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Abstract 

In this paper we propose a novel parameterized interconnect 
order reduction algorithm, CORE, to efficiently capture both 
inter-die and intra-die variations. CORE applies a two-step 
explicit-and-implicit scheme for multi-parameter moment 
matching. As such, CORE can match significantly more moments 
than other traditional techniques using the same model size. In 
addition, a recursive Arnoldi algorithm is proposed to quickly 
construct the Krylov subspace that is required for parameterized 
order reduction. Applying the recursive Arnoldi algorithm 
significantly reduces the computation cost for model generation. 
Several RC and RLC interconnect examples demonstrate that 
CORE can provide up to 10x better modeling accuracy than other 
traditional techniques, while achieving smaller model complexity 
(i.e. size). It follows that these interconnect models generated by 
CORE can provide more accurate simulation result with cheaper 
simulation cost, when they are utilized for gate-interconnect co-
simulation. 
 
1. Introduction 

As IC technologies are scaled to deep submicron region, metal 
interconnect wires pose strong signal integrity problem and 
significantly impact the overall timing performance [1]. 
Meanwhile, it becomes increasingly difficult to control the 
relative process variations in nano-scale technologies [2]-[3]. The 
random fluctuations in manufacturing process introduce 
uncertainty in circuit behavior, thereby significantly impacting the 
circuit performance and product yield. 
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Fig. 1. Interconnect model with the variations {ε1,ε2,...}. 

In order to model and analyze interconnect behavior with 
process variations, various techniques have been proposed for 
variational interconnect order reduction [4]-[5]. These approaches 
apply projection operator and generate reduced-order (small-size) 
interconnect models that can be further utilized to speedup the 
gate-interconnect co-simulation, as shown in Fig. 1. In addition, 
the projection subspace and/or the reduced-order system matrices 
are approximated as low-order polynomials of process parameters 
such that the process variation effects can be incorporated into the 
interconnect model. These process parameters, for example, can 
be the width and thickness of the interconnect metal wires. 

Recently, intra-die variations become increasingly important 
in modern IC technologies [3]. These intra-die variations model 
the individual, but statistically correlated, local variations within 

the same die. As will be discussed in Section 2, we find that the 
projection subspace and/or the reduced-order system matrices 
become strongly nonlinear in the presence of large-scale intra-die 
variations and, hence, cannot be accurately approximated by low-
order polynomials. Therefore, although the techniques proposed 
in [4]-[5] have been successfully applied for inter-die variations, 
they become inefficient in modeling intra-die variation effects. 

Recently-developed parameterized interconnect order 
reduction techniques propose to approximate the system transfer 
function, instead of the projection subspace and/or the reduced-
order system matrices, by low-order polynomials of process 
parameters [6]-[7]. The system transfer function is weakly 
nonlinear even under intra-die variations and, therefore, is much 
easier to approximate with high accuracy. In addition, the authors 
in [7] propose the concept of multi-parameter moments which are 
utilized as a criterion for moment matching and generating 
reduced-order models. However, the algorithm proposed in [7] for 
multi-parameter moment matching can result in extremely large 
model size, especially when there exist many spatially correlated 
intra-die random variations. 

In this paper we propose a novel Compact Order Reduction 
algorithm for parameterized Extraction (CORE). The novelty of 
CORE lies in our unique two-step moment matching scheme that 
first explicitly matches the multi-parameter moments for the 
process parameters εi and then implicitly matches the moments for 
the frequency parameter s through projection. The main advantage 
of such an explicit-and-implicit moment matching is that an 
extremely compact (small-size) reduced-order model can be 
generated by CORE to simultaneously match a large number of 
multi-parameter moments. Since CORE dramatically increases the 
number of the matched multi-parameter moments, it can 
significantly reduce the modeling error (e.g. up to 10x in our 
tested examples) compared with other traditional techniques using 
the same model size. 

