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Abstract— We propose a block structure-preserving model
reduction (BSMOR) for the highly structured VLSI system. The
blocks can be derived based on specific applications such as block
current characterization of the substrate, or power/ground grids.
Compared to PRIMA, BSMOR can match more poles using the
same Krylov subspace and also increases the sparse ratio of the
state matrices of the resulting macro-model. Experiment shows
that BSMOR has a 20X smaller reduction time than PRIMA does
under the same error bound. To efficiently analyze the resulting
macro-model with large number of ports, we further propose
a bordered-block diagonal (BBD) partitioning with a bottom-
up hierarchical clustering (BBDC) where the macro-model is
partitioned into a number of subset-port models, each with a
manageable model size. With a similar accuracy, BBDC obtains
30X speedup compared to the original macro-model.

I. INTRODUCTION

VLSI circuits contain a number of highly structured com-
ponents such as bus, power ground grid and substrate. These
components can be modeled by passive networks with tremen-
dous amount of circuit elements and large numbers of ports.
To analyze such network efficiently, model order reduction
[1]–[5] has been studied extensively. Based on the Krylov
subspace projection and congruence transformation, PRIMA
[5] is widely used to generate the reduced macro-model with
preserved passivity. However, the macro-model produced by
PRIMA is not compact as the order is usually “too high” to
achieve the specified accuracy. Furthermore, the macro-model
is represented by a multiple-input-multiple-output (MIMO)
transfer function, and is usually dense and inefficient to
analyze for a large number of ports.

To improve upon PRIMA, a structure-preserving model
reduction (SPRIM) is proposed in [6]. It partitions the state
matrix in the MNA (modified nodal analysis) form into a
natural 2 × 2 block matrices, i.e., conductance, capacitance,
inductance, and adjacent (G, C, L, Es) matrices. Accordingly
the projection matrix is partitioned and the number of its
columns is doubled. As a result, SPRIM matches the twice
poles of the models by using the projection matrix given
by PRIMA. In addition, the block structure of state matrices
is preserved, which facilitates the realization of the reduced
model. However, such a simple 2×2 partition does not leverage
the regularity of the substrate network. In addition, the explicit
hierarchical decomposition [7], [8] is proposed to handle a
large number of ports. The capacity of these methods [6]–[8]
need to be improved further.
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In this paper, we propose a block structure preserving model
reduction (BSMOR) method, which generalizes SPRIM [6]
in the sense that the G, C, L and Es matrices are further
partitioned into blocks. The blocks can be derived based on
specific applications such as block current characterization of
the substrate in this paper. We find that (i) for the system
state matrices having block diagonal structure, BSMOR with
m blocks can exactly match (m − 1)q more poles than
PRIMA does within q iterations. Therefore, increasing the
block number leads to more matched poles using the same
Krylov space; (ii) for the general structured state matri-
ces, using Singular-value-decomposition (SVD) and K-means-
clustering [9] based partitioning, the additional (m−1)q poles
obtained by BSMOR can closely approximate the poles of
original system. Therefore, BSMOR can lead to more efficient
reduction under the same accuracy than PRIMA. In addition,
BSMOR can also preserve the sparsity for reduced block
matrices, which gives further efficiency boost to constructing
a macro-model. The resulting macro-model consists of order-
reduced blocks, each containing a subset of ports. To analyze a
macro-model with a large number of ports, we further propose
a bordered-block diagonal (BBD) partitioning and hierarchical
clustering of reduced blocks. We call it BBDC analysis. The
experiment shows that under the same accuracy, the reduction
of our approach is 20X times faster than PRIMA to reduce
a circuit with 1M elements, and the BBDC analysis is 30X
faster compared to analyzing the original macro-model.

The rest of the paper is organized as follows. We review
Grimme’s projection theorem [10] and SPRIM algorithm in
Section II, present BSMOR method and its properties in Sec-
tion III, and discuss the SVD and K-means-clustering based
partitioning algorithm in Sections IV. We further present a
hierarchical bordered-block-diagonal analysis for the reduced
model in Section V. In Section VI, we apply our method to
the substrate macro-modeling and noise analysis, and discuss
how to find the block structure from the characterization of the
block current. We present the experimental results in Section
VII, and conclude the paper in Section VIII.

II. PRELIMINARY

Consider a modified nodal formulation (MNA) of the circuit
equation in the frequency domain:

Gx(s) + sCx(s) = Bue(s)

ye(s) = BT x(s) (1)

where x(s) is the state variable vector, G and C (∈ RN×N )
are state matrices. B (∈ RN×np) is
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B = [B 0]T , (2)

a port incident matrix. Eliminating x(s) in (1) gives

ye(s) = H(s)ue(s)

H(s) = BT (G + sC)−1B, (3)

where H(s) is a multiple-input multiple-output (MIMO) trans-
fer function. PRIMA finds a projection matrix V (∈ RN×q)
such that its columns span the q-th block Krylov subspace
K(A,R, q), i.e.,

K(A,R, q) = span(V ) = {R,AR, ...,An−1R}, (4)

where n = dq/npe, A = (G + s0C)−1C, R = (G + s0C)−1B,
and s0 is the expansion point that ensures G + s0C is nonsin-
gular. The resulting reduced transfer function is

Ĥ(s) = B̂T (Ĝ + sĈ)−1B̂, (5)

where

Ĝ = V TGV, Ĉ = V T CV, B̂ = V T B̂, (6)

Theorem 1: If K(A,R, q) ⊆ span(V ), then Ĥ(s) has the
identical expanded first q-th moments with H(s).
It is called the Grimme’s projection theorem [10]. Note that
Ĝ, Ĉ ∈ Rq×q , and B̂ ∈ Rq×np .

