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1. EXPLICIT PARTITIONAND STRUCTURED

BLOCK PROJECTION

To construct the structured-projection matrix V, we in
Section II first obtain V' by applying PRIMA to the entire G,
C matrices, and then partition V using SVD and K-means
algorithm. As all operations are on the entire matrix, its
computation effort could be too big for large scale circuits
(although fewer iterations are needed to achieve higher ac-
curate reduced model compared to PRIMA). To reduce the
computation cost, we propose to first explicitly partition the
original circuit into m interconnected blocks with (G; s, Cis),
then apply PRIMA to each block and obtain the projection
matrix Vi(span(Vi) = K(Ai, Riyi,q)) for each block, and
construct the structured-projection matrix

V = diag[Vh, Va, ..., Vin]. (1)

Below, we prove that the structured-projection matrix V
constructed in this fashion guarantees ¢ moments matching
as well.

1.1 General Interconnected Block Structure

For a interconnected block structure, we assume that the
input source vector for ith-block is

J#i
wer(s) =ueils) - S Xigye,(5), (2)
JEL,....om
where ue;(s) is the external sources at ith block, X;;(s) =
Xg;; +sXeij (Xij € R"7") is the branch admittance ma-
trix that connects ith and jth block, and y.;(s) is the output

vector at jth block. Moreover, the transfer function of ith
block is

Yei(s) = hi(s)uci(s)
hi(s) = b?(gi,i+SCi,i)71bi. (3)

where b; is an extended port matrix (€ R™*™#) to connect
boundary ports at ¢th block. Note that

Giy = bl Xo; ;b Cig = b Xeobs. (4)

9ij

Define the block connection matrix
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0 Xi2 .. Xim
X2,1 0 e Xom
X = . . . . ; (5)
Xm,l X7n,2 0

the block transfer function

Ho(s) = diag{hi(s), ..., hm(s)} = By (Go+sCo) 'Bo, (6)

where
By = diag{bi,...,bm},
GO = diag{gl,ly ---7gm,m}7
Co = diag{Ci1,--,Cm,m}; (7)

the block connection input/output vector

Ue(s) = [te1(5), oo Uem (5)],  ye(s) = [yc1(8)7-.-,ycm(8)](; :
8

and the block external input/output vector
F = [F,..., Fn). 9)

The system equation, therefore, can be rewritten as

uc(s) = Fue(s) + X(s)yc(s),
ye(s) = Ho(s)uc(s),
ye(s) = Flye(s). (10)
Its transfer function is
H(s) = F"(I - Ho(s)X(s)) 'Ho(s)F,  (11)

which can be realized by the following state space

G Go + B3 X¢Bo,
C Co + By X.Bo,
B = B(F. (12)

It is easy to check that: G =G, C =C, and B = B, i.e., the
interconnected representation (G, C,B) has the same state
space with the original system (G,C, B). Note that the ra-
tionale to use the presentation in the interconnected block
structure is to obtain following relation for the Krylov sub-
space between the diagonal block structure and the original
system.



THEOREM 1. Define the state matrices for the block di-
agonal structure: Ao = (Go + soCo)flco, Ro = (Go +
sOCo)leo, and for the general interconnected structure:
A = (G +5C)"'C, R = (G +5C)"'B. Then the corre-
sponding Krylov subspaces satisfy:

K:(AaRa Q) c ’C(A07R07Q)' (13)

Proof: Tt is equivalent to prove that for any v € (A, R, q),
it has v € K(Ao, Ro, q) as well. Note that if v € K(A, R, q),
it means that there exists a q-dimensional column vector w;:

vwog = R, wvwi =-AR,..,
vw;, = (=1)'A'R, ww, 1 =(-1)7"AT'R.
Sum the left-hand-side and right-hand-side respectively,

vw = (I+sA)'"R=(G+sC)'B
= (Go+ sCo+BjXBy) 'BoF (14)
where w = 3971 (—1)"w.
Therefore,
vw’ = (Go +5Co) 'B{, (15)

where w’ = w(F — XBovw)~'. As a result,

vwy = R, wvwi=—AoRo,...,
vwj = (=1)'AjRo, vw, ;= (-1)""AI 'R

ie., v e K(Ao,Ro,q).
Based on Theorem 3, we have the following Corollary:

COROLLARY 1. Let V; satisfy K(A; i, Ri,q) C span(V;)
and V = diag[V1, Va, ..., Vin]. The reduced system H(s) pro-

jected by V will match the first ¢ moments in the expansion
of H(s) about so.

Proof: Because K(A,R,q) C K(Ao,Ro,q) C span((V)), the
g moments matching is easy to see by Grimme’s projection
theorem.

1.2 Incremental Explicit Partitioning

Similarly, if the original system has a block diagonal struc-
ture, i.e., X = 0, the above structured-projection can match
mq poles as well. In general, it needs to devise a proper
initial partitioning such that the resulting model can closely
approximate mgq poles matching. Below, we present an in-
crementally partitioning based on k-dominant-time-constant
algorithm to achieve the requirement. Note that the con-
cept of dominant time constant is introduced in [1], where
the system timing response is approximated by the first
k dominant-time-constant, i.e., the first £ most dominant
eigen-values (poles) Ai, ..., Ay of state matrix A = G 'C.

