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ABSTRACT
Power supply integrity analysis is critical in modern high perfor-

mance designs. In this paper, we propose a stochastic approach to
obtain statistical information about the collective IR and LdI/dt drop
in a power supply network. The currents drawn from the power grid
by the blocks in a design are modelled as stochastic processes and
their statistical information is extracted, including correlation infor-
mation between blocks in both space and time. We then propose a
method to propagate the statistical parameters of the block currents
through the linear model of the power grid to obtain the mean and
standard deviation of the voltage drops at any node in the grid. We
show that the run time is linear with the length of the current wave-
forms allowing for extensive vectors, up to millions of cycles, to be
analyzed. We implemented the approach on a number of grids,
including a grid from an industrial microprocessor and demonstrate
its accuracy and efficiency. The proposed statistical analysis can be
use to determine which portions of the grid are most likely to fail as
well as to provide information for other analyses, such as statistical
timing analysis. 

Categories and Subject Descriptors
B.8.2 [Performance and Reliability]: Performance Analysis and
Design Aids.

General Terms
Algorithms, Reliability.
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IR drop, Ldi/dt, power supply networks.

1  INTRODUCTION
Power supply networks are essential in providing reliable and

constant power/gnd supply to the onchip devices. Due to the para-
sitic resistance, capacitance and inductance of the interconnects, as
well as the I/O packages, the power supply is non-ideal and exhibits
fluctuations, both in space and time. These fluctuations can either
increase the delay of gates in the circuit, reducing the operating fre-
quency, or inject noise in the circuit, making the circuit prone to
functional failures. The voltage drop occurring in a supply network
can be broadly classified into IR-drop, which is due to the parasitic
resistances of the interconnects and LdI/dt drop, which is due to the
package and on-chip inductance of interconnects. 

For modern high performance designs, it is not uncommon for the
supply network to conduct as much as 50-100 Amperes of total cur-
rent [1]. Furthermore, current consumption is expected to increase
further, due to the increasing complexity of the designs and reduc-
tion in supply voltage, making it more difficult to meet stringent
supply integrity constraints. In particular, the LdI/dt drop is expected

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2004, June 7-11, 2004, San Diego, CAlifornia, USA.
Copyright 2004 ACM 1-58113-828-8/04/0006…$5.00.

1

to become more prominent with increasing operating frequency and
current consumption [2].

Power supply analysis involves analysis of multimillion linear
elements constituting the power grid and millions of non-linear
devices on the chip. Modern microprocessors with on-chip memory
can have more than 25 million nodes [3]. As a first step, the non-lin-
ear devices are replaced by current sources in order to make the
whole network linear. Nevertheless, simulation of such a network is
extremely challenging and significant research has been focussed on
developing fast simulation techniques [4][5][6][7]. However, even
with fast linear solvers, it is generally not possible to simulate the
power grid for more than handful of cycles in reasonable time, mak-
ing the selection of the input vectors which induce the largest volt-
age drop extremely crucial. 

Power grid analysis can be classified into input vector based
approaches and vectorless approaches. The vector based approaches
employ search techniques to find a set of input patterns which cause
the worst case drop in the grid. A number of methods have been pro-
posed which use genetic algorithms or other search techniques to
automatically find vectors that maximize the total current drawn
from the supply network [8][9]. These approaches are computation-
ally intensive and are limited to circuit blocks rather than full chip
analysis. Furthermore, these approaches are inherently optimistic,
underestimating the voltage drop and thus letting some of the supply
noise integrity problems go unnoticed. The vectorless approaches
aim to compute an upper bound on the worst-case drop in an effi-
cient manner. A number of vectorless approaches for constructing
worst-case currents have been proposed, using methods such as
propagation of timing windows [10] or constraint graph formula-
tions [11]. Vectorless approaches have the advantage of being fast
and conservative. However, these methods address only the static
IR-drop analysis and not the LdI/dt drop, which is increasingly
becoming a key concern in supply integrity analysis. 

