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A Passive Block Structure Preserving Model Reduction for
Linear Circuit with Large Number of Ports

Hao Yu, Lei He, and Sheldon X.-D. Tan

I. INTRODUCTION

VLSI circuits contain a number of highly structured com-
ponents such as bus, power ground grid and substrate. These
components can be modeled by passive networks with tremen-
dous amount of circuit elements and large numbers of ports.
To analyze such network efficiently, model order reduction
[1]–[3] has been studied extensively. Based on the Krylov
subspace projection and congruence transformation, PRIMA
[3] is widely used to generate the reduced macro-model with
preserved passivity. However, the macro-model produced by
PRIMA is not compact as the order is usually “too high” to
achieve the specified accuracy. Furthermore, the macro-model
is represented by a multiple-input-multiple-output (MIMO)
transfer function, and is usually dense and inefficient to
analyze for a large number of ports.

To improve upon PRIMA, a structure-preserving model
reduction (SPRIM) is proposed in [4]. It partitions the state
matrix in the MNA (modified nodal analysis) form into a
natural 2 × 2 block matrices, i.e., conductance, capacitance,
inductance, and adjacent (G, C, L, Es) matrices. Accordingly
the projection matrix is partitioned and the number of its
columns is doubled. As a result, SPRIM matches the twice
poles of the models by using the projection matrix given
by PRIMA. In addition, the block structure of state matrices
is preserved, which facilitates the realization of the reduced
model. However, such a simple 2×2 partition does not leverage
the regularity of the substrate network. In addition, the explicit
hierarchical decomposition [5], [6] is proposed to handle a
large number of ports. The capacity of these methods [4]–[6]
need to be improved further.

In this paper, we propose a block structure preserving model
reduction (BSMOR) method, which generalizes SPRIM [4]
in the sense that the G, C, L and Es matrices are further
partitioned into blocks. The blocks can be derived based on
specific applications such as block current characterization of
the substrate in this paper. We show that increasing the block
number leads to more matched poles or moments using the
same Krylov space. Compared to PRIMA, BSMOR can lead to
more efficient reduction under the same accuracy. In addition,
BSMOR can also preserve the sparsity for reduced block
matrices, which gives further efficiency boost to constructing
a macro-model. The resulting macro-model consists of order-
reduced blocks, each containing a subset of ports. To analyze a
macro-model with a large number of ports, we further propose
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a bordered-block diagonal (BBD) partitioning and hierarchical
clustering of reduced blocks. We call it BBDC analysis. The
experiment shows that under the same accuracy, the reduction
of our approach is 20X times faster than PRIMA to reduce
a circuit with 1M elements, and the BBDC analysis is 30X
faster compared to analyzing the original macro-model.

The rest of the paper is organized as follows. We present
BSMOR method with two differnt partioing algorithms in
Sections II and III, a hierarchical bordered-block-diagonal
analysis for the reduced model in Section IV, the prototype
experimental results in Section,V and conclude the paper in
Section VI.

II. BLOCK STRUCTURE PRESERVING MODEL REDUCTION

A. Preliminary

Consider a modified nodal formulation (MNA) of the circuit
equation in the frequency domain:

Gx(s) + sCx(s) = Bue(s)

ye(s) = BT x(s) (1)

where x(s) is the state variable vector, G and C (∈ RN×N )
are state matrices. B (∈ RN×np) is

B = [B 0]T , (2)

a port incident matrix. Eliminating x(s) in (1) gives

ye(s) = H(s)ue(s)

H(s) = BT (G + sC)−1B, (3)

where H(s) is a multiple-input multiple-output (MIMO) trans-
fer function. PRIMA finds a projection matrix V (∈ RN×q)
such that its columns span the q-th block Krylov subspace
K(A,R, q), i.e.,

K(A,R, q) = span(V ) = {R,AR, ...,An−1R}, (4)

where n = dq/npe, A = (G + s0C)−1C, R = (G + s0C)−1B,
and s0 is the expansion point that ensures G + s0C is nonsin-
gular. The resulting reduced transfer function is

Ĥ(s) = B̂T (Ĝ + sĈ)−1B̂, (5)

where

Ĝ = V TGV, Ĉ = V T CV, B̂ = V T B̂, (6)

Theorem 1: If K(A,R, q) ⊆ span(V ), then Ĥ(s) has the
identical expanded first q-th moments with H(s).