Another important contribution of CORE is to formulate the 
parameterized system matrices into block lower triangular ones, 
based on a careful analysis of the underlying variational structure. 
Then, a recursive Arnoldi algorithm is proposed to quickly 
construct the Krylov subspace for projection. Compared with the 
direct Arnoldi algorithm used in PRIMA [8], the proposed 
recursive Arnoldi algorithm can achieve up to 10x speedup for 
parameterized interconnect order reduction in our tested 
examples. 

The remainder of the paper is organized as follows. In Section 
2 we review the background on variational interconnect order 
reduction and provide a comprehensive study on the advantages 
and disadvantages of the traditional techniques. Then we propose 
our CORE algorithm in Section 3. The efficacy of CORE is 
demonstrated by several interconnect examples in Section 4. 
Finally, we draw conclusions in Section 5. 
 



 

2. Background 
Without loss of generality, an RLC network can be described 

by the following modified nodal analysis (MNA) equation: 
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where u ∈ Rn×1 and y ∈ Rm×1 denote the inputs and outputs, x ∈ 
RN×1 represents the state variables, and G,C ∈ RN×N, B ∈ RN×n and 
L ∈ RN×m are the system matrices. n is the input number, m is the 
output number and N is the size of the MNA equation. 

Given the linear network in (1), the purpose of model order 
reduction is to find a reduced-order (small-size) system: 
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such that the input-output relation is “almost” unchanged. The 
reduced-order model in (2) can be generated by using Krylov 
subspace projection [8] or truncated balanced realization [9]. 

When process variations are considered, the matrices G and C 
in (1) are functions of process parameters. There are several 
techniques previously proposed to generate parameterized 
reduced-order models. Most of them fall into one of the following 
two categories: quadratic polynomial fitting and multi-parameter 
moment matching. 
 
2.1 Quadratic Polynomial Fitting 

When process variations are considered, the most 
straightforward way for parameterized interconnect order 
reduction is to approximate the reduced-order system matrices G̃, 
C̃, B ̃ and L̃ in (2) as low-order (e.g. quadratic) polynomials of 
process parameters. The authors in [4] demonstrate that, with 
inter-die variations, the projection subspace and/or the reduced-
order system matrices are weakly nonlinear and, therefore, can be 
accurately approximated by quadratic polynomials. 

-40 -20 0 20 40
-1

0

1

2

3
x 10

-3

Variation εH (%)

V
al

ue

Inter-Die
Intra-Die

-40 -20 0 20 40
-0.02

-0.015

-0.01

-0.005

Variation εH (%)

V
al

ue

Inter-Die
Intra-Die

 
(a)  G̃(2,4)       (b)  G̃(2,10) 

Fig. 2. The reduced-order system matrix G̃ is strongly nonlinear 
with intra-die process variations. 

However, when intra-die variations exist or when interconnect 
wires sit on multiple layers, the projection subspace and/or the 
reduced-order system matrices become strongly nonlinear and are 
difficult to fit. As a demonstration example, we extract the 10-th 
order model for an RC clock tree which consists of 1275 RC 
components. Fig. 2 shows two elements of the reduced-order 
system matrix G̃, i.e. G̃(2,4) and G̃(2,10), when the metal 
thickness is changed by εH = ±30%. In this example, results are 
compared when εH represents the inter-die variation (i.e. affect the 
entire interconnect wire) and the intra-die variation (i.e. only 
affect part of the interconnect wire) respectively. Note that the 
reduced-order system matrix G̃ becomes strongly nonlinear in the 
presence of intra-die variations. Intuitively, the strong nonlinearity 

in Fig. 2 appears because the reduced-order system matrices in (2) 
are the purely mathematical equations to represent the system. For 
a given linear system, its state-matrix representation is not unique. 
Therefore, a small perturbation on the physical RC elements can 
result in a dramatic change in these mathematic matrices. 
 
