

Issues in PSN Analysis

- On-chip resistance (R) and inductance (L) for P/G network
- Worst case noise does not correspond to average current, or peak current
- Small things add up
 - Each gate draws a small current pulse when switching
- Switching events and their spatio-temporal correlation
 - Find the simulation trace that creates a switching pattern in the design resulting in the worst case voltage drop at the specific location in the grid
- Conservative: Approach must err on the side of predicting too much voltage drop

Early Analysis

- Initial floorplan and global power grid are complete
- Global power grid is extracted with R's, L's, and C's
- Each block is modeled as a single current source based on an estimated DC-value or on the gate level implementation

Simulation Method

- Decouple simulation of interconnect from the circuit
- Characterize the switching current of a gate/transistor
- Sampling frequency allows for run-time/accuracy trade-off
- Use a switch-level or gate-level simulator to generate switching events
- Iteration allows for reduced conservatism

Issues in Static Analysis

- Strengths:
 - Very short run times
 - Conservative formulation
- Weaknesses:
 - Topological correlation between switching is lost
 - Switching current is applied over the entire window

Input Vector Generation

- Monte Carlo is used to generate input vectors according to prescribed signal probability and activity.
- A set of so-far worst case input vectors is selected to form an initial gene pool
- Genetic algorithm is employed to generate the new generations of input vectors
- Worst case noise & corresponding input vectors are the goals

Pre-characterization of Standard Cells

- Technology and design parameters available
- Standard cells are pre-characterized with SPICE to obtain drive capability and delay information
- A delay look-up table is used for timing analysis
- Current waveforms are approximated as trapezoids based on the delay and drive capability of switching gates

Circuit	PI's No.	Gate No.	Peak Noise (Near End)	Peak Noise (Far End)	CPU Time (per input pattern)
			(mV)	(mV)	(s)
C17	5	6	35.4	39.4	0.0007
C432	36	160	372.8	394.7	0.0314
C499	41	202	573.5	780.0	0.0412
C880	60	357	612.2	698.3	0.0473
C1355	41	514	575.3	785.7	0.0779
C1908	33	880	568.3	739.6	0.1056
C2670	233	1161	701.9	814.7	0.0954
<i>C3540</i>	50	1667	716.0	774.7	0.3476
C5315	178	2290	1050.3	1102.0	0.4038
C6288	32	2416	676.4	1059.7	3.9042
C7552	207	3466	1079.6	1122.8	0.6397

Voltage Drop Correction

- Given a floorplan with switching activities information available for each module:
 - Determine how much decap is required by each module to keep the supply noise below a specified upper limit
 - Allocate white-space to each module to meet its decap budget
- Related issue
 - Determine worst case power supply noise for each module in the floorplan
 - Allocate the existing white space in the floorplan

Decoupling Capacitance Budget

- Decap budget for each module can be determined based on its noise level
- Initial budget can be estimated as follows:

```
Charge: Q^{(k)} = \int_{0}^{t} I^{(k)}(t) dt

Noise ratio: q = \max(1, \frac{V_{noise}^{(k)}}{V_{noise}^{(lim)}})

Decap: C^{(k)} = (1 - \frac{1}{q})Q^{(k)} / V_{noise}^{(lim)}, \quad k = 1, 2, \cdots M
```

• Iterations are performed if necessary until noise at each module in the floorplan is kept under certain limit

Insert Additional WS into Floorplan If Necessary

- Update decap budget for each module after existing WS has been allocated
- If additional WS if required, insert WS into floorplan by extending it horizontally and vertically
- Two-phase procedure:
 - insert WS band between rows based the decap budgets of the modules in the row
 - insert WS band between columns based on the decap budgets of the modules in the column

	Experim	ental Resul	lts
Com	parison	of Decap B	udgets
(Ours	vs "Con	ventional So	lution")
Circuit	decap budget (nF)	decap budget (nF)	Percentage (%)

Circuit	decap budget	decap budget	reicemage	
	(nF)	(nF)	(%)	
	(our method)	("greedy solution")		
apte	27.73	32.64	85.04	
xerox	8.00	13.50	59.30	
hp	3.45	6.18	55.80	
ami33	0	0.80	0.00	
ami49	10.28	24.80	41.50	
playout	42.91	61.67	69.6	

xperimental Results for MC Benchmark Circuits							
Circuit	Modules		decap Budget (nF)	Inacc. WS (µm ²) (%)	Added WS (µm ²) (%)	Est. Peak Noise (V) before	Est. Peak Noise (V) after
apte	9	751652 (1.6)	27.73	0 (0)	4794329 (10.3)	1.95	0.24
xerox	10	1071740 (5.5)	8.00	0 (0)	528892 (2.7)	0.94	0.20
hp	11	695016 (7.8)	3.45	306076 (3.5)	300824 (3.4)	1.09	0.23
ami33	33	244728 (21.3)	0	N/A	0	0.16	0.16
ami49	49	2484496 (7.0)	10.28	891672 (2.5)	463615 (1.3)	1.45	0.25
playout	62	5837072 (6.6)	42.91	792110 (0.9)	3537392 (4.0)	1.23	0.24