In [6], a structure-preserving reduced model order reduction
technique, SPRIM, is proposed. The primary observation is
that instead of using the Krylov subspace K(A,R, q) for the
projection matrix Ṽ , one can use any projection matrix such
that the space spanned by the column in Ṽ contains the q-th
block Krylov subspace. i.e.

K(A,R, q) = span(V ) ⊆ span(Ṽ ) (7)

In SPRIM, a 2 × 2 partition is naturally used as a linear
state matrix in the MNA form shows a 2 × 2 block structure

G =

[
G ET

s

−Es 0

]
, C =

[
C 0
0 L

]
, (8)

where G (∈ Rn1×n1), C (∈ Rn1×n1), L (∈ Rn2×n2 ) are
conductance, capacitance and inductance matrix, and Es (∈
Rn2×n1 ) is the adjacent matrix indicating the branch current
flow at the inductor. Note that n1 + n2 = N .

Therefore, a structured projection vector Ṽ can be con-
structed by partitioning the projection vector V obtained from
the q-th PRIMA iteration

V =

[
V1

V2

]
→ Ṽ =

[
V1 0
0 V2

]
. (9)

where V1 ∈ Rn1×q , V2 ∈ Rn2×q, and hence Ṽ ∈ RN×2q. As
a result, the number of columns in Ṽ is twice of that in V .
Accordingly the new reduced state matrices are

G̃ =

[
G̃ ẼT

s

−Ẽs 0

]
, C̃ =

[
C̃ 0

0 L̃

]
, (10)

where G̃ = V1
T GV1, Ẽs = V2

T EsV1 and C̃ = V1
T CV1 and

L̃ = V2
T LV2. Similarly, the size of G̃, C̃ (∈ R2q×2q), and B̃

(∈ R2q×np) is twice than that of Ĝ, Ĉ, and B̂ reduced by using
V . Therefore, the moments of the reduced model with state
matrices: G̃ and C̃ are twice than those of the reduced model
with state matrices: Ĝ and Ĉ. In other words, the reduced model
by Ṽ matches 2q moments of the original model instead of q
moments as the reduced model by V .

Since the reduced model is written in the first order form
in (10), the model reduced by SPRIM is twice larger than
that produced by PRIMA. But the reduced model produced
by SPRIM preserves the structure of the original model and
can be further reduced into the second-order form using node
elimination base on the Schur’s decomposition [11]: H̃NA =
G̃+sC̃ + 1

s
ẼT

s L̃−1Ẽs where H̃NA is the reduced state matrix
in NA form, which has the same size of the reduced matrix
by using V . But the difference is that each element in H̃NA

becomes second-order rational function of s instead of first-
order polynomial of s.

Hence SPRIM algorithm essentially consists of two reduc-
tion steps: the first step is the structure-preserving projection-
based reduction and the second step is block node elimination
based on Schur’s decomposition. As a result, SPRIM can
match more poles than PRIMA, which uses V as the projection
matrix, but both result in a same size of the reduced model.
If we just look at the first step, SPRIM simply matches more
moments by using more columns in the projection matrix Ṽ ,
thus produces larger reduced state matrices in the first-order
form.

III. BSMOR METHOD

SPRIM essentially is based on a 2 × 2 partitioning of
the state matrices. If we use more partitions (each partition
called a block), we can add more columns into the project
matrix Ṽ , thus match more poles given the same Krylov space
K(A,R, q).

A. Structured Block Projection
Specifically, we assume that the conductance matrix G can

be distinguished in m blocks

G =

2
66664

G1,1(n1×n1)
G1,2(n1×n2)

. . . G1,m(n1×nm)

G2,1(n2×n1) G2,2(n2×n2) . . . G2,m(n2×nm)

...
...

. . .
...

Gm,1(nm×n1)
Gm,2(nm×n2)

. . . Gm,m(nm×nm)

3
77775

, (11)

where each block has the size nk (
∑m

k=1 nk = N ). A similar
block structure can be found for C matrix. Then, B becomes

B = [B1(n1×np), B2(n2×np), . . . Bm(nm×np)]
T (12)

where each block contains user specified npk
ports (np =∑m

k=1 npk
). Note that these blocks can be derived based on

specific applications such as block current characterization of
the substrate or the power/ground grid, called natural basic
blocks, or determined after specific partitioning algorithms
discussed later on.

Accordingly, we further partition the projection matrix V
obtained from PRIMA according to the block structure in state
matrices from (11)
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V =

2
66664

V1(n1×q)

V2(n2×q)

...
Vm(nm×q)

3
77775

→ eV =

2
66664

V1(n1×q) 0 . . . 0
0 V2(n2×q) . . . 0

...
...