2

It is called the Grimme’s projection theorem [7]. Note that Ĝ,
Ĉ ∈ Rq×q , and B̂ ∈ Rq×np .

In [4], a structure-preserving reduced model order reduction
technique, SPRIM, is proposed. The primary observation is
that instead of using the Krylov subspace K(A,R, q) for the
projection matrix Ṽ , one can use any projection matrix such
that the space spanned by the column in Ṽ contains the q-th
block Krylov subspace. i.e.

K(A,R, q) = span(V ) ⊆ span(Ṽ ) (7)

In SPRIM, a 2 × 2 partition is naturally used as a linear
state matrix in the MNA form shows a 2 × 2 block structure

G =

[
G ET

s

−Es 0

]
, C =

[
C 0
0 L

]
, (8)

where G (∈ Rn1×n1), C (∈ Rn1×n1), L (∈ Rn2×n2 ) are
conductance, capacitance and inductance matrix, and Es (∈
Rn2×n1 ) is the adjacent matrix indicating the branch current
flow at the inductor. Note that n1 + n2 = N .

Therefore, a structured projection vector Ṽ can be con-
structed by partitioning the projection vector V obtained from
the q-th PRIMA iteration

V =

[
V1

V2

]
→ Ṽ =

[
V1 0
0 V2

]
. (9)

where V1 ∈ Rn1×q , V2 ∈ Rn2×q, and hence Ṽ ∈ RN×2q. As
a result, the number of columns in Ṽ is twice of that in V .
Accordingly the new reduced state matrices are

G̃ =

[
G̃ ẼT

s

−Ẽs 0

]
, C̃ =

[
C̃ 0

0 L̃

]
, (10)

where G̃ = V1
T GV1, Ẽs = V2

T EsV1 and C̃ = V1
T CV1 and

L̃ = V2
T LV2. Similarly, the size of G̃, C̃ (∈ R2q×2q), and B̃

(∈ R2q×np) is twice than that of Ĝ, Ĉ, and B̂ reduced by using
V . Therefore, the moments of the reduced model with state
matrices: G̃ and C̃ are twice than those of the reduced model
with state matrices: Ĝ and Ĉ. In other words, the reduced model
by Ṽ matches 2q moments of the original model instead of q
moments as the reduced model by V .

Since the reduced model is written in the first order form
in (10), the model reduced by SPRIM is twice larger than
that produced by PRIMA. But the reduced model produced
by SPRIM preserves the structure of the original model and
can be further reduced into the second-order form using node
elimination base on the Schur’s decomposition [8]: H̃NA =
G̃+sC̃ + 1

s ẼT
s L̃−1Ẽs where H̃NA is the reduced state matrix

in NA form, which has the same size of the reduced matrix
by using V . But the difference is that each element in H̃NA

becomes second-order rational function of s instead of first-
order polynomial of s.

Hence SPRIM algorithm essentially consists of two reduc-
tion steps: the first step is the structure-preserving projection-
based reduction and the second step is block node elimination
based on Schur’s decomposition. As a result, SPRIM can
match more poles than PRIMA, which uses V as the projection
matrix, but both result in a same size of the reduced model.

If we just look at the first step, SPRIM simply matches more
moments by using more columns in the projection matrix Ṽ ,
thus produces larger reduced state matrices in the first-order
form.

B. Structured Block Projection

SPRIM essentially is based on a 2 × 2 partitioning of
the state matrices. If we use more partitions (each partition
called a block), we can add more columns into the project
matrix Ṽ , thus match more poles given the same Krylov space
K(A,R, q).

Specifically, we assume that the conductance matrix G can
be distinguished in m blocks

G =

2
66664

G1,1(n1×n1)
G1,2(n1×n2)

. . . G1,m(n1×nm)

G2,1(n2×n1) G2,2(n2×n2) . . . G2,m(n2×nm)

...
...

. . .
...