2.2 Multi-Parameter Moment Matching 

The authors in [6]-[7] propose to approximate the system 
transfer function H by low-order polynomials of process 
parameters. Unlike the reduced-order system matrices that are 
purely mathematical, the transfer function H is physical and 
uniquely determined for a given linear system. Therefore, a small 
perturbation on the physical interconnect parameters should only 
result in a small change in H. In other words, H is weakly 
nonlinear even if intra-die variations exist. 
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(a)         (b) 

Fig. 3. (a) The nominal transfer function H; (b) the transfer 
function H with intra-die variations. 

Taking the same RC clock tree as an example, Fig. 3 shows its 
nominal transfer function and the transfer function with intra-die 
variations. It is shown in Fig. 3(b) that the transfer function 
remains smooth even if the intra-die metal thickness varies up to 
εH = ±30%. 

Given a parameterized transfer function: 
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where εi is the i-th process parameter and K is the total number of 
the variational process parameters, the coefficients Hi1,...,iK,l are 
called the multi-parameter moments [7]. The authors in [7] 
propose an algorithm to compute the projection subspace and 
generate the reduced-order model such that the first several multi-
parameter moments are matched. 

It should be noted that if the Taylor expansion in (3) is 
matched up to M-th order for all εi and s, the number of the 
matched multi-parameter moments is much larger than M. Using 
the algorithm proposed in [7], the resulting model order is equal to 
n times the total number of the matched multi-parameter 
moments, where n is the number of the system inputs. Therefore, 
the model order generated by the algorithm in [7] can be 
extremely large in some practical applications. A large model 
order will result in expensive computation cost when using the 
model for gate-interconnect co-simulation. 
 
3. CORE Algorithm 

The main disadvantage of the algorithm in [7] is that the 
multi-parameter moment matching is completely achieved 
through projection. In order to match one additional multi-
parameter moment, the projection subspace must be increased by 
n dimensions (n is the number of the system inputs), thereby 
increasing the final model order by n. Our proposed CORE 



 

algorithm, however, utilizes a completely different moment 
matching scheme in order to increase the number of the matched 
multi-parameter moments for a given model order. 

When process variations are considered, the state variables x 
in (1) can be approximated by the Taylor expansion: 
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Fig. 4 intuitively illustrates the equivalent system structure for this 
Taylor expansion. The input signal u passes various linear systems 
xi1,...,iK(s) and then all signals are added together with weight 
ε1

i1·...·εK
iK to generate the output signal y. 
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Fig. 4. Equivalent system structure for the Taylor expansion (4). 

The main idea of CORE is that since all xi1,...,iK(s) in Fig. 4 
share the same input, they can be conceptually considered as the 
different outputs of a large linear system, as shown by the grey 
area in Fig. 4. As such, the moments of all xi1,...,iK(s) can be 
simultaneously matched by using Krylov subspace projection. 

CORE matches the multi-parameter moments through two 
steps. Firstly, the multi-parameter moments are matched for the 
process parameters εi, resulting in a set of governing equations to 
describe the large linear system xi1,...,iK(s) in Fig. 4. Next, the 
moments of all xi1,...,iK(s) are implicitly matched for the frequency 
parameter s through Krylov subspace projection. 
 
3.1 Explicit Moment Matching for ε 

Similar to (4), we expand the system matrices G and C in (1) 
by Taylor series: 
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The matrices B and L in (1) represent topological connections and, 
therefore, are independent on process variations. 

Substituting (4)-(5) into (1) and explicitly matching the 
coefficients (i.e. the moments) for all cross-product terms 
ε1

i1·...·εK
iK, we have: 
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After some mathematical manipulations, equations (6) and (7) can 
be re-formulated as: 
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where 
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The system specified in (8) is called the augmented 
parameterized system or simply parameterized system in this 
paper. The parameterized system in (8) is much larger than the 
original system in (1); however, the following theorem proves that 
the system matrices GAP and CAP in (8) are block lower triangular. 
Such a special property makes it possible to handle the large-size 
parameterized system in practical applications, which will be 
further discussed in Section 3.2. 