. . .
...

0 0 . . . Vm(nm×q)

3
77775

. (13)

where Ṽ ∈ RN×mq. We call this as Block Structure-
preserving Model Reduction (BSMOR), where m is the num-
ber of blocks.

We can obtain the order reduced state matrices by projecting
Ṽ :

G̃ = Ṽ TGṼ , C̃ = Ṽ T CṼ , B̃ = Ṽ TB. (14)

Elementwise, we have

G̃i,j = Vi
TGi,jVj C̃i,j = Vi

TCi,jVj B̃i = Vi
TBi (15)

where G̃i,j represents the blocks at i block row and j block
column in reduced matrix G̃. So do C̃i,j and B̃i. Let Vi =
Vi(q×ni) to simplify notations. Note that such a m×m block
projection preserves the structure and sparsity of the original
G, C matrices. For example, when projected by Ṽ , the reduced
G̃ matrix is

eG =

2
66664

V1
T
G1,1V1 V1

T
G1,2V2 . . . V1

T
G1,mVm

V2
T
G2,1V1 V2

T
G2,2V2 . . . V2

T
G2,mVm

...
...

. . .
...

Vm
T
Gm,1V1 Vm

T
Gm,2V2 . . . Vm

T
Gm,mVm

3
77775

. (16)

Clearly, if the original G is sparse, the resulted G̃ is sparse as
well. In the contrast, when projected by V using PRIMA, the
resulted Ĝ is

Ĝ =

m∑

i=1

m∑

j=1

Vi
TGi,jVj , (17)

which is dense in general. Similar observations can be found
for C and B.

B. Passivity Preservation and Moment Matching

Similar to SPRIM, the reduced model of passive network
obtained by Krylov-subspace projection preserves passivity:

Theorem 2: The reduced order model H̃(s) by BSMOR is
passive.
Proof: Because Ṽ T Ṽ = I , and G + GT , C + CT are sym-
metric positive definite, the congruence transformation based
projections: Ṽ TGṼ , Ṽ TCṼ preserve the passivity [5].

Using such a projection matrix Ṽ , we define a reduced-order
model with the following transfer function

H̃(s) = B̃T (G̃ + sC̃)−1B̃, (18)

and we have
Theorem 3: Let V be a matrix that satisfies K(A,R, q) ⊆

span(V ) and Ṽ is defined in Eq.(13). H̃(s) will match the
first q moments in the expansion of H(s) about s0. If the G, C
matrices in the block diagonal form have m different blocks,

i.e. A1,1 6= A2,2 6= ... 6= Am,m, H̃(s) will match mq poles of
H(s).

Proof: Because K(A,R, q) ⊆ span(V ) ⊆ span(Ṽ ), ac-
cording to Grimme’s’ projection theorem (Theorem 1), H̃(s)
will match the first q moments in the expansion of H(s) about
s0. Moreover, if G, C matrices are in the block diagonal form,
then the state matrix A = G−1C is in the block-diagonal form
as well. Due to the structure-preserving projection, the resulted
state matrix Ã

eA = (eV T
G eV )−1(eV T

C eV ) = diag[A1,1 ,A2,2, ...,Am,m]

=

2
66664

( eG1,1)−1 eC1,1 0 . . . 0

0 ( eG2,2)
−1 eC2,2 . . . 0

...
...

. . .
...

0 0 . . . ( eGm,m)−1 eCm,m

3
77775

have m sub-blocks each with size q×q. Note that eigenvalues
of Ã represent the reciprocal poles of the reduced model
[5]. As a result, the partitioned projection matrix Ṽ leads
to localized projection. In other words, the block projection
matrix Ṽi is used only for the state matrix block Ai,i (i =

1, ...m). Each structured block projection matrix Ṽi will lead
to the localized model order reduction for block i, which is
represented by (Ai,i,Ri,i). Conceivably, the order reduced
block (Ãi,i, R̃i,i) will match (Ai,i,Ri,i) with q poles. But
the whole system consisting of the m blocks will match mq
poles.

In general when Gi,j , Ci,j 6= 0, i.e., Ai,j 6= 0, BSMOR
obtains (m − 1)q times more poles than PRIMA within q
iterations, where the (m− 1)q additional poles approximately
match poles of the original system. If the coupling Ai,j

between blocks Ai,i is weak, the original system can be well
approximated by the block diagonal structure, and therefore,
each block has a different pole distribution, and the (m− 1)q
additional poles are close to the poles of the original system.
As a result, introducing more partitions or blocks can archive
the same reduction accuracy by using less iterations, which
can in turn improve the reduction efficiency. On the other
hand, if the coupling Ai,j between blocks Ai,i is strong, the
accuracy of BSMOR depends on the partition algorithm. Note
that in this case, blocks are strongly correlated. Below, we
present a partitioning algorithm based on the the singular-
value-decomposition and K-means clustering.

IV. SVD AND K-MEANS-CLUSTERING BASED
PARTITIONING

When blocks are strongly correlated, the state matrix (A)
will be a low rank matrix. The true rank should reveal the
number of uncorrelated rows in A. Therefore, if we can
find this true rank number m, and greedy group all similar
row vectors of A into m most uncorrelated blocks, then
we can obtain a partitioning that each partitioned block has
weak correlation with each other, and shows a different pole
distribution. Using such a partitioned V to construct the
structure projection matrix V accordingly, and project G, C
matrices, the obtained mq poles can closely match poles of
the original system.

