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1. EXPLICIT PARTITION AND STRUCTURED
BLOCK PROJECTION

To construct the structured-projection matrix V, we in
Section II first obtain V by applying PRIMA to the entire G,
C matrices, and then partition V using SVD and K-means
algorithm. As all operations are on the entire matrix, its
computation effort could be too big for large scale circuits
(although fewer iterations are needed to achieve higher ac-
curate reduced model compared to PRIMA). To reduce the
computation cost, we propose to first explicitly partition the
original circuit into m interconnected blocks with (Gi,i, Ci,i),
then apply PRIMA to each block and obtain the projection
matrix Vi(span(Vi) = K(Ai,i,Ri,i, q)) for each block, and
construct the structured-projection matrix

V = diag[V1, V2, ..., Vm]. (1)

Below, we prove that the structured-projection matrix V

constructed in this fashion guarantees q moments matching
as well.

1.1 General Interconnected Block Structure
For a interconnected block structure, we assume that the

input source vector for ith-block is

uci(s) = uei(s) +

j 6=iX

j∈1,...,m

Xijycj(s), (2)

where uei(s) is the external sources at ith block, Xij(s) =
Xgij + sXcij (Xij ∈ Rni×nj ) is the branch admittance ma-

trix that connects ith and jth block, and ycj(s) is the output
vector at jth block. Moreover, the transfer function of ith
block is

yci(s) = hi(s)uci(s)

hi(s) = bT
i (Gi,i + sCi,i)

−1bi. (3)

where bi is an extended port matrix (∈ Rni×ni ) to connect
boundary ports at ith block. Note that

Gi,j = bT
i Xgi,jbj , Ci,j = bT

i Xci,jbj . (4)

Define the block connection matrix
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; (5)

the block transfer function

H0(s) = diag{h1(s), ..., hm(s)} = B
T
0 (G0 +sC0)

−1
B0, (6)

where

B0 = diag{b1, ..., bm},

G0 = diag{G1,1, ..., Gm,m},

C0 = diag{C1,1, ..., Cm,m}; (7)

the block connection input/output vector

uc(s) = [uc1(s), ..., ucm(s)], yc(s) = [yc1(s), ..., ycm(s)];
(8)

and the block external input/output vector

F = [F1, ..., Fm]. (9)

The system equation, therefore, can be rewritten as

uc(s) = Fue(s) + X(s)yc(s),

yc(s) = H0(s)uc(s),

ye(s) = F
T yc(s). (10)

Its transfer function is

H(s) = F
T (I − H0(s)X(s))−1

H0(s)F, (11)

which can be realized by the following state space

G = G0 + B
T
0 XgB0,

C = C0 + B
T
0 XcB0,

B = B
T
0 F. (12)

It is easy to check that: G = G,C = C, and B = B, i.e., the
interconnected representation (G, C,B) has the same state
space with the original system (G, C,B). Note that the ra-
tionale to use the presentation in the interconnected block
structure is to obtain following relation for the Krylov sub-
space between the diagonal block structure and the original
system.



Theorem 1. Define the state matrices for the block di-

agonal structure: A0 = (G0 + s0C0)
−1C0, R0 = (G0 +

s0C0)
−1B0, and for the general interconnected structure:

A = (G + s0C)−1C, R = (G + s0C)−1B. Then the corre-

sponding Krylov subspaces satisfy:

K(A,R, q) ⊆ K(A0,R0, q). (13)

Proof: It is equivalent to prove that for any v ∈ K(A,R, q),
it has v ∈ K(A0, R0, q) as well. Note that if v ∈ K(A,R, q),
it means that there exists a q-dimensional column vector wi:

vw0 = R, vw1 = −AR, ...,

vwi = (−1)i
A

i
R, vwq−1 = (−1)q−1

A
q−1

R.