Theorem 1: The parameterized system matrices GAP and CAP in 
(9)-(10) are block lower triangular with the constant diagonal 
blocks G0,...,0 and C0,...,0 respectively. 

Proof: When we match the Taylor expansion coefficients for one 
of the cross-product terms ε1

i1·...·εK
iK in (6), the left-hand side of 

(6) is: 

 ( )∑ ∑
= =

−−⋅+⋅⋅⋅
1

01 0
,,11,,1,,1

1
1

i

j

iK

jK
jKiKjijKjjKj

iK
K

i xsCG LLLLL εε  (12) 

Equation (12) proves Theorem 1.        ■ 

In addition, the following theorem further proves that the 
stability is preserved when converting the original system to the 
parameterized one. Preserving stability is a unique property due to 
the explicit moment matching scheme. It is one of the key 
advantages of the proposed CORE algorithm. Note that the 
stability cannot be guaranteed for the parameterized systems 
derived by other approaches, e.g., [6]. 

Theorem 2: The parameterized system in (8) is stable if and only 
if the original system in (1) is stable. 

Proof: The poles of the parameterized system in (8) are the roots 
of the following determinant: 
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According to Theorem 1, both GAP and CAP are block lower 



 

triangular with constant diagonal blocks. Therefore, the matrix 
GAP + sCAP is also block lower triangular with constant diagonal 
block. The determinant in (13) is equal to the product of the 
determinants of the diagonal blocks: 
 0,,00,,00,,00,,0 LLLL L sCGsCGsCG APAP +⋅⋅+=+  (14) 

Note that G0,...,0 and C0,...,0 in (14) are the nominal system matrices. 
Therefore, equation (14) implies that the parameterized system 
contains repeated poles. However, the values of all these poles are 
exactly equal to those of the original nominal system. This 
conclusion proves Theorem 2, since the stability of a linear 
system is uniquely determined by its poles.      ■ 

By matching the Taylor expansion coefficients for εi, the 
parameterized system in (8) provides the governing equations that 
xi1,...,iK(s) should satisfy. If we further expand xi1,...,iK(s) by Taylor 
series in s and match the expansion coefficients (i.e. the 
moments), the multi-parameter moments of the transfer function 
H (defined in (3)) can be matched. In the following subsection, we 
show how to simultaneously match the moments for all xi1,...,iK(s) 
using Krylov subspace projection. 
 
3.2 Implicit Moment Matching for s 

Unlike the aforementioned explicit moment matching for the 
process parameters εi, the moments of the frequency s of all 
xi1,...,iK(s) are implicitly matched by Krylov subspace projection. 
The Krylov subspace can be generated using the Arnoldi 
algorithm [8]. Fig. 5 summarizes a simplified implementation of 
the Arnoldi algorithm. Note that the computations in Fig. 5 are 
completely numerical, since they only involve operations on GAP, 
CAP and BAP in (8). These three matrices are numerical, while the 
matrix LAP in (8) contains the symbols εi for modeling process 
variations. 

1. Start from GAP, CAP, BAP in (8). 
2. Solve GAPX0 = BAP for X0. 
3. Orthogonalize and normalize each column in X0. 
 For k = 1, 2, ... 
4.  V = CAPXk-1. 
5.  Solve GAPXk = V for Xk. 
6.  Orthogonalize Xk to all Xi (i = 0,1,2,...,k-1). 
7.  Orthogonalize and normalize each column in Xk. 
 End For 
8. X = [X0 X1 X2 ...]. 

Fig. 5. Simplified Arnoldi algorithm. 

After the Krylov subspace X is constructed in Fig. 5, the 
parameterized reduced-order interconnect model is achieved by: 
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Theorem 3: An M-th order model created by (15) matches 
Mε·M/n multi-parameter moments, where Mε is the total number 
of the Taylor expansion terms in (4), n is the number of the 
system inputs and the operator • stands for the truncation to the 
nearest integer toward zero. 