Based on this observation, SVD is applied on A to de-
termine the rank value m, which is used as the partition
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number. With the known partition number, K-means-clustering
method [9] can be applied to greedily add similar rows into
one block, and find m disjoint blocks. As a result, the moment
value, i.e., the pole distribution is similar in the same block,
and is different between them. However, the dimention of A
(∈ RN×N ) is too high to directly apply SVD and K-menas
clustering. Observing that the projection matrix V composed
by (A,R) as in (4) has a low-dimension Rq×N , we apply
SVD and K-means-clustering to V . The overall procedure is
presented in Algorithm 1.

K-means-clustering classifies a given data set. The main
idea is to define k centroids, one for each cluster. These
centroids should be placed in a cunning way because of
different location causes different result. As a result, the better
choice is to place them as far away from each other as
possible. The next step is to iteratively associate data points
to the nearest centroid. When no point is left, the first step is
completed and an initial clustering is obtained. At this point
we need to recalculate k new centroids as bary-centers of the
clusters resulting from the previous step. After we have these
k new centroids, a new iteration binding has to be done. As a
result the k centroids may change their locations and iterations
stop when there is no more changes for the k centroids. This
procedure minimizes the following squared error function

J =

k∑

j=1

n∑

i=1

||x
(j)
i − cj ||

2, (19)

where ||x
(j)
i −cj ||

2 is the distance between data point x
(j)
i and

cluster centroid cj .

Algorithm 1 BSMOR Partitioning 1
1.Find projection matrix by PRIMA
(1.1) input: G, C,B;
(1.2) form: A = (G + s0C)−1C, R = (G + s0C)−1B;
(1.3) construct: V = [V1, V 2, ..., Vq ] such that span(V ) =
K(A,R, q), where V ∈ RN×mq;
2.SVD and K-means-clustering based partitioning
(2.1) solve: m = SV D(V );
(2.2) cluster: [V1(n1×q), . . . , Vm(nm×q)]

T =
kmeans(V, m);
(2.3) construct: V = diag[V1(n1×q), . . . , Vm(nm×q)];
3.Structured block projection
(3.1) project: G̃ = Ṽ TGṼ , C̃ = Ṽ TCṼ , B̃ = Ṽ TB;
(3.2) output: G̃, C̃, B̃.

In summary, using the partitioned V by the SVD and K-
means-clustering, one can construct a structured-projection
matrix V , where each block has a different pole distribution,
and the reduced model can closely match mq poles of the
original system. As a result, one can obtain order reduced
models with higher accuracy for each structured block by
using the same sized Krylov subspace base vectors, or get the
same order reduced model (same accuracy) using a smaller
Krylov subspace. Therefore, BSMOR provides much more
flexibility and a better trade-off between efficiency and model
accuracy for reducing linear dynamic system models than
PRIMA does.

V. BORDERED-BLOCK DIAGONAL PARTITIONING WITH
HIERARCHICAL CLUSTERING

In this section, we first describe the flat macro-model
generated by the reduced state matrices from Section 2.2.
To efficiently handle the flat macro-model with large num-
ber of ports, we present a bordered-block diagonal (BBD)
partitioning to solve each block individually. Moreover, we
discuss a hierarchical clustering method to further improve
the efficiency.

A. Flat Macro-model
For the frequency-dependent application in the analog/RF

simulation like the substrate noise analysis, an Y -parameter
based multiple port macro-model is widely used instead. An
np × np MIMO admittance matrix Y ′(s) can be obtained by
taking the eigen-decomposition of Ã = (G̃ + s0C̃)−1C̃

Y
′
(s) =

2
664

Y ′

1,1 · · · Y ′

1,np

...
. . .

...
Y ′

np,1 · · · Y ′

np,np

3
775 , (20)

with

Y ′
i,j = ci,j +

q∑

n=1

ki,j
n

s − pn

, (21)

where kn and pn are the residues and poles. Note that eigenval-
ues of Ã(q) represent the reciprocal poles of Y ′(s) [5]. Due
to the preserved sparsity, the eigen-decomposition becomes
more efficient when using the G̃ and C̃ from the BSMOR other
than using those from PRIMA. Furthermore, as the reduction
preserves the structure, it results in additional preservations:
(i) the reciprocity of the network is also preserved, i.e., the
Y ′(s) is symmetrical. In contrast, PRIMA does not preserve
this property; (ii) the block structure is preserved as well. It
means the reduced block can be distinguished by a subset
of ports specified before BSMOR. As a result, we can further
apply an additional port-partitioning, precisely, bottom-up port
clustering to handle the large number of ports as discussed
later on.

