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Abstract. The efficiency of sparse codes heavily depends on the size and structure of the input
data. Peculiarities of the nonzero structure of each sparse matrix must be accounted for to avoid
unsatisfying performance. Therefore, it is important to have an efficient analyzer that automatically
determines characteristics of nonzero structures. In this paper, some efficient algorithms are presented
that automatically detect particular nonzero structures.
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1. Introduction. Many methods have been developed that exploit the sparsity
of matrices to reduce the storage requirements and computational time of particular
applications (see, e.g., [9, 12, 15, 17, 20, 23]). The efficiency of each individual method,
however, heavily depends on the specific characteristics of the nonzero structure of
each sparse matrix. For example, although a particular band method may perform
extremely well when actually applied to matrices with a small bandwidth, the ex-
plicit storage and manipulation of all elements within the band makes this method
infeasible for sparse matrices in which the nonzero elements are scattered over the
entire matrix. Because peculiarities of nonzero structures must be accounted for to
obtain satisfactory performance, it is important to have an efficient analyzer that
automatically determines certain characteristics of nonzero structures.

Such a nonzero structure analyzer can be used in a number of different fashions.
First, if sparse applications are explicitly coded by hand, a nonzero structure analyzer
can provide a programmer with useful insights about the characteristics of the matrices
for which an application must be developed in case a representative set of sparse
matrices is available beforehand. Although in this situation the efficiency of the
analyzer is less important, excessively long running times would disable the analysis
of large sets of matrices.

Second, in the past we have proposed a completely different approach to the
development of sparse codes [1]. Rather than explicitly dealing with the sparsity of
matrices at programming level, as done traditionally, this sparsity is dealt with at
compilation level by a special kind of restructuring compiler, referred to as a “sparse
compiler.” We must refer to [1, 3, 4, 5] for a detailed presentation of this approach
and some preliminary experiments with a prototype sparse compiler. It is obvious,
however, that the automatically generated sparse code becomes more efficient if the
sparse compiler can account for characteristics of the nonzero structures. For this,
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the compiler requires an automatic nonzero structure analyzer. Since in this approach
analysis time contributes to compile time, it is again desirable to keep analysis time
limited.

In most practical cases, however, sparse matrices are not all available beforehand.
A possible approach to deal with this situation is to generate multiple versions of an
application (either explicitly by hand or automatically by means of a sparse compiler),
each of which has been optimized specifically for a particular class of nonzero struc-
tures. At run-time, the analyzer is invoked to determine which version is probably
the most efficient. This version is subsequently executed. Using run-time analysis has
the major advantage that nonzero structures do not have to be known in advance. In
this case, however, the analyzer must be very efficient to avoid the situation in which
savings in execution time using an optimized version are outweighed by analysis time.
In general, it is desirable to keep analysis time proportional to the number of nonzero
elements and order of a sparse matrix [11].

In this paper, some efficient algorithms are presented that can be used by an
analyzer to automatically detect particular nonzero structures of square sparse ma-
trices. The presented algorithms examine each matrix as it is; i.e., no attempts are
made to permute the matrix into a particular form (as is frequently done in the
context of LU-factorization, for example, to confine fill-in to certain regions in the
matrix [6, 7, 8, 10, 12, 14, 15, 16, 17, 22]). Even if such a permutation is applied
to the matrix, however, the analyzer can be used afterwards to determine whether
an unforeseen nonzero structure arises (information about the specific form for which
the permutation is intended is usually obtained as a side effect of computing the
permutation).

2. Nonzero structures. We can distinguish between general sparse matrices
and sparse matrices having a particular nonzero structure. In this section, some
important nonzero structures of square matrices are identified [12, 18, 19, 20, 21].

2.1. Band forms. The lower and upper semibandwidth of an N×N matrix A are
defined as the smallest integers bl ≥ 0 and bu ≥ 0, respectively, for which (aij 6= 0)⇒
(−bu ≤ i − j ≤ bl) still holds. Minimum values reveal the most information about
the nonzero structure, because this constraint is trivially satisfied for semibandwidths
N − 1. Allowing for negative semibandwidths would enable the specification of an
arbitrary band in which the main diagonal is not necessarily included. However, in
this paper we will assume that all matrices have a full transversal (i.e., all elements
on the main diagonal are nonzero).

If the semibandwidths are relatively small, we say that the matrix is in band form,
which means that all nonzero elements are confined to a small band. We define the
shape count of a band form as the total number of elements that reside within the
band:

N · (bl + bu + 1)− (b2l + bl)/2− (b2u + bu)/2.