Proof: The authors in [8] prove that an M-th order model can 
match the first M/n moments for all state variables when using 
the Arnoldi algorithm in Fig. 5 to generate the Krylov subspace. 
Therefore, an M-th order model in (15) matches the first M/n 
moments for all xi1,...,iK(s) in (8)-(11). On the other hand, each 

xi1,...,iK(s) is one of the Taylor expansion coefficients for 
x(ε1,...,εK,s), as shown in (4). If the total number of the Taylor 
expansion terms in (4) is Mε, the total number of the matched 
multi-parameter moments is Mε·M/n.       ■ 

According to Theorem 3, the final model size M is 
independent on Mε using the proposed CORE algorithm. 
However, increasing Mε will consequently increase the 
parameterized system size in (8), thereby making the Krylov 
subspace computation more expensive. In many practical 
applications, a great number of the symbols εi might be required 
to model both inter-die and intra-die variations. As such, even a 
quadratic expansion in (4) can result in an extremely large system 
in (8). Next, we propose a recursive Arnoldi algorithm to address 
this computation cost problem. 

For large systems, the most expensive operation during 
Krylov subspace generation is to solve the linear equations in Step 
2 and Step 5 of Fig. 5. Remember that the system matrix GAP is 
block lower triangular with constant diagonal block (Theorem 1). 
Given a linear equation whose coefficient matrix has such a 
special property: 
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the above linear equation can be efficiently solved using the 
recursive algorithm in Fig. 6. 

1. Start from (16). 
2. Compute the LU factorization E11 = LU. 
 For k = 1, 2, ... 

3.  ∑
−

=

−=
1

1

k

i
ikikk FEHH . 

4.  Solve LVk = Hk for Vk. 
5.  Solve UFk = Vk for Fk. 
 End For 
Fig. 6. Recursive algorithm for solving the linear equation (16). 

The recursive algorithm in Fig. 6 can significantly reduce the 
computation cost for two reasons. Firstly, instead of directly 
solving the original large linear equation, the recursive algorithm 
repeatedly solves a number of small equations with the coefficient 
matrix E11. The size of E11 is much smaller than the original 
equation size in (16). Secondly, since the coefficient matrix in 
(16) has the constant diagonal block E11, the LU factorization is 
only required once. 

The recursive algorithm in Fig. 6 can be applied to solve the 
linear equations in Step 2 and Step 5 of Fig. 5, which are the most 
expensive operations for generating the Krylov subspace. In this 
paper, such an Arnoldi algorithm with recursive linear equation 
solver is called the recursive Arnoldi algorithm, while the 
traditional Arnoldi algorithm with direct linear equation solver in 
[8] is called the direct Arnoldi algorithm. As will be demonstrated 
by the numerical examples in Section 4, the proposed recursive 
Arnoldi algorithm can achieve up to 10x speedup in 
parameterized interconnect order reduction, compared with the 
direct Arnoldi algorithm used in PRIMA [8]. 
 
3.3 Summary 

Fig. 7 summarizes the overall implementation of CORE. 
Compared with other traditional approaches, CORE offers several 



 

advantages in three aspects. 

1. Start from the MNA equation (1) where x, G and C are 
expanded by Taylor series in (4)-(5). 

2. Apply explicit moment matching on the process parameters εi 
and formulate the parameterized system (8)-(11). 

3. Apply the recursive Arnoldi algorithm, i.e. the Arnoldi 
algorithm in Fig. 5 with the recursive linear equation solver in 
Fig. 6, to generate the Krylov subspace X. 

4. Apply the projection in (15) to generate the reduced-order 
model. 

Fig. 7. Summary of the CORE implementation. 