To partition a given network, we first transform the nodal
admittance (20) into a branch admittance network:

Yii =

np∑

j=1

Y ′
ij , Yij = −Y ′

ij . (22)

Note that the flat macro-model consists of m order reduced
blocks, where each reduced block contains npk

ports with
ground and coupling branch admittances. There also exist
coupling branch admittances between any pair of reduced
blocks. A transformed branch admittance network for a 4-
port admittance matrix is shown in Fig. 1 (a). To partition
the branch admittance network Y , one natural approach is
to reserve each reduced block, and pack all the coupling
branch admittances into one block, called as couping block that
connects all reduced blocks. An example of such a partitioning
(or representation of the macro-model from BSMOR) is shown
in Fig. 1 (b) for a 4-port admittance matrix.
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Fig. 1. An example of 4-port admittance with 2 reduced blocks. (a) realization in branch admittance network; (b) represented by 2 reduced blocks with an
additional coupling block.

B. Bordered-Block Diagonal Matrix

For the kth reduced block, we have

Ykvk = ik + ĩk, (23)

where

(Yk)ii =

npk∑

j=1

Y ′
ij , (Yk)ij = −Y ′

ij (j ∈ npk
), (24)

and vk, ik are the port voltage and current vectors, where
ik is part of ip: ik = ip(. . . ik1 . . .︸ ︷︷ ︸

npk

. . .). Moreover, ĩk is the

correlation current from the other reduced block through the
coupling block.

The branch equation for the coupling block is

(Y0)
−1i0 = v0, (25)

where Y0 is the branch admittance matrix describing the
branches in the coupling block. It is a diagonal matrix such
that its inversion is easily obtained as 1/(Y0)ii. Note that
its size depends on the number of couplings among reduced
blocks, and it can be efficiently implemented with the sparse
matrix data structure. v0 and i0 are branch voltage and current
vectors. They relate to the port voltage/current vectors vk/ik
at kth block by

ĩk = Ck0i0, v0 = −

m∑

k=1

(Ck0)
T vk, (26)

where Ck0 is the cut matrix composed by {0, 1,−1} to
indicate the direction of branch currents between kth reduced
block and the coupling block.

Combine (24) - (26), we have the following hybrid matrix
equation

2
666664

Y1 0 . . . 0 C10

0 Y2 . . . 0 C20

...
...

. . .
...

...
0 0 . . . Y

m(l) Cm0

(C10)
T (C20)T . . . (Cm0)

T
−(Y0)−1

3
777775

2
666664

v1

v2

...
vm

i0

3
777775

=

2
666664

i1
i2

...
im

0

3
777775

.

This hybrid matrix shows a bordered-block-diagonal (BBD)
structure. It enables the below Algorithm 2 [12] to solve each
reduced block individually without using the explicit inversion.
Each reduced block matrix is first solved individually with LU
factorization and substitution (1.1-1.5), the results from each
reduced block are then used further to solve the coupling block
(2.1-2.4), and the final vk of each reduced block is updated
(3.1-3.4) with the result from the coupling current i0.

Algorithm 2 Solve bordered-block-diagonal (BBD) matrix
1.Solve Yk individually
for every k in m do

(1.1) input: Yk, Ck0, ik;
(1.2) factor: Yk = LkUk;
(1.3) solve: LkΦk = Ck0 for Φk, ΨkUk = (Ck0)

T for
Ψk, and Lkξk = ik for ξk;
(1.4) form: Fk = ΦT

k Ψk, and Gk = ΨT
k ξk

end for
2.Solve Y0

(2.1) form: F = Y −1
0 +

∑m

k=1 Fk, G =
∑m

k=1 Gk;
(2.2) solve: Fi0 = G for i0;
3.Update Yk individually
for every k in m do

(3.2) form: ξk = ξk − Φki0;
(3.3) solve: Ukvk = ξk for vk;
(3.4) output: vk.

end for

Typically, LU factorization requires n3/3 multiplications
and back/forward substitution requires n2/2 multiplica-
tions. The computational cost of Algorithm 1 is therefore,∑m

k=1(np
3
k
/3 + np

2
k
/2) + (n3

0/3 + n2
0/2) , where npk

is the
port number (reduced block size) of each reduced block, and
n0 is the size of the coupling block. Note that if the parallel
execution is used, the summation becomes the maximum
execution time among blocks. To reduce the computational
cost without using the parallel execution, we need control costs
for reduced blocks and the coupling block as discussed below.
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Fig. 2. The hierarchical tree structure of clustered blocks.

C. Hierarchical Clustering

As the factorization cost decreases with the size of the
reduced block, apparently the computation cost will be small
when the network is partitioned based on the reduced basic
block from BSMOR. However, the size of Y0 increases with
the reduced block number, and it increases the computation
cost. To wisely arrange this trade-off, a hierarchical tree
structure is used as shown in Fig. 2. In this tree, each node
represents an abstract block. There are links connecting each
pair of correlated blocks, representing inter-block couplings.
The tree is constructed by iteratively clustering the reduced
blocks from the bottom. The degree and the level is chosen to
bound the size of the coupling block below a threshold. At the
leaf level, a cluster of reduced blocks are siblings of a parent
node, an abstract block. A cluster-coupling block is introduced
to model the coupling between siblings. There is no direct
coupling between abstract blocks not in a same cluster, but
their coupling is modeled by cluster-coupling blocks for parent
nodes. Therefore, we can maintain a constant link number
(couplings) at each tree level. Note that the following merge
operation is operated when two blocks k and l are clustered

inew = [ik, il], vnew = [vk, vl],

and

(Ynew)ii =
∑

j∈npk
∪npl

Y ′
ij , (Ynew)ij = −Y ′

ij .

