajectory optimization prob-
lem (Problem 2), one often needs to provide an initial guess to the optimization program. However, many
guesses can lead to an unstable result. In fact, for this system, a default initial guess of zero input does not
return any feasible solution to the optimization problem. Figure 5 is the nonlinear optimization result from
the nonlinear model (9) using the sequential quadratic programming method, where the trajectory from the
linear optimization (Figure 4) is used as an initial guess. The solution converged, and the final time ¢; is
found as 9.10 sec, a small improvement from the linear (approximate) optimization result. This shows that
the use of the linear optimization result can be a good step toward finding a globally optimal result.

5 Conclusion

This paper presented a new way to generate a feasible trajectory for an input-output linearizable while satis-
fying input and state constraints. The system model is transformed into a linear form, then suitable bounds
are obtained for the linear coordinates. Within the linear coordinates, an optimal trajectory was found
using linear programming techniques; this trajectory was then transformed back to the original nonlinear
coordinates without violating the bounds given on the original nonlinear system.

Although the resulting trajectory is not optimal due to the transformation and the limiting choice of
the bounds, one can easily obtain a reasonable solution quickly as was shown in the helicopter trajectory
generation example. Systems such as spacecrafts, helicopters, airplanes, and cars are often input-output
linearizable, and this method may be used to find feasible trajectories for these and other autonomous
systems. When the method works, it can be used to quickly find trajectories which connect any pairs of
points. If a geometric planner is used to find a set of waypoints which connect the start and goal points

12

X-z trajectory from ddd><=vlv dddz:v2 after transformation
100
80
60

40 &

20

-z(m)

0

0 50 100
x(m)

0 (deg)
o
Il

™
5
Il

T (N.m/s)

-1 I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10

time (sec)

Figure 4: The time-optimal trajectory obtained from the linear (Y, V) coordinates is applied to the actual
helicopter model. All the states and inputs are within bounds.

13

Min time trajectory from dddx:vl, dddz:v2 after nonlinear optimization

100
80

E 60 —

" a0 3=
20
0
0 50 100
x(m)

ok N——— — optimal -
— - initial guess
-40 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10
-5

T(N)

10
1
0.5F -
@
£ L 4
z2 7
=
-0.5F -
-1 Il Il
0 1 2 10

t(sec)

Figure 5: Nonlinear optimization result (solid line) using sequential quadratic programming method with
the linear optimization result (dashed line) as an initial guess.

14

and are obstacle-free, the planning method presented in this paper could be used to find feasible trajectories

connecting these waypoints.

Future work includes examining more example trajectories and other nonlinear systems. In addition, we

are continuing to work on finding a better way to express the bounds in the linear coordinates to make the

trajectory approach closer to the true optimal result. Another area of interest is the integration of trajectory

tracking (feedback control) with trajectory planning.

References

[1]

S. Arinaga, S. Nakajima, H. Okabe, A. Ono, and Y. Kanayama. A Motion Planning Method for an
AUV. In Proceedings of the IEEE Symposium on Autonomous Underwater Vehicle Technology, pages
477-484, 1996.

D. Baker. Exact solutions to some minimum time problems and their behavior near inequality state
constraints. In Proceedings of the IEEE Conference on Decision and Control, volume 2, pages 1622-1626,
1987.

D. Baker. Exact solutions to some minimum time problems with inequality state constraints. Mathe-
matics of Control, Signals, and Systems, 2(2):137-169, 1989.

J. Betts. Survey of numerical methods for trajectory optimization. ATAA Journal of Guidance, Control,
and Dynamics, 21(2):193-207, 1998.

A. Bryson. Dynamic Optimization. Addison Wesley Longman, Inc., 1999.
A. Bryson and Y. Ho. Applied Optimal Control. Hemisphere, New York, 1975.

Aerial Robotics Competition. As part of the Association for Unmanned Vehicle Systems International.
The home page is at http://avdil.gtri.gatech.edu/AUVS/TARCLaunchPoint.htm.

R. Fortenbaugh, K. Builta, and K. Schulte. Development and testing of flying qualities for manual
operation of a tiltrotor UAV. In Proceedings of the American Helicopter Society 51st Annual Forum,
volume 1, pages 299-320, 1995.

R. Howard and I. Kaminer. Survey of unmanned air vehicles. In Proceedings of the American Control
Conference, pages 2950-2953, 1995.

A. Tsidori. Nonlinear Control Systems. Springer-Verlag Berlin, Heidelberg, 1989.

J. Jackson and P. Crouch. Curved path approaches and dynamic interpolation. IEEE Aerospace and
FElectronic Systems Magazine, 6(2):8-13, 1991.

S. K. Kim and D. M. Tilbury. Mathematical modeling and experiemental identification of a model
helicopter. Submitted to the AIAA Journal of Guidance, Control, and Dynamics, 2000.

J. Latombe. Robot Motion Planning. Boston : Kluwer Academic Publishers, 1991.

A. Lee, A. Bryson, and W. Hindson. Optimal landing of a helicopter in autorotation. AIAA Journal of
Guidance, Control, and Dynamics, 11(1):7-12, 1988.

H. Seywald. Trajectory optimization based on differential inclusion. AIAA Journal of Guidance, Control,
and Dynamics, 17(3):480-487, 1994.

15

[16]

[17]

[18]

[19]

[20]

[21]

M. Sugeno. Fuzzy hierarchical control of an unmanned helicopter, 1994. Available at
ftp://ftp.cs.arizona.edu/japan/kahaner.reports/sugeno.94.

H. Sussmann and W. Liu. Limits of highly oscillatory controls and the approximation of general paths
by admissible trajectories. In Proceedings of the IEEE Conference on Decision and Control, pages
437442, 1991.

C. Thornberg and J. Cycon. Sikorsky aircraft’s UAV, Cypher: System description and program accom-
plishments. In Proceedings of the American Helicopter Society 51st Annual Forum, May 1995.

D. Tilbury, J. Laumond, R. Murray, S. Sastry, and G. Walsh. Steering car-like systems with trailers
using sinusoids. In Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), pages 1993-1998, 1992.

D. Tilbury, R. Murray, and S. Sastry. Trajectory generation for the N-trailer problem using Goursat
normal form. In IEEE Transactions on Automatic Control, pages 802-819, 1995.

C. Vasudevan and K. Ganesan. Case-Based Path Planning for Autonomous Underwater Vehicles.
Autonomous Robots, 3:79-89, 1996.

Y. Wang and D. Lane. Subsea vehicle path planning using nonlinear programming and constructive
solid geometry. In IEE Proceedings of Control Theory and Applications, volume 144, pages 143-152,
1997.

16