In this paper, we propose an alternate approach for supply voltage
drop analysis which is based on stochastic analysis. We determine
the statistical parameters of supply voltage variation at any node in
the circuit, which includes both IR and LdI/dt drops. The variability
is defined over the input vector space where different vectors cause
different currents to be drawn from the power supply network. We
model the currents drawn by major blocks in the design as stochastic
processes and extract their statistical information which includes
correlations between different blocks both in space and in time. We
present an approach to propagate this information through the linear
model of a power grid and show how we can obtain the distribution
of voltage drops at any node in the grid.

The statistical characteristics of supply variations can be useful in
a number of ways. First, they enable the designer to identify the
regions in the grid which are more likely to fail and should be given
higher priority when the grid is corrected. The probability distribu-
tions of the voltage drops can also be used to obtain the distribution
of the delay of gates in the critical paths of a circuit, which can be
used in statistical timing analysis to compute the probability distri-
bution of the circuit delay. In our analysis, we found that the occur-
rence of the worst-case drop is an extremely rare event. This
demonstrates that the traditional worst-case analysis, where each
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gate delay is characterized with the worst-case drop, can be very
conservative and illustrates the need for a statistical power grid anal-
ysis approaches. 

A particular advantage of the proposed approach is that the statis-
tical information is obtained directly from block currents and allows
for very large sets of input vectors to be incorporated in the analysis,
which is not feasible in traditional full power grid simulation. We
implemented the proposed approach on a number of grids, including
a power grid extracted from an industrial processor design. We com-
pared the results against SPICE simulation and demonstrate the effi-
ciency and accuracy of the proposed method.

The remainder of the paper is arranged as follows. In section 2,
we describe the behavior of a linear system, modelling the power
supply network as a linear system with currents as random processes
and derive the statistical parameters of the voltage drops. Section 3
presents the results obtained for different power grids. We draw our
conclusions in section 4.

2  PROPOSED APPROACH
In this section, we present the proposed method for computing the

statistical parameters of supply voltage variations at any node in the
power supply network. Figure 1 shows the general flow of the analy-
sis. A chip design can consist of millions of transistors forming a sea
of gates. As a first step, this sea of gates is grouped into large blocks
such that there is minimum correlation in the currents drawn by
these blocks. Each block is simulated using a suitable power simula-
tor, such as PowerMill to obtain the currents drawn by the blocks
over time. Next, the mean, auto-correlation function, and cross-cor-
relation functions are computed for each block current. Since the
complexity of computing these correlation functions is linear with
the vector length, very large vector sequences can be accommo-
dated, consisting of millions of cycles or more. The power supply
network is modelled as a linear system with block currents as sto-
chastic processes characterized by the extracted statistical informa-
tion. We then compute the impulse response for every node due to
each block current by simulating the power grid in SPICE or a fast
linear solver. The impulse response attains its steady state quickly
and the grid needs to be simulated only for a short period of time.
These impulse responses, along with the statistical parameters of
block currents are then used to generate statistical parameters for the
voltage drop. Initially, the block currents are assumed to be indepen-
dent and later both spatial and temporal correlations in block cur-
rents are incorporated in the voltage drop statistical analysis. Finally,
we show that the voltage drops closely approximate normal distribu-
tions, allowing arbitrary confidence points on the voltage distribu-
tion to be obtained. We now discuss each of the analysis steps in
more detail.