Sum the left-hand-side and right-hand-side respectively,

vw = (I + sA)−1
R = (G + sC)−1

B

= (G0 + sC0 + B
T
0 XB0)

−1
B0F (14)

where w =
Pq−1

i=0 (−1)iwi.
Therefore,

vw′ = (G0 + sC0)
−1

B
T
0 , (15)

where w′ = w(F − XB0vw)−1. As a result,

vw′
0 = R, vw′

1 = −A0R0, ...,

vw′
i = (−1)i

A
i
0R0, vw′

q−1 = (−1)q−1
A

q−1
0 R0

i.e., v ∈ K(A0,R0, q).
Based on Theorem 3, we have the following Corollary:

Corollary 1. Let Vi satisfy K(Ai,i,Ri, q) ⊆ span(Vi)

and V = diag[V1, V2, ..., Vm]. The reduced system eH(s) pro-

jected by V will match the first q moments in the expansion

of H(s) about s0.

Proof: Because K(A,R, q) ⊂ K(A0,R0, q) ⊆ span((V)), the
q moments matching is easy to see by Grimme’s projection

theorem.

1.2 Incremental Explicit Partitioning
Similarly, if the original system has a block diagonal struc-

ture, i.e., X = 0, the above structured-projection can match
mq poles as well. In general, it needs to devise a proper
initial partitioning such that the resulting model can closely
approximate mq poles matching. Below, we present an in-

crementally partitioning based on k-dominant-time-constant

algorithm to achieve the requirement. Note that the con-
cept of dominant time constant is introduced in [1], where
the system timing response is approximated by the first
k dominant-time-constant, i.e., the first k most dominant
eigen-values (poles) λ1, ..., λk of state matrix A = G−1C.

The outlined procedure is presented in Algorithm 2. The
input is a group of m0 natural basic blocks that are deter-
mined by the specific application such as the block current
characterization for the substrate or P/G grid. Each basic
block has state space (Gi,i, Ci,i, bi), and a projection matrix
Vi is found by PRIMA such that K(Ai,i,Ri,i, q) = span(Vi).
The clustering begins with the first basic block by merging
its connected neighboring blocks. The state matrices of the

resulted block are denoted by (G′
i,i, C

′
i,i, b

′
i), and its corre-

sponding projection matrix is V ′
i . SVD is applied to Vi and

V ′
i to obtain their first k most dominant eigen-values (poles)

λ1, ..., λk and λ′
1, ..., λ

′
k. As a result, the merging operation

will terminate if

||

Pk
i λi/λ′

i

k
− 1|| < ε (16)

where ε is a small value specified by the user. This termina-
tion criteria implies the condition that the k most dominant
eigen-values (poles) will not change much when including
more interconnected blocks together. The clustering further
applies to the rest basic block till a converged partitioning
V ′ is obtained. Consequently, a structured-projection ma-
trix V is constructed to project the original system matrices
(G, C,B).

Algorithm 1 BSMOR Partitioning 2

1.Incremental partitioning

(1.1) input: Gi,i, Ci,i, bi, (i = 1, 2, ..., m0);
I=1,i=0;
while λ < ε do

(1.1) form: Ai,i
I = (Gi

I,I + s0C
i
I,I)

−1Ci
I,I , R

i,i
I = (Gi

I,I +

s0C
i
I,I)

−1bi
I ;

(1.2) construct: V i
I such that span(V i

I ) =
K(Ai,i

I ,Ri,i
I , q);

(1.3) calculate: [λi
1, ..., λ

i
k] = SV D(V i, k);

(1.4) cluster: (Gi+1
I,I , Ci+1

I,I , bi+1
I ) =

merge[(Gi
I,I, C

i
I,I , b

i
I), (G

i
I+1,I+1, C

i
I+1,I+1, b

i
I+1)];

(1.5) calculate: λ = ||
Pk

j λi+1

j
/λi

j

k
− 1||;

end while

(1.6) construct: V = diag[V ′
1 (n1×q), . . . , V

′
m(nm×q)];

3.Structured block projection

(2.1) input: V;

(2.2) project: eG = VTGV, eC = VT CV, eB = VTB;

(2.3) output: eG, eC, eB.