Gm,1(nm×n1)
Gm,2(nm×n2)

. . . Gm,m(nm×nm)

3
77775

, (11)

where each block has the size nk (
∑m

k=1 nk = N ). A similar
block structure can be found for C matrix. Then, B becomes

B = [B1(n1×np), B2(n2×np), . . . Bm(nm×np)]
T (12)

where each block contains user specified npk ports (np =∑m
k=1 npk). Note that these blocks can be derived based on

specific applications such as block current characterization of
the substrate or the power/ground grid, called natural basic
blocks, or determined after specific partitioning algorithms
discussed later on.

Accordingly, we further partition the projection matrix V
obtained from PRIMA according to the block structure in state
matrices from (11)

V =

2
66664

V1(n1×q)

V2(n2×q)

...
Vm(nm×q)

3
77775

→ eV =

2
66664

V1(n1×q) 0 . . . 0
0 V2(n2×q) . . . 0

...
...

. . .
...

0 0 . . . Vm(nm×q)

3
77775

. (13)

where Ṽ ∈ RN×mq. We call this as Block Structure-
preserving Model Reduction (BSMOR), where m is the num-
ber of blocks.

We can obtain the order reduced state matrices by projecting
Ṽ :

G̃ = Ṽ TGṼ , C̃ = Ṽ TCṼ , B̃ = Ṽ TB. (14)

Elementwise, we have

G̃i,j = Vi
TGi,jVj C̃i,j = Vi

T Ci,jVj B̃i = Vi
TBi (15)

where G̃i,j represents the blocks at i block row and j block
column in reduced matrix G̃. So do C̃i,j and B̃i. Let Vi =
Vi(q×ni) to simplify notations. Note that such a m×m block
projection preserves the structure and sparsity of the original
G, C matrices. For example, when projected by Ṽ , the reduced
G̃ matrix is



3

eG =

2
66664

V1
T G1,1V1 V1

T G1,2V2 . . . V1
T G1,mVm

V2
T G2,1V1 V2

T G2,2V2 . . . V2
T G2,mVm

...
...

. . .
...

Vm
T Gm,1V1 Vm

T Gm,2V2 . . . Vm
T Gm,mVm

3
77775

. (16)

Clearly, if the original G is sparse, the resulted G̃ is sparse as
well. In the contrast, when projected by V using PRIMA, the
resulted Ĝ is

Ĝ =

m∑

i=1

m∑

j=1

Vi
TGi,jVj , (17)

which is dense in general. Similar observations can be found
for C and B.

C. Passivity Preservation and Moment Matching

Similar to SPRIM, the reduced model of passive network
obtained by Krylov-subspace projection preserves passivity:

Theorem 2: The reduced order model H̃(s) by BSMOR is
passive.
Proof: Because Ṽ T Ṽ = I , and G + GT , C + CT are sym-
metric positive definite, the congruence transformation based
projections: Ṽ TGṼ , Ṽ TCṼ preserve the passivity [3].

Using such a projection matrix Ṽ , we define a reduced-order
model with the following transfer function

H̃(s) = B̃T (G̃ + sC̃)−1B̃, (18)

and we have
Theorem 3: Let V be a matrix that satisfies K(A,R, q) ⊆

span(V ) and Ṽ is defined in Eq.(13). H̃(s) will match the
first q moments in the expansion of H(s) about s0. If the G, C
matrices in the block diagonal form have m different blocks,
i.e. A1,1 6= A2,2 6= ... 6= Am,m, H̃(s) will match mq poles of
H(s).

Proof: Because K(A,R, q) ⊆ span(V ) ⊆ span(Ṽ ), ac-
cording to Grimme’s’ projection theorem (Theorem 1), H̃(s)
will match the first q moments in the expansion of H(s) about
s0. Moreover, if G, C matrices are in the block diagonal form,
then the state matrix A = G−1C is in the block-diagonal form
as well. Due to the structure-preserving projection, the resulted
state matrix Ã

eA = (eV T
G eV )

−1
(eV T

C eV ) = diag[A1,1,A2,2, ...,Am,m]

=

2
66664

( eG1,1)−1 eC1,1 0 . . . 0

0 ( eG2,2)−1 eC2,2 . . . 0

...
...

. . .
...