2.1  Power grid as a linear system
The power supply network of a chip consists of the ideal supply

voltage sources, power and ground wires modelled as a linear RLC

network, non-linear logic cells/blocks which draw current while
switching and explicit decoupling capacitances, introduced for filter-
ing out the high frequency power supply voltage variations. Ideal
supply voltage sources are connected to the power and ground grids
either by bond wires or by C4s in flip chips. The common approach
to model the power grid is to substitute the non-linear logic cells/
blocks with linear current sources and capacitances in parallel. This
substitution of logic cells/blocks with their respective current
sources transforms the entire nonlinear circuit into a linear network.
The value of each current source is exactly equal to the current
drawn by the corresponding logic cell/block. These currents are a
function of time and can be obtained by simulating the circuit either
at transistor or gate level. Thus, the computation of the currents is
decoupled from the analysis of power grid which greatly simplifies
the analysis. This is based on the implicit assumption that the values
of the currents consumed by the cells do not depend on the voltage
drop in the supply network which has been shown to introduce a
small conservative error [7]. The capacitance in parallel with each
current source models the capacitance of non-switching CMOS tran-
sistors in each cell/block. The non-switching capacitance in the
design acts as decoupling capacitance and helps in filtering out the
high frequency components of supply variations. Bond wires or C4s
are modelled with their equivalent RL models. Another common
simplification is to model the power and the ground grids separately.
All the current sources and decoupling capacitances are connected to
a common sink (ground) instead of being connected between power
and ground grids. Figure 2 shows the linear model of a 2 metal lay-
ered power supply network. A multi-level power grid structure is
similar. In this paper we will assume these simplifications to trans-
form the power supply network into a linear system. 

 Using the above simplifications, the model of the power supply
network consists of RLC elements, time varying current sources and
constant voltage sources. We are interested in voltage variations at
each supply point where the logic cells are connected. Thus, the sim-
plified model of the power supply network can be considered as a
linear system with time varying block currents as inputs and voltage
variations at the supply connections as outputs (Figure 3).

We analyze this system using the field of linear system theory
[12]. This system has impulse response function given by a matrix
H(t), whose element at row b and column n denotes the impulse
response at node n due to current block b. Since the system is linear,
the voltage response at node n due to any current waveform of block
b is given as follows:

(EQ 1)

Figure 1. Flow diagram of proposed approach
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where, hb,n(τ) is the impulse response at node n due to the excitation
at block b, ib(t) is the current waveform of block b and Vn(t) is the
voltage response at node n.

If the total number of blocks in the design is B, then the voltage
response at node n due to all the current blocks acting together is the
superposition of individual responses as shown below.

(EQ 2)

There are many ways of computing the impulse response hb,n(t) at
a node n due to a block current ib. In our approach, we first obtain
the step response at node n by applying a unit step current at block b
and simulating the grid. We then numerically differentiate the unit
step response to obtain the impulse response. For typical grids, the
unit pulse response dampens out quickly and we need to simulate the
grid only for a small period of time. In the next section, we describe
the representation of block currents, ib(t) and supply voltage varia-
tions Vn(t) as stochastic processes.

2.2  Block currents and voltages as random 
processes

During the operation of a chip, the blocks consume currents that
vary in time. The actual waveforms of these currents have rather
complicated shapes. In order to completely analyze the behavior of a
power supply network, it is required to simulate the power grid for
all possible current waveform patterns, which is clearly not feasible.
Usually, power supply networks are simulated using current wave-
forms for only a very limited period of time which does not guaran-
tee that the voltage variation for all possible situations is analyzed.
In this Section, we discuss how currents are modeled as random pro-
cesses characterized by their statistical characteristics. This
approach allows for very long waveforms to be analyzed, covering a
large input vector space. 

We represent each block current as a random process ib(t). This
implies that the value of a block current at each time point is consid-
ered a random variable and the current over time is a random func-
tion of time. Note that the current values at different points in time
are not independent. Their values depend on their history which
means that we must account for possible correlations between cur-
rent values over different time points. This random variable is
described by a probability density function p(ib), which in the gen-
eral case varies over time. Complete description of a random process
requires specification of joint probability density function,
p(ib(t1),ib(t2),...) for all block currents at any time which very diffi-
cult to obtain and analyze. Our goal therefore is to compute the sta-
tistical characteristics of the voltage drop only, i.e. the mean and
variance (standard deviation), which greatly simplifies the overall
computation. Hence, we only need to determine the mean, auto-cor-
relation function and cross-correlation functions of the block cur-
rents in order to compute the mean and standard deviation of the
voltage response at any node in the power grid. 

The mean and variance of a random process X(t) are the expecta-
tion and the variance respectively of the random variable obtained
by observing the process at some time t. 