• Flexibility. While the algorithm proposed in [7] must use the 
same expansion order for both the process parameters εi and 
the frequency s, CORE matches the moments for εi and s 
separately, thereby providing the flexibility of selecting 
different expansion orders for εi and s. Note that, in many 
practical applications, the process parameters εi only vary 
about ±30%, while the frequency s must cover a very wide 
range, e.g. from 0 Hz up to 10 GHz. Therefore, it is important 
to distinguish εi and s and apply different expansion orders for 
each of them. 

• Compactness. In order to match the same number of the multi-
parameter moments, CORE can generate a compact model 
whose size (i.e. order) is much smaller than that created in [7]. 
As proved in Theorem 3, an M-th order model generated by 
CORE can match Mε·M/n multi-parameter moments, while 
using the same model size only matches M/n moments in 
[7]. Note that Mε (i.e. the total number of the Taylor 
expansion terms in (4)) can be very large in many practical 
applications, which makes CORE superior to the traditional 
approach in [7]. Table 1 shows a comparison on model sizes, 
assuming that the system is single-input and there are 10 
variational process parameters εi. In Table 1, we use the same 
Taylor expansion order for all εi and s, since the algorithm in 
[7] cannot apply different expansion orders for each of them. 

Table 1. Model order for a single-input system with 10 
variational process parameters 

Expansion Order 1 3 5 7 9 
# of Matched Moments 12 364 4368 32K 168K 

[7] 12 364 4368 32K 168K Model 
Order CORE 1 3 5 7 9 

 

• Scalability. Since the proposed explicit moment matching 
scheme results in the block lower triangular matrix GAP, the 
recursive Arnoldi algorithm can be applied to quickly 
construct the Krylov subspace. This makes CORE scalable to 
large-size problems. The total computation cost for CORE is 
roughly equal to Mε times the nominal order reduction cost 
for the same circuit, where Mε is the total number of the 
Taylor expansion terms in (4). The parameterized systems 
derived by other approaches (e.g., [6]) do not have the block 
lower triangular structure and, therefore, the recursive Arnoldi 
algorithm cannot be applied to reduce the computation cost. 

However, the passivity of the CORE model is difficult to 
prove. The main difficulty is that the resulting reduced-order 
model is a parameterized one (see (15) and Fig. 4), including the 
variational process parameters εi. It is difficult to achieve passivity 

with variational εi. Fortunately, passivity is not always required in 
many simulation algorithms. For example, the algorithm in [10] 
does not require passive interconnect models by using the 
successive chord method for nonlinear iteration. 
 
4. Numerical Examples 

In this section we demonstrate the efficacy of CORE using 
several circuit examples. In all examples, the modeling accuracy 
is compared using the 50% delay errors that are measured by 104 
Monte Carlo simulations with step input. All experiments are run 
on a SUN ― 1 GHz server. 
 
4.1 RC Clock Tree 

An RC clock tree, including 801 RC elements, is synthesized 
using the IBM CMOS 90 nm process and is distributed on three 
metal layers: M5, M6 and M7. In this example, three symbols 
ε1~ε3 are respectively utilized to model the metal width variations 
of M5~M7 up to ±30%. 

Table 2 compares the reduced-order model size and accuracy 
for three different methods: the quadratic fitting approach [4], the 
traditional multi-parameter moment matching approach [7] and 
CORE. Compared with [7], our CORE model has smaller size 
while matching much more multi-parameter moments. The 
frequency response of the RC clock tree at one Monte Carlo 
sampling point is plotted in Fig. 8. 

Table 2. Reduced-order model size and accuracy for the RC 
clock tree 

 [4] [7] CORE 
Model Order 20 36 20 

# of Matched Moments – 36 200 
Min 0.02% 1.33% 0.96% 
Avg 61.65% 2.15% 1.45% 

Delay 
Error 

Max 635.05% 3.55% 2.57% 
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Fig. 8. Frequency response of the RC clock tree at one Monte 

Carlo sampling point (ε1 = –0.3%, ε2 = 9.9%, ε3 = –6.0%). 

 
4.2 Scaling with Problem Size 

The second circuit example is a larger RC network that 
includes 1275 RC elements. 
 