Note that if

G + sC = Y
′(s) + X

′(s)B0, (17)

where

Y
′(s) = diag{(G1,1 + sC1,1), ..., (Gm,m + sCm,m)}

X
′(s) = B0X(s), (18)

we have

eG + s eC = VT
Y

′V + VT
X

′VVT
B0V

= eY′(s) + eX′(s)eB0, (19)

where eY′ and eX′ both ∈ Rmq×mq .

2. TWO LEVEL PARTITIONED ANALYSIS
OF REDUCED MODEL

Because the reduction preserves the structure, it preserves:
(i) the sparsity of state matrices; In contrast, the projected
matrices by PRIMA are fully dense. (ii) the reciprocity of
the network which enables efficient realization of the net-
work; In contrast, PRIMA does not preserve this property.



(iii) the block structure; It means that the reduced block
can be distinguished by a subset of ports specified during
BSMOR. Due to the preserved block structure , a bordered-

block diagonal (BBD) partitioned solution can be applied
to solve each block individually in both frequency and time
domain.

Note that the runtime and memory requirement to solve
a linear system are primarily determined by the size, spar-
sity, and structure of the matrix. Using partitioning, the
large coupled network is divided into sub-blocks with man-
ageable size and solved in blocks individually [2]. Moreover,
partitioning can also be employed when network consists of
repetitive identical subnetworks so that only one equation
needs to be stored.

Consider the system equation for the reduced model

eYx = eb (20)

In frequency domain at a frequency point s

eY = eG + s eC = eY′(s) + eX′(s)eB0

eb = eBue(s). (21)

Note that in time domain at a time instant t with time step
h

eY = eG +
1

h
eC = eY′(h) + eX′(h)eB0

eb =
1

h
eCx(t − h) + eBue(t). (22)

The state vector can be solved by Sherman-Morrison-
Woodbury formula [3]

x = P (0) − Pq

P (0) = ( eY′)−1eb, P = ( eY′)−1 eX′

q = (I + eB0P )−1 eB0P
(0). (23)

To avoid explicit inversion, LU-factorization needs to ap-

plied eY′ and I + eB0( eY′)−1 eX′. A two level analysis is pro-

posed in [4] and outlined in Algorithm 3. Note that as eY
shows the block diagonal form, each reduced block matrix is
fist solved individually with LU/Cholesky factorization and
substitution (1.1-1.4) at the bottom level, the results from
each reduced block are then used further to solve the cou-
pling block (2.1-2.4) at the top level, and the final xk of each
reduced block is updated (3.1).

Typically, LU factorization requires n3/3 multiplications
and back/forward substitution requires n2/2 multiplications.
The computational cost of Algorithm 3 is therefore, ... More-
over, this algorithm can be extended in a hierarchical fashion
if the multi-level partitioning is used initially.

3. REFERENCES
[1] L. Vandenberghe, S. Boyd, and A. E. Gamal,

“Optimizing dominant time constant in rc circuits,”
IEEE Trans. on CAD, pp. 110–125, 1998.

[2] R.A.Rohrer, “Circuit partitioning simplified,” IEEE

Trans. on CAS, pp. 2–5, 1988.

[3] J. Sherman and W.J.Morrison, “Adjustment of the an
inverse matrix corresponding to changes in the

Algorithm 2 Two Level Partitioned Analysis

1.Solve bottom level individually

for every k in m do

(1.1) input: ebk, eX′(i)
k , eY′

k;

(1.2) factor: LU/Cholesky factor eY′
k;

eX′(0)
k = ebk;

for every i in q do

(1.3) solve: back-substitution eY′
kP

(i)
k = eX′(i)

k ;
end for

end for

2.Solve top level

(2.1) input: eB0, P, P (0);

(2.2) factor: LU/Cholesky factor I + eB0P ;

(2.3) solve: back-substitution (I + eB0P )q = eB0P
(0);

3.Update bottom level individually

(3.1) output: x = P (0) − Pq.

elements of original matrix,” in Annu. Math. Statist.,
p. 621, 1949.

[4] G.Guardabassi and A. Sangiovanni-Vincentelli, “A two
level algorithm for tearing,” IEEE Trans. on CAS,
pp. 783–791, 1976.