(EQ 3)
(EQ 4)

The auto-correlation function (or simply the correlation function) of
a random process X(t) is defined as the expectance of the product of
two random variables obtained by observing the random process at
times t1 and t2:

(EQ 5)

The cross-correlation function of two random processes X(t) and Y(t)
is the expectance of the product of two random variables obtained by
observing two processes at times t1 and t2, respectively:

(EQ 6)

We assume that each block current is a stationary random process.
This implies that the statistical characteristics of block currents do
not depend on any time shift or equivalently, the probability density
functions of block currents do not depend on any time shift. This
assumption is reasonable for currents and voltages because the only
non-repeating part of current waveforms is chip initialization which
is negligibly short as compared to the total time of operation of a
chip. For stationary processes all the moments do not depend on
time and the auto-correlation function depends only on time differ-
ence τ = t2 - t1. Hence, the mean, auto-correlation and the cross-cor-
relation functions are given as follows:

(EQ 7)

(EQ 8)
(EQ 9)

Another reasonable assumption which significantly simplifies the
analysis is to assume the block currents to be ergodic processes.
Ergodicity implies that averaging a random process over the sample
space for each particular time (ensemble average) gives the same
result as averaging it over the time of one implementation of the ran-
dom process (time average). This assumption is justified by the fact
that if a chip operates long enough it definitely exposes all possible
operation modes and all its states. Therefore, investigating any sin-
gle waveform long enough is sufficient for predicting the statistical
behavior of a chip. 

For stationary ergodic processes with an observation window
, the mean and the auto-correlation functions can be

expressed as stated below:

(EQ 10)

(EQ 11)

and the cross-correlation of two random processes X(t) and Y(t) is
given as:

(EQ 12)

The limits in these integrals indicate that these expressions are
valid for a large value of T, i.e. the observation window for the ran-
dom process X(t) should be large. For our approach, this implies that
the time interval of the block current waveforms should be suffi-
ciently large.

Now we discretize EQ10 through EQ12 for practical computation
of the statistical parameters of block currents. Figure 4 shows the
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variation in current for a short period of time for a block in an indus-
trial microprocessor. The spikes correspond to periods of high activ-
ity in a clock cycle. As a first step, this waveform is divided into
small time steps of width ∆t such that there is no significant varia-
tion in block current within a time step. Then, we compute the mean
of the block currents as follows:

(EQ 13)

where K is the total number of time steps for which the waveform is
observed. Similarly, the values of auto-correlation and cross-correla-
tion functions in time step n are computed as follows: 

(EQ 14)

(EQ 15)

where,  is the current of block b in time step k. Figure 5 shows the
probability distribution and auto-correlation functions for the time
varying block current shown in Figure 4. To compute the correlation
functions for all possible values of n ( ) results in a com-
plexity O(K2). However, we later show that we can restrict n to val-
ues less than the response time of the power grid without loss in
accuracy, which is significantly smaller than K for large vector
sequences and hence, the complexity is linear with K.

In the next subsection, we describe the computation of mean and
standard deviation of voltage supply fluctuations, using the statisti-
cal parameters of block currents as derived in this section.

2.3  Linear system with stochastic excitations
An important property of a linear system is the fact that if we

know the impulse response function and the expectance and auto-
correlation functions of a signal at the input of linear system, we can
compute the expectance and auto-correlation function at the output
of the system. The output of a linear system, Y(t) can be expressed as
the convolution of the impulse response, h(t) with its input random
process X(t) as given in EQ1. Using stationarity and ergodicity
assumptions, we can average the expression over time to get the
expectance of the signal at the output of the linear system.

(EQ 16)

This implies that the mean of the random process at the output of
a linear time-invariant system in response to random process X(t) is
equal to the mean of X(t) multiplied by the dc response of the sys-
tem. This property is useful in power grid analysis because we can
obtain the exact value of mean of the supply voltage variations with-
out any complex computation if we know the mean of the input
block currents and the dc response of the network. We simulate the

power grid in order to obtain the unit step response of the system and
observe the response till it dies out and attains a steady state value.
This steady state value is the dc response of the system and can be
used in computing the mean of the supply voltage fluctuations. 