0 0 . . . ( eGm,m)−1 eCm,m

3
77775

have m sub-blocks each with size q×q. Note that eigenvalues
of Ã represent the reciprocal poles of the reduced model
[3]. As a result, the partitioned projection matrix Ṽ leads
to localized projection. In other words, the block projection
matrix Ṽi is used only for the state matrix block Ai,i (i =

1, ...m). Each structured block projection matrix Ṽi will lead
to the localized model order reduction for block i, which is
represented by (Ai,i,Ri,i). Conceivably, the order reduced
block (Ãi,i, R̃i,i) will match (Ai,i,Ri,i) with q poles. But

the whole system consisting of the m blocks will match mq
poles.

In general when Gi,j , Ci,j 6= 0, i.e., Ai,j 6= 0, BSMOR
obtains (m − 1)q times more poles than PRIMA within q
iterations, where the (m− 1)q additional poles approximately
match poles of the original system. If the coupling Ai,j

between blocks Ai,i is weak, the original system can be well
approximated by the block diagonal structure, and therefore,
each block has a different pole distribution, and the (m− 1)q
additional poles are close to the poles of the original system.
As a result, introducing more partitions or blocks can archive
the same reduction accuracy by using less iterations, which
can in turn improve the reduction efficiency. On the other
hand, if the coupling Ai,j between blocks Ai,i is strong, the
accuracy of BSMOR depends on the partition algorithm. Note
that in this case, blocks are strongly correlated. Below, we
present a partitioning algorithm based on the the singular-
value-decomposition and K-means clustering.

D. SVD and K-means Clustering Based Partitioning

When blocks are strongly correlated, the state matrix (A)
will be a low rank matrix. The true rank should reveal the
number of uncorrelated rows in A. Therefore, if we can
find this true rank number m, and greedy group all similar
row vectors of A into m most uncorrelated blocks, then
we can obtain a partitioning that each partitioned block has
weak correlation with each other, and shows a different pole
distribution. Using such a partitioned V to construct the
structure projection matrix V accordingly, and project G, C
matrices, the obtained mq poles can closely match poles of
the original system.

Based on this observation, SVD is applied on A to de-
termine the rank value m, which is used as the partition
number. With the known partition number, K-means clustering
method [9] can be applied to greedily add similar rows into
one block, and find m disjoint blocks. As a result, the moment
value, i.e., the pole distribution is similar in the same block,
and is different between them. However, the dimention of A
(∈ RN×N ) is too high to directly apply SVD and K-menas
clustering. Observing that the projection matrix V composed
by (A,R) as in (4) has a low-dimension Rq×N , we apply
SVD and K-means clustering to V . The overall procedure is
presented in Algorithm 1.

K-means clustering classifies a given data set. The main
idea is to define k centroids, one for each cluster. These
centroids should be placed in a cunning way because of
different location causes different result. As a result, the better
choice is to place them as far away from each other as
possible. The next step is to iteratively associate data points
to the nearest centroid. When no point is left, the first step is
completed and an initial clustering is obtained. At this point
we need to recalculate k new centroids as bary-centers of the
clusters resulting from the previous step. After we have these
k new centroids, a new iteration binding has to be done. As a
result the k centroids may change their locations and iterations
stop when there is no more changes for the k centroids. This
procedure minimizes the following squared error function
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J =

k∑

j=1

n∑

i=1

||x
(j)
i − cj ||

2, (19)

where ||x
(j)
i −cj ||

2 is the distance between data point x
(j)
i and

cluster centroid cj .

Algorithm 1 BSMOR Partitioning 1
1.Find projection matrix by PRIMA
(1.1) input: G, C,B;
(1.2) form: A = (G + s0C)−1C, R = (G + s0C)−1B;
(1.3) construct: V = [V1, V 2, ..., Vq ] such that span(V ) =
K(A,R, q), where V ∈ RN×mq;
(1.4) output: V .
2.SVD and K-means clustering based partitioning
(2.1) input: V ;
(2.2) solve: m = SV D(V );
(2.3) cluster: [V1(n1×q), . . . , Vm(nm×q)]

T =
kmeans(V, m);
(2.4) construct: V = diag[V1(n1×q), . . . , Vm(nm×q)];
(2.5) output: V .
3.Structured block projection
(3.1) input: V ;
(3.2) project: G̃ = Ṽ TGṼ , C̃ = Ṽ TCṼ , B̃ = Ṽ TB;
(3.3) output: G̃, C̃, B̃.