 

A. Modeling Inter-Die Variations 

Table 3. Reduced-order model size and accuracy for the RC 
network (inter-die only) 

 [4] [7] CORE 
Model Order 10 21 10 

# of Matched Moments – 21 60 
Min 0.00% 0.06% 0.00% 
Avg 0.00% 11.19% 0.10% 

Delay 
Error 

Max 0.00% 41.19% 1.49% 
 

Firstly, we only consider the inter-die variations on metal 
width and thickness up to ±30%. Table 3 compares the reduced-
order model size and accuracy for different approaches. Note that 
the quadratic fitting approach [4] is extremely accurate in this 
example when only inter-die variations are considered. 
 
B. Impact of Intra-Die Variations 

Next, we partition the entire interconnect network into 10 
individual regions based on the physical locations. The intra-die 
metal width and thickness variations in each region are 
represented by individual symbols. In this example, we have two 
symbols for modeling the inter-die width and thickness variations 
and 20 additional symbols (two symbols in each region) for 
modeling the intra-die width and thickness variations. 

Table 4 compares the reduced-order model size and accuracy 
when different inter-die and intra-die variation scales are selected. 
As we would expect, the quadratic fitting approach [4] has large 
modeling errors in the presence of intra-die variations. As shown 
in Table 4, CORE creates the most compact (small-size) and 
accurate parameterized interconnect models. After the intra-die 
variations reach ±15%, the average modeling error of CORE is 
10x smaller than those of the traditional approaches. 

Table 4. Reduced-order model size and accuracy for the RC 
network (inter-die & intra-die) 

 [4] [7] CORE 
Model Order 10 46 10 

# of Matched Moments – 46 2760 
Min 0.00% 0.00% 0.00% 
Avg 0.27% 1.46% 0.13% 

25% Inter & 
5% Intra 

Max 6.77% 6.02% 1.56% 
Min 0.00% 0.00% 0.00% 
Avg 3.81% 1.36% 0.11% 15% Inter & 

15% Intra 
Max 106.9% 5.43% 0.43% 
Min 0.00% 0.00% 0.00% 
Avg 4.44% 1.72% 0.11% 

Delay 
Error 

5% Inter & 
25% Intra 

Max 261.8% 8.21% 0.50% 
 
C. Computation Cost 

Table 5 shows the model generation cost for three different 
approaches. In this example, the quadratic fitting approach [4] is 
the most expensive one, since it fits the quadratic functions for all 
reduced-order system matrices G̃,C̃ ∈ R10×10 and B ̃,L̃∈ R10×1. Each 
quadratic fitting requires solving an over-determined linear 
equation. On the other hand, CORE is more expensive than the 
traditional multi-parameter moment matching approach [7]. This 
implies that more computation effort is required in order to match 
more multi-parameter moments by using CORE. 

However, it should also be noted that the model simulation 
cost is typically more important than the model generation cost in 

many interconnect analysis problems, since the parameterized 
interconnect model is only generated once and it can be repeatedly 
applied many times (e.g. for Monte Carlo simulation). Table 6 
shows the Monte Carlo simulation time (104 samples) when using 
the reduced-order models to compute the step responses. In this 
example, using the parameterized models achieves up to 10x 
speedup, compared with the approach of directly applying 
PRIMA for interconnect order reduction at each Monte Carlo 
sampling point. In addition, due to the difference in model order, 
using the parameterized model extracted by [7] (Order = 46) is 2x 
slower than using the CORE model (Order = 10). This implies 
that the CORE model yields cheaper simulation cost, although it 
is more expensive to build. 