Similarly, we can compute the second moment of the random sig-
nal at the output of the linear system using the auto-correlation func-
tion of the input signal as follows:

(EQ 17)

Once we determine the second moment and the mean of the output
process, we can obtain its variance using this well known formula:

(EQ 18)

EQ16 through EQ18 can be used to compute the mean and vari-
ance of the voltage drop at any node n. Let the number of blocks in
the circuit be B. The voltage response at node n due to all the current
blocks acting together is the superposition of individual responses
and is given by EQ2. Thus the mean of the voltage response at node
n is given by,

(EQ 19)

For practical implementation, we can discretize this expression as
follows:

, (EQ 20)

where M is the total number of time steps after which the impulse
response hb,n remains zero. 

Now, we discuss the computation of variance of the voltage drop
for the cases when the block currents are independent and when they
are correlated. We also discuss the run time complexity in both
cases.

Block currents considered independent
If the block currents are assumed to be independent, then the sec-

ond moment (variance) of the voltage response due to all the blocks
acting together, depends only on the auto-correlation functions of
the individual block currents and is equal to the summation of the
second moments (variances) of voltage responses due to individual
block currents.

(EQ 21)

We again discretize the above expression as follows:

(EQ 22)

where M is the number of time steps until the voltage response to the
impulse current becomes zero or the step response reaches its steady
state, K is the number of time steps used in computing the auto-cor-
relation function of Ib(t) (the number of time steps over which the
block currents are observed) and B is the total number of blocks. It is
important to note that the values of M and B are much less than K. In
EQ22, we need to compute the auto-correlation function only for
time steps n before which the impulse response has died down and is
zero i.e. . Thus any temporal correlation in current wave-
forms, shifted in time beyond the time period taken by the impulse
response to reach its steady state can be ignored. Hence, the com-
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Figure 5. PDF (a) and auto-correlation (b) of a block current
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plexity of computing auto-correlation functions for B blocks (EQ14)
is O(KMB) which is linear in the length of a block current waveform
K and, the complexity of EQ22 is O(M2B) which is independent of
block current waveform length. Thus, it is possible to run millions of
vectors and use the statistical information of corresponding current
waveforms to obtain the statistical parameters of voltage drop.

Block currents considered to be correlated
If the block currents are correlated, the second moment and the

variance of the voltage response due to all the blocks acting together
depends not only on the auto-correlation functions, but also on the
cross-correlations between different block currents. In general, when
each block current is correlated both spatially and temporally to
other block currents, the second moment of the voltage response at
any node n is given by,

(EQ 23)

or,

(EQ 24)

where is the cross-correlation function between block currents
ij(t) and ik(t). In general, not all the blocks are strongly correlated
with each other and cross-correlation of only those blocks which
have significant correlations can be considered with limited impact
on the accuracy. If each block b in the design is correlated with C
other blocks, then only BC correlations need to be considered
instead of a total possible B2, where . Again, although the
complexity of computing the cross-correlation function between two
waveforms of length K is quadratic in K, we only need values of

 such that n<M. Thus, the complexity of computing all the
auto-correlations for all the blocks and cross-correlations for the
possible BC combinations is O(KMBC) while the complexity of
computing the second moment from the correlation functions is
O(M2BC). The overall complexity is therefore still linear with K. 

Till now, we considered both spatial and temporal correlations in
block currents. Typically in a design, blocks will have much larger
correlation in space as compared to the correlation in time. If the
block current correlations in time are ignored and each block is
assumed to be spatially correlated to C other blocks, then as a spe-
cial case, EQ24 reduces to:

(EQ 25)

The run time of the analysis improves in this case because now
the complexity of computing cross-correlation coefficient for the
block currents is O(KBC) instead of a previous O(KMBC) for com-
puting the auto-correlation and cross-correlation functions.