Note that this number is likely to exceed the total number of nonzero elements,
because the band is not necessarily full.

2.2. Block forms. Consider a block partition of a square matrix A into sub-
matrices Aij :
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A =

 A11 . . . A1p

...
. . .

Ap1 App

 .

Each submatrix Aii, referred to as a diagonal block, is a square ni×ni submatrix.
Hence, each submatrix Aij with i 6= j, referred to as an off-diagonal block, is an
ni × nj submatrix. The off-diagonal blocks Api and Aip for 1 ≤ i < p are referred to
as the lower border and upper border, respectively. If a block Aij contains at least one
nonzero element, the block is called a nonzero block, denoted by Aij 6= 0.

If (Aij 6= 0) ⇒ (i = j), then the matrix is in block diagonal form. Likewise, if
(Aij 6= 0) ⇒ (i ≥ j), or if (Aij 6= 0) ⇒ (i ≤ j), then the matrix is in block lower
triangular form or block upper triangular form, respectively. If a matrix is in block
diagonal form except for some nonzero blocks in the borders, then the matrix is in
doubly bordered block diagonal form. Matrices in singly bordered block lower triangular
form or singly bordered block upper triangular form are defined likewise. Finally, if
p = 2, A21 6= 0, A12 6= 0, and A11 is in band form, we say that the matrix is in doubly
bordered band form.

For these forms, the shape count is defined as the total number of elements in
the diagonal blocks (but only counting elements in the band of A11 for a bordered
band form), all border blocks for the bordered forms, and, for the triangular forms,
all remaining off-diagonal blocks in the lower or upper triangular part, even if not
all these blocks are nonzero. Again, this number is likely to exceed the total number
of nonzero elements, since the blocks are not necessarily full (and some of them may
even be zero).

Although, depending on which blocks are nonzero, a particular form of a matrix is
defined once a block partition of that matrix is given, it is possible that different block
partitions into one particular form differ in the accuracy of describing the nonzero
structure. In Figure 2.1, for example, two different block partitions of a matrix into
block diagonal form are shown with shape counts 15 and 25, respectively. Therefore,
we say the most accurate description for a particular form is defined by a minimum
block partition into that form, which means that there are no other block partitions
of the matrix into the same form with a smaller shape count.

Fig. 2.1. Two different block partitions into BDF.

A square matrix has a unique minimum block partition into block diagonal form,
which satisfies the following property (similar statements hold for block lower or upper
triangular forms).

Proposition 2.1. A block partition of a square matrix into block diagonal form
is minimum if and only if there is no diagonal block with a nontrivial block partition
into block diagonal form.
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We will see that a matrix can have several minimum block partitions into a
bordered band or block form.

3. Automatic nonzero structure analysis. In this section, efficient algo-
rithms are presented that detect (bordered) band and (bordered) block forms. We
assume that the nonzero structure of each N ×N sparse matrix A to be analyzed is
available on file in coordinate scheme. In this scheme, the file consists of the order
N and an integer nnz that indicates the number of nonzero elements, followed by an
unordered set of nnz triples (i, j, aij), indicating the row index, column index, and
value of each individual nonzero element.

First, sky-line information is computed. Thereafter, this information is used to
detect particular nonzero structures.

3.1. Preparatory analysis. Sky-line information, i.e., the lower and upper
semibandwidth for each single row and column, respectively, can be obtained in a
single pass over a file by executing the following procedure. In this fragment, the
lower and upper sky-line are computed in the arrays lsky and usky, respectively:

procedure comp_skylines()

begin

read(N, nnz);

allocate lsky[1:N] and usky[1:N]

for i := 1, N do

lsky[i] := 0;

usky[i] := 0;

endfor

for k := 1, nnz do

read(i, j, aij);

lsky[i] := max(lsky[i], (i-j));

usky[j] := max(usky[j], (j-i));

endfor

end

Sky-lines are computed under the assumption that the matrix has a full transver-
sal, so that all elements of the arrays lsky and usky can be initialized to zero. All
information requires Θ(N) storage and can be obtained in Θ(nnz +N) time.