In summary, using the partitioned V by the SVD and K-
means clustering, one can construct a structured-projection
matrix V , where each block has a different pole distribution,
and the reduced model can closely match mq poles of the
original system. As a result, one can obtain order reduced
models with higher accuracy for each structured block by
using the same sized Krylov subspace base vectors, or get the
same order reduced model (same accuracy) using a smaller
Krylov subspace. Therefore, BSMOR provides much more
flexibility and a better trade-off between efficiency and model
accuracy for reducing linear dynamic system models than
PRIMA does.

III. EXPLICIT PARTITION AND STRUCTURED BLOCK
PROJECTION

To construct the structured-projection matrix V , we in
Section II first obtain V by applying PRIMA to the entire
G, C matrices, and then partition V using SVD and K-means
algorithm. As all operations are on the entire matrix, its
computation effort could be too big for large scale circuits
(although fewer iterations are needed to achieve higher ac-
curate reduced model compared to PRIMA). To reduce the
computation cost, we propose to first explicitly partition the
original circuit into m interconnected blocks with (Gi,i, Ci,i),
then apply PRIMA to each block and obtain the projection
matrix Vi(span(Vi) = K(Ai,i,Ri,i, q)) for each block, and
construct the structured-projection matrix

V = diag[V1, V2, ..., Vm]. (20)

Below, we prove that the structured-projection matrix V

constructed in this fashion guarantees q moments matching
as well.

A. General Interconnected Block Structure

For a interconnected block structure, we assume that the
input source vector for ith-block is

uci(s) = uei(s) +

j 6=i∑

j∈1,...,m

Xijycj(s), (21)

where uei(s) is the external sources at ith block, Xij(s) =
Xgij +sXcij (Xij ∈ Rni×nj ) is the branch admittance matrix
that connects ith and jth block, and ycj(s) is the output vector
at jth block. Moreover, the transfer function of ith block is

yci(s) = hi(s)uci(s)

hi(s) = bT
i (Gi,i + sCi,i)

−1bi. (22)

where bi is an extended port matrix (∈ Rni×ni) to connect
boundary ports at ith block. Note that

Gi,j = bT
i Xgi,jbj , Ci,j = bT

i Xci,jbj . (23)

Define the block connection matrix

X =

2
6664

0 X1,2 . . . X1,m

X2,1 0 . . . X2,m

...
...

. . .
...

Xm,1 Xm,2 . . . 0

3
7775 ; (24)

the block transfer function

H0(s) = diag{h1(s), ..., hm(s)} = B
T
0 (G0 + sC0)

−1
B0,

(25)
where

B0 = diag{b1, ..., bm},

G0 = diag{G1,1, ...,Gm,m},

C0 = diag{C1,1, ..., Cm,m}; (26)

the block connection input/output vector

uc(s) = [uc1(s), ..., ucm(s)], yc(s) = [yc1(s), ..., ycm(s)];
(27)

and the block external input/output vector

F = [F1, ..., Fm]. (28)

The system equation, therefore, can be rewritten as

uc(s) = Fue(s) + X(s)yc(s),

yc(s) = H0(s)uc(s),

ye(s) = F
T yc(s). (29)

Its transfer function is

H(s) = F
T (I −H0(s)X(s))−1

H0(s)F, (30)
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which can be realized by the following state space

G = G0 + B
T
0 XgB0,

C = C0 + B
T
0 XcB0,

B = B
T
0 F. (31)

It is easy to check that: G = G,C = C, and B = B, i.e.,
the interconnected representation (G,C,B) has the same state
space with the original system (G, C,B). Note that the rationale
to use the presentation in the interconnected block structure is
to obtain following relation for the Krylov subspace between
the diagonal block structure and the original system.