2.4  Voltage drop probability distribution
The currents of a block vary in accordance to the input vectors

applied to the circuit and generally show a large variation. The shape
of the probability distribution of these block currents is not at all
fixed and may vary depending on the size of the blocks, the func-
tionality of the block and various other factors. Thus we cannot defi-
nitely state anything about the shape of the probability distribution
of the current blocks. 

However, the overall voltage drop is the sum of the voltage drops
due to all the current sources acting together. The blocks have been
formed such that there is minimum correlation between the current
of the blocks. Thus, assuming that the number of the blocks is rela-
tively large and most of the blocks are independent from each other,

central limit central limit theorem can be applied which states that if
X1, X2...Xn are independent random variables, then the random vari-
able formed by summing the variables Y=X1+X2+...+Xn has a distri-
bution which approaches a normal distribution for large values of n.
Thus, if the design is divided into large number of blocks with most
of the blocks being independent, the overall drop at any node can be
approximated as having a Gaussian distribution function. 

This means that while the proposed approach computes only the
mean and variance of the voltage drop at a particular node, the volt-
age distribution can be approximated as a normal distribution. We
show in Section 3 that the normal distribution closely fits the exact
distribution. Using a Gaussian approximation of the voltage distribu-
tion, we can compute any desired confidence interval of the voltage
drop, such as the 95% or 99% voltage confidence points. 

3  RESULTS
The proposed approach for determining the mean and standard

deviation of voltage drop was implemented and tested on a number
of grids of different sizes for both flip-chip and wire bond package
models. The block currents were generated by simulating an indus-
trial microprocessor for thousands of cycles. The statistical parame-
ters of the voltage drop were computed both assuming the block
currents to be independent as well as by taking block current correla-
tions (spatial and temporal) into account. We discussed in Section
2.4 that the probability distribution function of the voltage response
was expected to be close to Gaussian if the number of blocks in the
chip is large and most of the blocks are uncorrelated. We found that
this assumption held for all the grids that we tested. Figure 6 shows
the exact probability distribution function (PDF) of the voltage drop
at a node in a grid and its Gaussian fit, which forms a close approxi-
mation. The exact PDF was obtained by simulating the grid with
SPICE for the entire length of the current vectors and statistically
analyzing the resulting voltage drops. 

Table 1 shows the mean and standard deviation computed using
the proposed approach, assuming block current independence. The
95% confident points are also given, obtained using a Gaussian fit of
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Figure 6. Probability distribution of the overall drop

Table 1. Mean, std dev and 95% interval of the voltage drops

Grid
Grid 
type

# of 
nodes

# of 
blocks

Mean
(mV)

Std dev
(mV)

95% conf int.
(mV)

Maxdrop
(mV)

Grid1 WB 3772 12 50.3 66.1 179.9,-79.3 327.6
Grid2 FC 3772 12 39.6 49.4 136.4,-57.2 281.3
Grid3 WB 7712 20 56.9 67.3 188.8,-75.0 297.1
Grid4 FC 7712 20 48.1 51.5 149.0,-52.8 169.1
Grid5 WB 17037 30 39.0 47.6 132.3,-54.3 231.7
Grid6 FC 17037 30 33.5 36.5 105.0,-38.0 186.0
Grid7 WB 32897 40 103.4 111.2 321.4,-114.6 376.9
Grid8 FC 32897 40 86.6 94.5 271.8,-98.6 292.0
Grid9 FC 157180 40 88.2 113.6 310.9,-134.5 -
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the voltage drop PDF. The maximum voltage drop, as observed dur-
ing SPICE simulation of the complete set of vectors is also shown.
Grid-1 through Grid-8 are different size grids in 9 layers of metal,
generated using pitches and widths of an industrial microprocessor
design with a PEEC based extraction tool. The metal lines in the grid
are modelled as an RLC network, which consists of the self induc-
tance, capacitance and resistance of the wires. Mutual inductance of
on-chip interconnects was ignored for the sake of simplicity. Grid-9
is the grid of an industrial processor, extracted using a commercial
extraction tool and consists of over 1 million elements. I/O pads
were modeled using an industrial package model. It is interesting to
observe that the maximum voltage drop is between 2.17 and 4.89
times the standard deviation higher than the mean. This demon-
strates that the occurrence of the worst-case drop is extremely rare. 