Example. The following lower and upper sky-lines are obtained for the 15 × 15
sparse matrix that is depicted in Figure 3.1:

1 15
lsky 0 0 1 0 4 0 1 0 1 0 0 0 0 0 3
usky 0 0 2 0 1 0 0 0 3 0 0 0 0 3 2

@
@
@
@@

@
@
@
@
@

Fig. 3.1. Band form.
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3.2. Band forms. Once the lower and upper sky-lines of a matrix have been
computed, the lower and upper semibandwidths of this matrix are determined in
Θ(N) time as follows:

procedure comp_bandform()

begin

b_l := 0; b_u := 0;

for i := 1, N do

b_l := max(b_l, lksy[i]);

b_u := max(b_u, uksy[i]);

endfor

end

These semibandwidths directly determine the band form of a matrix.

Example. For the sparse matrix of Figure 3.1, the semibandwidths bl = 4 and
bu = 3 result. This gives rise to the band form with shape count 104 that is shown in
the same figure.

3.3. Bordered band forms. By slightly extending the previous procedure, an
algorithm is derived that constructs a minimum block partition into bordered band
form in Θ(N) time:

procedure comp_bord_bandform()

begin

b_l := 0; b_u := 0;

tsz := N*N;

for i := 1, N do

b_l := max(b_l, lksy[i]);

b_u := max(b_u, uksy[i]);

if (bf_size(b_l, b_u, N-i) <= tsz) then

t_l := b_l; t_u := b_u; b := N-i;

tsz := bf_size(b_l, b_u, N-i);

endif

endfor

end

In this algorithm, the auxiliary function bf size computes the shape count of a
bordered band matrix with border size b and semibandwidths bl and bu:

integer function bf_size(bl, bu, b)

begin

return ( (N-b) * (bl+bu+1) - (bl*bl+bl) / 2

- (bu*bu+bu) / 2 + 2*N*b - b*b );

end

After the semibandwidths are updated in each step i, we test whether the shape
count of a bordered band form with border size N-i is less than or equal to the best
shape count seen so far. If this is true, we record this shape count and corresponding
border size and semibandwidths. Consequently, after applying the algorithm, vari-
ables b, t l, and t u contain the border size and semibandwidths of a minimum block
partition into block band form. If b=0 holds, then effectively a band form results. For
example, applying comp bord bandform() to the matrix of Figure 3.1 yields exactly
the same band form as computed by comp bandform().

Example. In Figure 3.2, we present the resulting bordered band forms for some
matrices, with shape counts 125, 119, 153, and 131, respectively. The last example
shows that, although a minimum block partition into a doubly bordered band form is
constructed, it is possible that only a single border block is actually nonzero.
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Example. A matrix may have different minimum block partitions into bordered
band form, as illustrated in Figure 3.3, where the shape count of all forms is 93. Our
algorithm solves such ties in favor of the smallest border size.
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Fig. 3.2. Bordered band forms.
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Fig. 3.3. Different minimum block partitions into bordered band forms.

3.4. Block forms. The following procedure constructs a block partition into
diagonal block form in Θ(N) time by determining the size k of each next diagonal
block with the lower right corner at row and column index B during a backward scan
over the sky-lines:

procedure comp_blockdiag()

begin

p := 0; k := 1; B := N;

for i := N, 1, -1 do

S1: k := max(k, max(lsky[i],usky[i])+B-i+1);

if (i = B-k+1) then

p := p + 1; part[p] := i; /* Record Block */

B := i - 1; k := 1: /* Next Block */

endif

endfor

end

After application of this algorithm, p contains the number of diagonal blocks.
The row (or column) indices of the upper left corners of all diagonal blocks of the
block partition are recorded in reverse order in the first p locations of array part.

The following proposition states that the minimum block partition into block
diagonal form is found. Likewise, if only the value lsky[i] or usky[i] is used in
statement S1, then the minimum block partition into block lower, or block upper
triangular form, respectively, is obtained in Θ(N) time.

Proposition 3.1. Application of comp blockdiag() to the lower and upper
sky-line of a matrix yields the minimum block partition into block diagonal form.

Proof. By construction, each nonzero element is incorporated in a diagonal block.
Now assume that the resulting block partition is not a minimum block partition into
diagonal form. Then Proposition 2.1 implies that there is a certain k × k diagonal
block with the lower right corner at a row and column index B that has a nontrivial
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block partition into block diagonal form; i.e., there is 1 ≤ k′ < k such that ∀B− k′ <
i ≤ B : max(li, ui)+(B−i) < k′. Since no diagonal block is recorded during iterations
i = B . . . B − k′ + 1, during at least one of these iterations a value is assigned to k

that is greater than k′. However, this can only occur if max(li, ui) + B − i + 1 > k′

for some B − k′ < i ≤ B. This contradicts the assumption.
Example. Application of the different versions of this algorithm to the matrix of

Figure 3.1 yields the block diagonal, block lower, and upper triangular forms shown
in Figure 3.4, with shape counts 67, 140, and 138, respectively. Note that although
in the block triangular forms many off-diagonal blocks are zero, the elements of these
blocks are also included in the shape count.