At the bottom level, we solve each clustered block using
Algorithm 1. It is inefficient to calculate vk directly on
the higher levels since the block size get larger and larger.
Fortunately this is not necessary, because one can use the
already calculated vk of the children, same as to attach the
voltage sources to the coupling block at parent node. To do
this we need to update i0 from (l − 1)th level to lth level by

v
(l−1)
0 = −

m(l−1)X

k=1

(C
(l)
k0 )T

v
(l−1)
k

, i
(l−1)
0 = Y

(l)
0 v

(l−1)
0 ,

(27)

and then solve vk at lth level by (3.1)-(3.4) in Algorithm 1.
Moreover, with the hierarchical tree structure, vk is recursively
updated by a bottom-up depth-first traversal of the tree, where
we assume that the cut matrices and block branch admittance
are pre-computed and stored hierarchically. For simplicity of
presentation, we call BBD analysis with hierarchical clustering

as BBDC analysis. Note that when the factorization cost of
large matrix at the top level is large, we further apply an error-
bounded sparsification technique similar as [7] to the branch
admittance matrix. As the sparsification is performed at the
top level, this error is bounded.

VI. BLOCK SPECIFICATION IN SUBSTRATE
NOISE ANALYSIS

In this section, we discuss the application of BSMOR and
BBDC analysis to the substrate macro-modeling and noise
analysis. The substrate outside of active/contact areas can be
treated as a uniformly doped layer, where an electrostatic
Maxwell’s equation is:

ε
∂

∂t
(∇ · E) +

1

ρ
(∇ · E) = 0. (28)

The Eddy current term (the primary cause of substrate loss)
can be ignored if the substrate is highly doped, where the con-
duction current is dominant. Note that (28) can be discretized
in differential form using finite-difference [13] or integral form
using boundary element (BEM) methods. Because the BEM
method needs to find a numerically stable multi-layer Green’s
function [14], it is not trivial to construct in general when the
layout geometry becomes arbitrary. In this paper, the finite-
difference based discretization is used to generate the RC
mesh/grid as the substrate circuit model. As the electric field
varies nonlinearly as a function of the distance, the finite-
difference method approximates this variation as a piecewise
constant function by carefully choosing the pitch of the mesh
according to the current density, i.e., the strength of the
electrical field.

For leading-edge integrated circuits, the count of gates is
typically in millions. The number of possible locations to
place contacts of sensitive analog/RF circuits is large as well.
Therefore, a flat multi-port description of each individual sub-
strate noise injector and receptors is impractical. We assume
that the chip is partitioned into smaller circuit, i.e., blocks
based on the switching current density. As a result, within a
block all noise current injections can be clustered into one
independent current source at one single injection port. Such
a block maximum current spectrum envelope is studied in
[15] to characterize the injection noise sources in a bottom-up
fashion. The noise current injected by the gate G at frequency
fp is denoted iG(fm), and fm = m × f0 (m = 0, 1, 2, ...M ),
where f0 is the clock frequency and M is the sampling bound.
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Fig. 3. (a) The non-uniform substrate mesh network characterized by the switching current density; (b) The corresponding block structure of
conductance/capacitance matrices.

Then, the total noise current of cN gates in kth block is
iCk =

∑CN

k=1 iGk(fm), and by a library-based characterization
of the primary input transition vp, the block current envelope
spectrum is found by imax

k (fm) = maxvp |iCk(fm)|.
Therefore, if there are m characterized blocks, each block

would contain npk
user specified ports, including one input

port representing the injecting current noise source accord-
ing to the above block current assumption, and (npk

− 1)
output ports representing all possible contact locations for
analog/RF modules. There are total np (np =

∑m

k=1 npk
)

specified ports. The port current vector ip becomes: ip =
[imax

1 ...0︸ ︷︷ ︸
np1

imax
k ...0︸ ︷︷ ︸

npk

imax
m ...0︸ ︷︷ ︸

npm

], where all omitted entries are zeros

standing for probing output ports. Note that the propagated
noise is observed from vp.

However, with the use of the power management technique
like the clock gating, the iCk(fm) can be very non-uniform for
each block across the chip. For the block with the high current
density, the electric field tends to vary largely, and a finer
grids are necessary for the accurate approximation. Otherwise,
coarse grid is used instead. For example, the substrate plane in
Fig. 3 (a) has 4 parts with different switching current densities
and it results in a non-uniform mesh structure. As a result, it
demonstrates a block structure according to the block current
density. For example, Fig. 3 (b) shows such a block structure
for the block current distribution in Fig. 3 (a).

VII. NUMERICAL RESULTS

We implement the BSMOR on a Linux workstation (P4
2.66GHz, 1G RAM). The mesh structures of the substrate are
generated from the typical mixed signal circuit application.
In this section, we first investigate the accuracy of BSMOR,
then study their scalabilities by increasing the circuit size and
number of ports. As an example, we also present the noise map
generation for a 256-contact array injected by a frequency-
varying ring oscillator at dc and 10GHz.