Table 2 compares the mean and standard deviation of the voltage
drops computed with the proposed approach against those obtained
from SPICE simulation. Grid-9 could not be simulated in SPICE for
the whole current waveforms because of its size. The mean of the
voltage drop does not depend on correlations between block currents
and is only affected by the error due to the discretization of current
waveforms. Hence, the mean computed with the proposed method
was found to be within 1% of those obtained with SPICE simulation.
There is some error in the standard deviation of the voltage drops
since the block currents are assumed to be independent. As a general
trend, the error reduced with increasing number of nodes in the grid,
which is a favorable characteristic since most industrial grids are
very large. This results from the fact that with increasing size of the
grid, the number of C4 bumps/wire bond pads in the grids increase,
which attenuates the effect of current correlations on the voltage
drop. Also, wire bond chips had a greater error due to correlation as
compared to chips with flip-chip pads. The last column shows the
run time for finding the mean and standard deviation at a single
node. This run time includes the time to compute the mean, the auto-
correlation functions of the currents and computation of the standard

deviation. Note that the required time for computing the voltage sta-
tistics for additional nodes in the circuit would be substantially less
since the auto-correlation and the cross-correlation functions of
block currents need to be computed only once.

In Table 2, we show the effect of incorporating spatial and tempo-
ral correlations between the block currents on the run time and accu-
racy. We assume blocks that are close together to have a large
correlation among them and assume distant blocks to be indepen-
dent. Column 1 indicates the degree of correlation between adjacent
blocks. A degree of correlation n implies that each block current is
correlated with its n neighbors. Column 2 gives the total number of
cross-correlations taken into account. We compute the cross-correla-
tion functions of a particular block with all its neighboring blocks
and choose n blocks with the largest cross-correlation coefficient.
We observe that the accuracy of the computation can be improved
with reasonable additional run-time.

4  CONCLUSION
In this paper, we presented a new approach for computing the sta-

tistical parameters of supply voltage fluctuations with variability in
block currents. The analysis considers both IR-drop and LdI/dt drop
in a power supply network and takes into account both spatial and
temporal correlations in block currents. The analysis was imple-
mented and tested on a number of grids, including the power grid of
an industrial processor and we demonstrate the effectiveness of the
proposed approach. The approach provides useful information about
which parts of the grid which are most likely to fail and should be
given priority during grid correction. 
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Table 2. Comparison with HSPICE  

Grid

Proposed 
Approach HSPICE

% Error 
in Std 
Dev 

Run 
Time

Mean
(mV)

Std Dev
(mV)

Mean
(mV)

Std Dev
(mV)

Grid-1 50.3 66.1 50.3 78.2 15.47% 48s
Grid-2 39.6 49.4 39.6 57.8 14.53% 48s
Grid-3 56.9 67.3 56.9 79.0 14.81% 1m40s
Grid-4 48.1 51.5 48.1 60.1 14.31% 1m29s
Grid-5 39.0 47.6 39.0 54.6 12.82% 2m37s
Grid-6 33.5 36.5 33.5 40.7 10.32% 2m41s
Grid-7 103.4 111.2 103.4 123.8 10.18% 3m14s
Grid-8 86.6 94.5 86.6 103.8 8.96% 3m25s
Grid-9 88.2 113.6 - - - 3m31s

Table 3. Effect of correlations on accuracy and runtime 

Degree of 
Correlation

No. of Cross 
Correlations

% Error in 
Std Dev Run Time

None 0 10.32% 2m41s
2 60 8.03% 14m53s
4 120 6.64% 24m48s
6 180 5.89% 36m36s
8 240 5.40% 51m03s
10 300 4.42% 1h9m24s
15 450 2.84% 1h37m41s
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