The contents of array part for the first block partition are shown below:

part 11 10 6 1

Fig. 3.4. Block forms.

3.5. Bordered block forms. Let E(b) denote the shape count of a bordered
block diagonal form with border size b ∈ [0, N ] arising from the minimum block
partition of the remaining (N − b) × (N − b) matrix into block diagonal form. We
define the improvement of using border size b′ instead of b as I(b′, b) = E(b)−E(b′),
satisfying the following property.

Proposition 3.2. For b, b′, b′′ ∈ [0, N ], we have I(b′, b′′) = I(b′, b) + I(b, b′′).
Proof. I(b′, b′′) = E(b)− E(b′) + E(b′′)− E(b) = I(b′, b) + I(b, b′′).
Suppose that for a given border size b ∈ [0, N ], we construct the minimum block

partition of the remaining (N − b)× (N − b) submatrix into block diagonal form using
the procedure comp diagblock(). At any iteration i = i, the block partition found
so far may be discarded and the algorithm may be restarted with B = i−1 and k = 1
for a new border size b′ = N − i+ 1.

Obviously, selection of this border is only profitable if eventually we are able to
determine that I(b′, b) > 0. However, rather than constructing both block partitions
completely, we are already able to compute the improvement during an iteration
i = i′ in which the last diagonal block of the new block partition that overlaps with
the diagonal block that was assumed during iteration i = i has been found. This is
because the block partition of the remaining part of the matrix will be identical for both
block partitions. This new diagonal block may be contained in the old diagonal block
(which occurs if the value of k would not have been incremented while constructing
the old block partition), or these blocks may partially overlap.
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Fig. 3.5. Gain and loss for border.

Both cases are illustrated in Figure 3.5. In any case, the improvement is equal to
the difference of the number of elements included in the border (loss) and the number
of elements that do not have to be included in a diagonal block (gain). Let B, k and
B′, k′ denote the value of B belonging to the iterations i = i and i = i′, respectively.
Furthermore, let Z and Z ′ denote the number of elements in the off-diagonal zero
blocks of the old and new block partition below rows B and B′, respectively. Then
the improvement of using a new border size b′ with respect to the old border size b is
equal to the difference between the gain and the loss:

I(b′, b) = Z ′ − Z − 2 · (B′ − k′)(B −B′).

If the gain exceeds the loss, i.e., I(b′, b) > 0, then it is profitable to continue
with the new block partition and border size b′. Moreover, border size b may be
discarded from further consideration, since Proposition 3.2 implies that I(b′, b′′) >
I(b, b′′) for all b′′ ∈ [0, N ]. If no improvement has been obtained, i.e., I(b′, b) ≤ 0,
then the block partition corresponding to border size b must be restored and the
algorithm can proceed with the search for the next diagonal block (which has at least
size max(k,B − B′ + k′)). In that case, we may discard border size b′ from further
consideration, since Proposition 3.2 implies that I(b′, b′′) ≤ I(b, b′′) for all b′′ ∈ [0, N ].

These observations enable us to construct a minimum block partition into block
diagonal form in one pass over the sky-lines. At each step in which no diagonal block
is recorded, the current status is saved on a stack, and a new border size is tried. If a
diagonal block is recorded, no improvement can be obtained by trying a new border
size. Instead, previously constructed block partitions belonging to smaller border
sizes that can be verified are restored if an improvement is obtained (which is simply
done by restoring the value of p), or discarded otherwise. The following slightly more
complex version of procedure comp blockdiag() results:
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procedure comp_bord_blockdiag()

begin

Z := 0; b := 0; s := 0;

p := 0; k := 1; B := N;

for i := N, 1, -1 do

S2: k := max(k, max(lsky[i],usky[i])+B-i+1);

if (i = B-k+1) then

/* Last Overlapping Block? */

while ( (s > 0) && (i == stackB[s]-new_k()+1) ) do /* Conditional AND */

/* Improvement? */

if (I() > 0) then

s := s - 1; /* Discard */

else

pop_restore(); /* Restore */

endif

endfor

Z := Z + 2 * k * (B-k);

p := p + 1; part[p] := i; /* Record Block */

B := i - 1; k := 1: /* Next Block */

else

push(); /* Save State */

Z := 0; B := i - 1; /* New Search */

k := 1; b := N - i + 1;

endif

endfor

end

In this algorithm, the following auxiliary procedures are used to implement stack-
like operations that save and restore states:

procedure push()

begin

s := s + 1;

stackk[s] := k;

stackZ[s] := Z;

stackB[s] := B;

stackp[s] := p;

stackb[s] := b;

end

procedure pop_restore()

begin

k := new_k();