A. Sparsity Preservation

Due to the structured construction of Ṽ by (13), BSMOR
preserves the structure and sparsity of G̃, C̃ matrices even after
the reduction. For example, for the 256x256 RC-mesh, Fig. 4
shows the structure of these two state matrices before and
after a 16 × 16 BSMOR reduction. The G̃, C̃ matrices show
72% and 93% sparsification ratio, respectively. It is another
advantage to use BSMOR other than PRIMA, as PRIMA
generates a fully dense state matrices after the reduction.
Moreover, the sparsification ratio increases when increasing
the block number. It is not surprising as conceptually when a
block contains only one element, the “reduced” state matrices
become exactly the same as the original sparse state matrices.

B. mq-pole Matching

To verify the partitioning algorithm in Section IV, a non-
uniform RC mesh with 32 basic blocks is used. Each block
has different magnitude RC value in the range 1 1000X. The
number of connections between any pair of blocks are also
different. The non-zero pattern of elements in G matrix (512
x 512) is shown in Fig. 5 (a), and the C matrix has the similar
structure. SVD is used to determine the rank number of V
matrix as 8, and K-means-clustering is used to partitioning the
V into 7 blocks (128, 64, 26, 38, 64, 64, 64, 64) as shown in
Fig. 5 (b). Based on this partitioning, the structure projection
matrix V is obtained to project the original system matrices.
The poles of the original model, reduced model by PRIMA
(8th-order), and the reduced model by BSMOR (8th-order) are
compared in Fig. 6. Clearly, PRIMA can only approximate 8
poles of the original model, but BSMOR can match 64 poles.

C. Frequency Response Comparison

For a uniform 256x256 RC-mesh (320K circuit elements),
Fig. 7 compares frequency responses at one port between the
original circuit and reduced models by PRIMA, 2×2 BSMOR,
and 8 × 8 BSMOR. The partitioning algorithm in Section
IV found that the partition number is 8 and each block has
same size. Clearly, with 10th iteration the 8 × 8 BSMOR is
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identical to the original circuit response but PRIMA and 2×2
BSMOR are still not converged. Fig. 8 further compares the
maximum error of frequency responses by PRIMA, 2×2, and
8 × 8 BSMOR vs. the iteration number during the reduction.
In the same iteration, it shows that using more partitions
(block number) to construct the projection matrix can have
better accuracy than using less partitions as PRIMA does. In
other words, BSMOR can generate more compact model with
improved pole matching ability.

We further present the result of a reduced non-uniform mesh
composed by 4 submeshes with different sizes (64x64-64x64-
256x256-256x256). We use three partitioning approaches: (i)
a fine-uniform partitioning with block size 16 and total 40
blocks; (ii) a coarse-uniform partitioning with block size 40
and total 16 blocks; and (iii) SVD and K-means-clustering
based partitioning, which results in a non-uniform partition
with two block size (16, 64) and total 16 blocks. As shown in
Fig. 9, after 10 iterations, the responses are visually identical
for the original model, the reduced model from (i) and (iii),
but the coarse-uniform partitioning (ii) does not converge. It
shows that the accurate reduced model needs to be generated
from a projection matrix with the partition according to the
structure of the original matrix, rather than a general 2 × 2

partition as SPRIM does, Moreover, the reduction time of (ii)
and (iii) is similar, and is 4X (4.17s vs. 20.38s) faster than
the fine-uniform partitioning (i) does.

D. Scalability Study

We study the efficiency of the reduction convergence by
BSMOR and PRIMA. Different block numbers are used
according to the different circuit size. We set an error bound
as shown in Table I, defined by the maximum error of
the frequency response at one port up to 20GHz. We then
perform reductions of BSMOR and PRIMA by increasing
their iterations until that their accuracies meet the bound.
As shown in Table I, BSMOR uses less iterations (≤ 8) to
meet the error bound than PRIMA does. As a result, the
reduction time of BSMOR is also smaller than that of PRIMA.
For example, for a largest mesh circuit with 1M elements,
BSMOR achieves 20X (240.22s vs. 4982.76s) speedup under
the error bound 1e-4. Note that a relative small block number
(64) is chosen for the largest circuit (1M) here. This is due
to the fact that BSMOR needs additional steps to construct
the projection matrix, and it results in a little bit larger state
matrix that introduce the cost of matrix-vector multiplication.
Hence the increase of the speedup is slowed if we choose large
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block number. In general, the result shows that with more
partitions to construct a project matrix, BSMOR can match
more poles than PRIMA does and hence the reduction time
can be significantly reduced under the same accuracy.

We further study the simulation time scalability of the
partitioned macro-model by BBDC. PRIMA is used to gen-
erate the flat macro-model, BSMOR is used to generate the
partitioned macro-model with hierarchy, and different block
numbers are used to generate the macro-model according
to the port number. Each reduced block contains 10 ports.
The original, flat and partitioned models are all simulated
in frequency domain up to 20GHz. The maximum error of
the frequency response (relative to the original model) up to
20GHz at a selected port is used for comparison.