Theorem 4: Define the state matrices for the block diagonal
structure: A0 = (G0+s0C0)

−1
C0, R0 = (G0+s0C0)

−1
B0,

and for the general interconnected structure: A = (G +
s0C)−1

C, R = (G + s0C)−1
B. Then the corresponding

Krylov subspaces satisfy:

K(A,R, q) ⊆ K(A0,R0, q). (32)
Proof: It is equivalent to prove that for any v ∈ K(A,R, q),
it has v ∈ K(A0,R0, q) as well. Note that if v ∈ K(A,R, q),
it means that there exists a q-dimensional column vector wi:

vw0 = R, vw1 = −AR, ...,

vwi = (−1)i
A

i
R, vwq−1 = (−1)q−1

A
q−1

R.

Sum the left-hand-side and right-hand-side respectively,

vw = (I + sA)−1
R = (G + sC)−1

B

= (G0 + sC + 0 + B
T
0 XB0)

−1
B0F (33)

where w =
∑q−1

i=0 (−1)iwi.
Therefore,

vw′ = (G0 + sC0)
−1

B
T
0 , (34)

where w′ = w(F −XB0vw)−1. As a result,

vw′
0 = R, vw′

1 = −A0R0, ...,

vw′
i = (−1)i

A
i
0R0, vw′

q−1 = (−1)q−1
A

q−1
0 R0

i.e., v ∈ K(A0,R0, q).
Based on Theorem 3, we have the following Corollary:
Corollary 1: Let Vi satisfy K(Ai,i,Ri, q) ⊆ span(Vi) and

V = diag[V1, V2, ..., Vm]. The reduced system H̃(s) projected
by V will match the first q moments in the expansion of H(s)
about s0.
Proof: Because K(A,R, q) ⊂ K(A0,R0, q) ⊆ span((V)),
the q moments matching is easy to see by Grimme’s projection
theorem.

B. Incremental Explicit Partitioning

Similarly, if the original system has a block diagonal
structure, i.e., X = 0, the above structured-projection can
match mq poles as well. In general, it needs to devise a
proper initial partitioning such that the resulting model can

closely approximate mq poles matching. Below, we present an
incrementally partitioning based on k-dominant-time-constant
algorithm to achieve the requirement. Note that the concept of
dominant time constant is introduced in [10], where the system
timing response is approximated by the first k dominant-time-
constant, i.e., the first k most dominant eigen-values (poles)
λ1, ..., λk of state matrix A = G−1C.

The outlined procedure is presented in Algorithm 2. The
input is a group of m0 natural basic blocks that are determined
by the specific application such as the block current character-
ization for the substrate or P/G grid. Each basic block has state
space (Gi,i, Ci,i, bi), and a projection matrix Vi is found by
PRIMA such that K(Ai,i,Ri,i, q) = span(Vi). The clustering
begins with the first basic block by merging its connected
neighboring blocks. The state matrices of the resulted block
are denoted by (G ′

i,i, C
′
i,i, b

′
i), and its corresponding projection

matrix is V ′
i . SVD is applied to Vi and V ′

i to obtain their first k
most dominant eigen-values (poles) λ1, ..., λk and λ′

1, ..., λ
′
k.

As a result, the merging operation will terminate if

||

∑k
i λi/λ′

i

k
− 1|| < ε (35)

where ε is a small value specified by the user. This termination
criteria implies the condition that the k most dominant eigen-
values (poles) will not change much when including more
interconnected blocks together. The clustering further applies
to the rest basic block till a converged partitioning V ′ is
obtained. Consequently, a structured-projection matrix V is
constructed to project the original system matrices (G, C,B).

Algorithm 2 BSMOR Partitioning 2
1.Incremental partitioning
(1.1) input: Gi,i, Ci,i, bi, (i = 1, 2, ..., m0);
I=1,i=0;
while λ < ε do

(1.1) form: Ai,i
I = (Gi

I,I + s0C
i
I,I)

−1Ci
I,I , Ri,i

I = (Gi
I,I +

s0C
i
I,I)

−1bi
I ;

(1.2) construct: V i
I such that span(V i

I ) =
K(Ai,i

I ,Ri,i
I , q);

(1.3) calculate: [λi
1, ..., λ

i
k] = SV D(V i, k);

(1.4) cluster: (Gi+1
I,I , Ci+1

I,I , bi+1
I ) =

merge[(Gi
I,I , C

i
I,I , b

i
I), (G

i
I+1,I+1, C

i
I+1,I+1, b

i
I+1)];

(1.5) calculate: λ = ||
P

k
j

λi+1
j

/λi
j

k − 1||;
end while
(1.6) construct: V = diag[V ′

1 (n1×q), . . . , V
′
m(nm×q)];

(1.7) output: V.
3.Structured block projection
(2.1) input: V;
(2.2) project: G̃ = V

TGV, C̃ = V
T CV, B̃ = V

TB;
(2.3) output: G̃, C̃, B̃.