Z := stackZ[s];

B := stackB[s];

p := stackp[s];

b := stackb[s];

s := s - 1;

end

The following auxiliary functions are used to compute the improvement and the
new value of k for the block partition on top of the stack:

integer function I()

begin

I := Z - stackZ[s] - 2 *

(B-k) * (stackB[s]-B);

end

integer function new_k()

begin

new_k := max(stackk[s],

stackB[s]-B+k);

end

Although a while-loop occurs inside the i-loop, this algorithm still runs in Θ(N)
time because each border size can only be pushed and popped from the stack once.
Because the algorithm simply applies comp blockdiag() to the submatrix that re-
mains for the most profitable border size, it is clear that this extended algorithm
constructs a minimum block partition into bordered block diagonal form.

After application of this algorithm, the scalar b contains the selected border size
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(and hence the size of the last diagonal block). The first p locations of array part

represent the block partition into block diagonal form of the remaining submatrix. If
a zero border size is selected, the last diagonal block is empty and, effectively, a block
partition into block diagonal form results.

If only the value lsky[i] or usky[i] is used in statement S2, then a minimum
block partition into, respectively, singly bordered block lower or upper triangular form
is obtained. In these cases, the constant 2 must be removed from the assignment to
Z and the computation in function I() to compute the appropriate improvement.

I(3, 0) = 112 I(2, 0) = 68 I(3, 0) = 14

Fig. 3.6. Bordered block forms.

Example. In Figure 3.6, the bordered block forms that result for a matrix are
shown, having shape counts 225 − 112 = 113, 225 − 68 = 157, and 176 − 14 = 162,
respectively. The contents of array part for the bordered block diagonal form having
b=3 are shown below:

part 12 11 10 6 4 1

Example. Applying the version operating only on lsky[i] to the matrix with 22
nonzero elements of Figure 3.7 yields a minimum partition into bordered block upper
triangular form with border size 1 and shape count 166. However, the shape counts
of similar forms with border sizes 2 and 3 are also 166. This example illustrates
that a matrix may have different minimum block partitions into a particular bordered
block form. Because a border is denied for a zero improvement (viz., I(3, 2) = 0 and
I(2, 1) = 0 in the example), ties are solved in favor of the smallest border size.

I(1, 0) = 21 I(2, 0) = 21 I(3, 0) = 21

Fig. 3.7. Different minimum block partitions into BBUTF.

3.6. Classification. After the minimum block partitions into (doubly bordered)
band form, (doubly bordered) block diagonal form, and (singly bordered) block lower
and upper triangular forms have been constructed, shape counts can be used to de-
termine which form most accurately describes the nonzero structure of a matrix.
Moreover, the density of this form (i.e., nnz divided by the shape count) can be
compared with a user-defined threshold to decide whether this nonzero structure is
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used for the classification of the sparse matrix or whether the matrix is classified as
a general sparse matrix.

Example. For the 59×59 matrix “impcol b” of the Harwell–Boeing sparse matrix
collection [13] with 312 nonzero elements, for example, the shape counts of the different
forms are 2620, 3461, 3206, and 2930, respectively. In Figure 3.8, we show the band
form and bordered block upper triangular form. Here, we classify this matrix as a
band matrix if 312/2620 exceeds the threshold, or as a general sparse matrix otherwise.

@
@
@@

@
@
@
@
@
@
@
@
@

Fig. 3.8. Classification of “impcol b.”

4. Conclusions. In this paper, we have presented some efficient algorithms that
automatically detect particular nonzero structures of sparse matrices. First, we have
extended an algorithm that constructs a band form into an algorithm that constructs
a minimum block partition into bordered band form (possibly yielding a band form as
a special case). Likewise, an algorithm that constructs a minimum block partition into
block diagonal or triangular form has been extended into an algorithm that constructs
a minimum block partition into bordered block diagonal or triangular form (possibly
yielding a block form with an empty border as a special case). All algorithms require
only sky-line information, which can be obtained in Θ(N + nnz) time for an N ×N
sparse matrix with nnz nonzero elements, and have a running time of Θ(N).
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