We observe that when the port number is less than 50 ports
the simulation time of the partitioned macro-model is up to
30X times faster than the flat macro-model with a similar
accuracy. This speedup comes from two aspects: (i) the cost
of the eigen-decomposition to construct flat macro-model is
reduced by BSMOR as the sparsity of reduced state matrices
is reserved; On the other hand, PRIMA produces a dense
reduced state matrices that are computation expensive during
the eigen-decomposition; (ii) the partitioned solution further
reduces the simulation time as no expensive computation is
involved for the large system matrix. To achieve a similar
efficiency for the circuits with the large number of ports
(≥ 100), we further use the hierarchical clustering (degree 10)
with the sparsification (5% error bound) to control the size
and sparsity of the coupling blocks. For 1-level and 2-level
hierarchical solution, we sparsify the admittance matrices at
bottom level, and second level, respectively. Since the error
at local matrix can propagate up, we find the solution by
sparsification at 1-level partition is less accurate than that at
2-level partition. Moreover, we find that the flat macro-model
can not be completed for a 400-port circuit. A clear scalability
trend is shown in Fig. 10. We find that the simulation time of
the flat macro-model grows up quickly. It shows the similar
trend as the original model. This is due to the fact that the
dense matrix structure degrades the overall performance when

compared to the original larger but sparser matrix. In contrast,
with the use of the BBDC analysis, the simulation time grows
much slower than the flat macro-model.

E. Map of Substrate Noise Spectrum

We then apply the partitioned macro-model to generate a
map of substrate noise spectrum. The injection current of a
frequency-varying ring oscillations is characterized at f0 =
100MHz, 1GHz. The maximum currents are characterized
in time domain and then FFT (2048 samplings) is used to
obtain the current envelope in frequency domain. The substrate
considered here is a 3mm × 3mm plane with a 200um
thick p-type substrate (σ = 0.1[Ωcm]−1). We assume that
the contacts are in a 16 × 16 array, and all the noise-current
injection sources (ring oscillators) are placed diagonally in
the array. The original substrate circuit is a 256x256 RC-
mesh with 320K elements, and we apply 32 × 32 BSMOR
to obtain a 256-port macro-model, representing a 16 × 16
contact array. The reduction time is about 120s. Fig. 11 shows
the map of the noise envelope (voltage bounce magnitude) at
dc and 10GHz. Clearly, reducing the central clock frequency
from 1GHz to 100MHz can reduce 25db peak noise at the
high frequency (10GHz), but the noise envelope at dc is not
reduced. Moreover, the substrate noise coupling is localized at
dc but it can diffuse across the contact array at 10GHz. As we
assume a high conductivity substrate, the use of the guard ring
is effective for this type of substrate. A p+-guard ring is used
for the isolation with the conductivity σ = 100.0[Ωcm]−1. We
model the effect of this isolation by changing the surrounding
resistance of the contact for each ring oscillator. As shown in
Fig. 12, by using a guard ring at 10GHz for f0 = 1GHz, the
substrate noise is confined around the injection sources at the
diagonal of the contact array.

VIII. CONCLUSION

In this paper, we have proposed a block structure preserv-
ing model reduction (BSMOR). We found that compared to
PRIMA, BSMOR can match (m − 1)q more poles for the
block diagonal structure system, and for the general system,
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Ckt elements err-bound BSMOR PRIMA
block# iter# time iter# time

mesh1 1K 1e-8 2x2 4 0.03s 10 0.09s
mesh2 10K 1e-8 8x8 6 0.07s 20 0.28s
mesh3 80K 1e-6 16x16 6 0.42s 30 3.82s
mesh4 160K 1e-6 16x16 6 5.14s 40 46.98s
mesh5 320K 1e-4 32x32 6 10.27s 60 104.62s
mesh6 1M 1e-4 64x64 8 240.22s 80 4982.76s

TABLE I
COMPARISON OF THE REDUCTION TIME OF BSMOR AND PRIMA UNDER THE SAME ACCURACY UP TO 20GHZ.
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the additional (m − 1)q poles can closely approximate the
poles of original system by using the partitioning based on
SVD and K-means-clustering. This property in turn improves
the model reduction efficiency compared to PRIMA under the
same error bound. For a circuit with 1M elements, BSMOR
has a 20X smaller reduction time than PRIMA does. As
BSMOR preserves the structure of state matrices, it gener-
ates sparse reduced state matrices. For a circuit with 320K
elements, the reduced state matrices (G, C) has 72% and 93%
sparsification ratio after a 16×16 BSMOR reduction. It leads
to an efficient construction of a MIMO macro-model when
using eigen-decomposition. To be able to handle the resulting
macro-model with large number of ports, we further used
bordered-block diagonal partition with hierarchical clustering
(BBDC) to decompose the macro-model into blocks with the
manageable size. The experiment shows that BBDC reduces
30X simulation time than the original macro-model.

To construct the structured-projection matrix V , we in this
paper first obtain V by applying PRIMA to the entire G,
C matrices, and then partition V using SVD and K-means-
clustering algorithm. As all operations are on the entire matrix,
its computation effort could be too big for large scale circuits,
although fewer iterations are needed to achieve higher accurate
reduced model compared to PRIMA. To reduce the computa-
tion cost, we plan to study how to construct the structured
block projection V more efficiently.
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