Table 5. Reduced-order model generation cost (Sec.) for the 
RC network 

[4] [7] CORE 
751.71 0.99 12.07 

Table 6. Monte Carlo simulation cost (Sec.) with 104 samples 
for the RC network 

PRIMA [4] [7] CORE 
2042 147 346 147 

 
It is also worth noting the significant runtime speedup by 

applying the proposed recursive Arnoldi algorithm for CORE. We 
implemented CORE with both the direct Arnoldi algorithm used 
in PRIMA [8] and the recursive Arnoldi algorithm proposed in 
Section 3.2. In this RC network example, the nominal MNA 
matrix size (equation (1)) is 767 and the augmented parameterized 
system size (equation (8)) is 2.12×106 (276x larger). Since these 
system matrices are typically sparse, the iterative GMRES 
algorithm [11] is utilized in the direct Arnoldi implementation for 
solving linear equations. The GMRES algorithm can significantly 
reduce the computation cost by taking advantage of the matrix 
sparsity. Even with the GMRES solver, the direct Arnoldi 
algorithm takes 168.27 seconds to generate the reduced-order 
model, which is 10x larger than that of the recursive Arnoldi 
algorithm (12.07 seconds) shown in Table 5. 
 
4.3 RLC Network 
Table 7. Reduced-order model size and accuracy for the RLC 

network (inter-die & intra-die) 
 [4] [7] CORE 

Model Order 35 38 35 
# of Matched Moments – 38 46550 

Min 0.00% 13.17% 0.00% 
Avg 2.60% 20.29% 1.39% 

25% Inter & 
5% Intra 

Max 99.94% 26.70% 4.67% 
Min 0.00% 13.57% 0.00% 
Avg 9.11% 20.36% 1.24% 15% Inter & 

15% Intra 
Max 99.61% 25.31% 3.31% 
Min 0.01% 12.94% 0.00% 
Avg 14.77% 20.31% 1.20% 

Delay 
Error 

5% Inter & 
25% Intra 

Max 99.62% 27.04% 3.78% 
 

The final circuit example is an RLC network that consists of 
123 RLC elements. We partition the entire interconnect network 
into 5 individual regions based on the physical locations. Three 
individual symbols are utilized to represent the intra-die metal 



 

width, thickness and inductance variations in each region. In this 
example, we have 18 symbols in total to model both inter-die and 
intra-die variations. 
 
A. Modeling Accuracy 

Table 7 compares the reduced-order model size and accuracy 
for three different approaches. As shown in Table 7, the average 
modeling error of CORE is 7x (and 12x) smaller than those of the 
traditional approaches, when the intra-die variations reach ±15% 
(and ±25%). 
 
B. Simulation Cost 

Table 8 shows the Monte Carlo simulation time (104 samples) 
when using the reduced-order models to compute the step 
responses. In this example, using the parameterized models 
achieves up to 7.5x runtime speedup, compared with the approach 
of directly applying PRIMA for interconnect order reduction at 
each Monte Carlo sampling point. 

Table 8. Monte Carlo simulation cost (Sec.) with 104 samples 
for the RLC network 

PRIMA [4] [7] CORE 
1757 234 285 232 

 
5. Conclusions 

In this paper we propose a novel parameterized interconnect 
order reduction algorithm, CORE, that can efficiently handle both 
inter-die and intra-die variations. CORE maximizes the number of 
the matched multi-parameter moments by using a novel two-step 
explicit-and-implicit moment matching scheme. As such, CORE 
can significantly reduce the modeling error without increasing the 
model complexity (i.e. size). As is demonstrated by the numerical 
examples, the modeling accuracy is improved by up to 10x 
compared with other traditional techniques. In addition, a 
recursive Arnoldi algorithm is proposed to reduce the computation 
cost of the model generation. Compared with the direct Arnoldi 
algorithm utilized in PRIMA [8], the proposed recursive Arnoldi 
algorithm can achieve up to 10x speedup for parameterized 
interconnect order reduction in our tested examples. We also 
demonstrate that using parameterized models can achieve up to 
10x runtime speedup in Monte Carlo simulation with 104 samples, 
compared with the approach of directly applying PRIMA for 
interconnect order reduction at each Monte Carlo sampling point. 
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