The outlined procedure is presented in Algorithm 2. The
input is a group of mo natural basic blocks that are deter-
mined by the specific application such as the block current
characterization for the substrate or P/G grid. Each basic
block has state space (G, Ci i, bi), and a projection matrix
V; is found by PRIMA such that K(A; s, R, q) = span(V;).
The clustering begins with the first basic block by merging
its connected neighboring blocks. The state matrices of the

resulted block are denoted by (Gi;,C; ;,b;), and its corre-
sponding projection matrix is V;. SVD is applied to V; and
V;/ to obtain their first k most dominant eigen-values (poles)
A, .. Ak and A, ..., A, As a result, the merging operation

will terminate if

where € is a small value specified by the user. This termina-
tion criteria implies the condition that the £ most dominant
eigen-values (poles) will not change much when including
more interconnected blocks together. The clustering further
applies to the rest basic block till a converged partitioning
V' is obtained. Consequently, a structured-projection ma-
trix V is constructed to project the original system matrices

(9.C, B).

k /
© i /N,
By a0

Algorithm 1 BSMOR Partitioning 2
1.Incremental partitioning
(1.1) input: gi,hci,h bh (7, = 1, 2, ceey mo);
1=1,i=0;
whilex<edo__ _ _ _ N _
(L.1) form: AY" = (Gi;+s0Cr1) 'Chr, Ry = (Gir+
s0Cr,1)” by
(1.2)  construct: Vi such that span(V}) =
KA, RY S q); _ _
(1.3) calculate: [A1,...,\;] = SVD(V* k);
(1.4) cluster: ( }f}17C§7}17b§+1) =
me?“ge[(g},h C},h 53)7 (g}+1,1+17c}+1,1+17 b3+1)]§
— DD VAR
(1.5) calculate: X = || =L——— —1|;
end while
(1.6) construct: V = diag[V{ ,, xq)»- - -
3.Structured block projection
(2.1) input: V;
(2.2) project: G = vTgv, C= vTev, B= vTB;
(2.3) output: 5,5, B.

) VI;L(RWL Xq)];

Note that if

G +sC=Y'(s) + X'(5)Bo, (17)
where
Y'(s) = diag{(Gi1 +8C1,1), s (Gm,m + 8Cim,m)}
X'(s) = BoX(s), (18)
we have

G+sC = VIY'V+VIX'VWTBY
= Y/(s)+X/(s)Bo, (19)
where Y’ and X’ both € R™7xXma

2. TWOLEVEL PARTITIONED ANALYSIS
OF REDUCED MODEL

Because the reduction preserves the structure, it preserves:
(7) the sparsity of state matrices; In contrast, the projected
matrices by PRIMA are fully dense. (i) the reciprocity of
the network which enables efficient realization of the net-
work; In contrast, PRIMA does not preserve this property.



(7i7) the block structure; It means that the reduced block
can be distinguished by a subset of ports specified during
BSMOR. Due to the preserved block structure , a bordered-
block diagonal (BBD) partitioned solution can be applied
to solve each block individually in both frequency and time
domain.

Note that the runtime and memory requirement to solve
a linear system are primarily determined by the size, spar-
sity, and structure of the matrix. Using partitioning, the
large coupled network is divided into sub-blocks with man-
ageable size and solved in blocks individually [2]. Moreover,
partitioning can also be employed when network consists of
repetitive identical subnetworks so that only one equation
needs to be stored.

Consider the system equation for the reduced model

Yz=b (20)
In frequency domain at a frequency point s

Y = G+sC=Y'(s)+X(s)Bo

b = Bue(s). (21)

Note that in time domain at a time instant ¢ with time step

Y = G+ %5: Y'(h) + X'(h)Bo
b - %c}(t — 1) + Bu(). (22)

The state vector can be solved by Sherman-Morrison-
Woodbury formula [3]

z = PO _ Pq
P(O) _ (?/)—1B7 P = (’Y"-/)—l)"i/
¢ = (I+BoP) 'BoP. (23)

To avoid explicit inve~rsion7NLU-factorization needs to ap-
plied Y’ and T + Bo(Y')™'X’. A two level analysis is pro-
posed in [4] and outlined in Algorithm 3. Note that as Y
shows the block diagonal form, each reduced block matrix is
fist solved individually with LU/Cholesky factorization and
substitution (1.1-1.4) at the bottom level, the results from
each reduced block are then used further to solve the cou-
pling block (2.1-2.4) at the top level, and the final xj, of each
reduced block is updated (3.1).

Typically, LU factorization requires n® /3 multiplications
and back/forward substitution requires n? /2 multiplications.
The computational cost of Algorithm 3 is therefore, ... More-
over, this algorithm can be extended in a hierarchical fashion
if the multi-level partitioning is used initially.
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