Note that if

G + sC = Y
′(s) + X

′(s)B0, (36)



6

where

Y
′(s) = diag{(G1,1 + sC1,1), ..., (Gm,m + sCm,m)}

X
′(s) = B0X(s), (37)

we have

G̃ + sC̃ = VT
Y

′V + VT
X

′VVT
B0V

= Ỹ
′(s) + X̃

′(s)B̃0, (38)

where Ỹ
′ and X̃

′ both ∈ Rmq×mq .

IV. TWO LEVEL PARTITIONED ANALYSIS OF
REDUCED MODEL

Because the reduction preserves the structure, it preserves:
(i) the sparsity of state matrices; In contrast, the projected
matrices by PRIMA are fully dense. (ii) the reciprocity of the
network which enables efficient realization of the network;
In contrast, PRIMA does not preserve this property. (iii) the
block structure; It means that the reduced block can be distin-
guished by a subset of ports specified during BSMOR. Due
to the preserved block structure , a bordered-block diagonal
(BBD) partitioned solution can be applied to solve each block
individually in both frequency and time domain.

Note that the runtime and memory requirement to solve a
linear system are primarily determined by the size, sparsity,
and structure of the matrix. Using partitioning, the large cou-
pled network is divided into sub-blocks with manageable size
and solved in blocks individually [11]. Moreover, partitioning
can also be employed when network consists of repetitive
identical subnetworks so that only one equation needs to be
stored.

Consider the system equation for the reduced model

Ỹx = b̃ (39)

In frequency domain at a frequency point s

Ỹ = G̃ + sC̃ = Ỹ
′(s) + X̃

′(s)B̃0

b̃ = B̃ue(s). (40)

Note that in time domain at a time instant t with time step h

Ỹ = G̃ +
1

h
C̃ = Ỹ

′(h) + X̃
′(h)B̃0

b̃ =
1

h
C̃x(t − h) + B̃ue(t). (41)

The state vector can be solved by Sherman-Morrison-
Woodbury formula [12]

x = P (0) − Pq

P (0) = (Ỹ′)−1
b̃, P = (Ỹ′)−1

X̃
′

q = (I + B̃0P )−1
B̃0P

(0). (42)

To avoid explicit inversion, LU-factorization needs to applied
Ỹ

′ and I + B̃0(Ỹ
′)−1

X̃
′. A two level analysis is proposed in

[13] and outlined in Algorithm 3. Note that as Ỹ shows the

block diagonal form, each reduced block matrix is fist solved
individually with LU/Cholesky factorization and substitution
(1.1-1.4) at the bottom level, the results from each reduced
block are then used further to solve the coupling block (2.1-
2.4) at the top level, and the final xk of each reduced block
is updated (3.1).

Algorithm 3 Two Level Partitioned Analysis
1.Solve bottom level individually
for every k in m do

(1.1) input: b̃k, X̃
′(i)
k , Ỹ′

k;
(1.2) factor: LU/Cholesky factor Ỹ

′
k ;

X̃
′(0)
k = b̃k;

for every i in q do
(1.3) solve: back-substitution Ỹ

′
kP

(i)
k = X̃

′(i)
k ;

end for
end for
(1.4) output: P (0), P = [P (1), ..., P (n)].
2.Solve top level
(2.1) input: B̃0, P, P (0);
(2.2) factor: LU/Cholesky factor I + B̃0P ;
(2.3) solve: back-substitution (I + B̃0P )q = B̃0P

(0);
(2.4) output: q.
3.Update bottom level individually
(3.1) output: x = P (0) − Pq.

Typically, LU factorization requires n3/3 multiplications
and back/forward substitution requires n2/2 multiplications.
The computational cost of Algorithm 3 is therefore, ... More-
over, this algorithm can be extended in a hierarchical fashion
if the multi-level partitioning is used initially.
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