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ABSTRACT

1. INTRODUCTION
As current technology advances from 90nm to 65nm with

the increasing clock speed towards 10GHz, chips have more
devices and I/O counts and flip-chip package becomes more
widely used. To ensure the signal and power integrity for
chip package co-design, a complete RLC model is required
for accurate representations of interactions among package
layers, C4 bumps, vias, on-chip power grids and all other
signal traces. However, a detailed 3D extraction using the
partial-element equivalent circuit (PEEC) model introduces
densely coupled inductances that increase the model com-
plexity. Sparsification and model order reduction (MOR)
can be used to reduce the model complexity.

Because the partial inductance matrix (L) in the PEEC
model is not diagonal dominant, simply truncating off-diagonal
elements leads to negative eigenvalues and the truncated
matrix loses passivity [1]. Instead of using L, the L-inverse
matrix (S = L−1) is found more strictly diagonal dominant,
and therefore, enables the passive sparsification by directly
truncating [2] or windowing [?]. In [3], the L-inverse element
(S) is further derived from the vector potential equivalent
circuit [4], where S is related to the drop of branch vector
potential. Because the size of sparsified matrix could be
still large, model order reduction is needed to further re-
duced the model complexity. Because AWE [?] explicitly
matches the moment of the original system, it introduces
the numerical instability and can not generate the high-
order reduced model. Using the Arnoldi orthogonalization
to find the Krylov subspace to span the moment space of
the original system, and the congruencent transformation
based projection, PRIMA [5] is widely used to efficiently
generate an order reduced macro-model with the preserved
passivity. However, this method only handles inductance
that is stamped in the MNA (modified nodal analysis) ma-
trix within the first-order form. As a result, it is compu-
tationally expensive when L is dense. Moreover, directly
stamping S in the MNA matrix and applying PRIMA can
not guarantee the passivity [].

Using nodal analysis (NA), ENOR [?] is proposed to pas-
sively reduce the RCS system in the second-order form,
where the L-inverse element is represented by the nodal sus-
ceptance matrix Γ = ET

s L−1Es/s in the s-domain. As G, C,
Γ matrices are symmetric positive definite (s.p.d.), congru-
encent transformation based projection preserves the passiv-
ity. Like AWE, ENOR needs explicit moment matching by
recursive formula. Moreover, such a second-order form leads

to the s-term in the right-hand side (RHS) of the system
equation, and an auxiliary variable is introduced during the
moment matching. Note that this auxiliary variable is not
orthogonalized. As a result, above two aspects can both lead
to the numerical error. To improve upon ENOR, SMOR []
eliminates the auxiliary variable and use an approximated
Krylov subspace to span the moment space of the original
system. Due to this approximation, the moment matching
by SMOR is not accurate. Recently, SAPOR [?] is proposed
to correctly obtain the orthogonalized Krylov subspace via
a modified second-order Arnoldi method. However, this al-
gorithm is prone to break down or can not generate compact
model efficiently because of (i) the RHS s-term introduces
nonzero initial correlation of input state; (ii) the low-rank
Γ matrix has leads to strongly correlated spanning vectors.

In this paper, we present a compact and robust model
order reduction considering L-inverse element. By introduc-
ing the nodal vector potential as the new state variable, the
second-order formulation is obtained physically and no ad-
ditional s-term is introduced in th right-hand-side (RHS).
Moreover, the Singular-value-decomposition (SVD) and K-
means-clustering based partitioning is applied to the mo-
ment matrix X = colspan{X0, X1, ..., Xn} to group them
into several uncorrelated blocks, and a block structure-preserving
projection is applied accordingly. As a result, more poles
can be closely approximated and less iteration is needed to
achieve desired accuracy.

The rest of the paper is organized as follows. In Section
II, we first review the background for L-inverse element and
its macro-modeling approach. In Section III, by introducing
the nodal vector potential variable, we derive our approach to
reduce L-inverse element in the second-order form without
RHS s-term. In Section IV, we discuss a further accuracy
improvement by using block structure-preserving model re-
duction. We present the experimental results in Section V,
and concludes the paper with discussion in Section VI.

2. PRELIMINARY

2.1 Stamp-in RCL−1 Element
Consider the branch resistive, capacitive, and inductive el-

ements in the admittance form, with the external excitation
current source I(t), the KCL and KVL equations are

Ei
T
b = 0, E

T
vn = vb, (1)

where E = [Eg Ec El Ei]
T is incident matrix, ib =

[ig ic il ii]
T , vb = [vg vc vl vi]

T , are branch cur-
rent and voltage, and vn is nodal voltage. These branch



currents are determined by

ig = Gvg, ic = C
dvc

dt
,vl = L

dil
dt

, ii = −I(t) (2)

where G, C, L are branch-admittance form of conductance,
capacitance and inductance matrices.

Only reserving the nodal voltage vn and branch-inductive-
current il as the state variables, (1) and (2) become

Gvn + C
dvn

dt
+ il = EiI(t) (3)

L
−1(Elvn) =

dil
dt

. (4)

where G = ET
g GEg, and C = ET

c CEc are nodal-admittance
form of conductance and capacitance matrices. As such, (4)
can be written in the first-order form in s-domain

(G + sC)x(s) = BI0(s)

u(s) = [ET
i 0]x(s), (5)

where

x(s) =
ˆ

vn il
˜

,B =
ˆ

vn il
˜

G =

»

G El

−L−1ET
l 0

–

, C =

»

C 0
0 I

–

. (6)

Because the state matrix G does not satisfy: G + GT � 0,
directly using congruencent transformation based projection
does not preserve passivity []. Moreover, since only nodal
voltage vn is of interests in most applications, the branch-
inductive-current il can be viewed as intermediate variable
that can be eliminated. As a result, (4) can be further writ-
ten in the second-order form in s-domain

(sC + G + Γ/s)x(s) = EiI(s)

u(s) = E
T
i x(s), (7)

where

x(s) = vn Γ = ElL
−1

E
T
l . (8)

2.2 RCL−1 MOR in Second-order Form
Define P = s0C+G+Γs0, where s0 is the expansion point

that keeps P non-singular. By substituting s = s0(1 − z)

and introducing an auxiliary quantity y(z) = x(z)
1−z

, ENOR
obtains following recursive relation to explicitly generate the
moment Xk, Yk, Ik of x, y, I0,

PXk = s0CXk−1 −
1

s0
ΓYk−1 + EiIk

Yk = Xk + Yk−1, X−1 = Y−1 = 0. (9)

The generated of Xk are actually the scaled nodal volt-
age moments expanded at s0. An orthonormalization using
Gram-Schmidt method is further applied to obtain the sub-
space colspan{X0, ..., Xq}. Note that the frequency scaling
is prone to numerical instability, and the un-orthonormalized
auxiliary quality y(z) during explicitly moment calculation
can grow too rapidly to lead numerical instability as well.
As a result, ENOR is not accurate to generates high-order
reduced model.

SMOR [6] improves upon ENOR by replacing Yk =
Pk

i−1 Xi,
for k ≥ −1, and it results in

PXk = s0CXk−1 − 1
s0

Γ
Pk

i−1 Xi k ≥ 1

X−1 = 0, X0 = P−1EI0. (10)

where the unit impulse current input is assumed to calcu-
late moments, i.e., Ik = 0. However, the summation in the
recurrence relation still presents the numerical problem as
the errors can be accumulated when matching high-order
moments. Therefore, SMOR only uses the first three terms
in (10) to generate moment X ′

k that approximates Xk

PX ′

k = s0CXk−1 −
1

s0
ΓX ′

k−1 −
1

s0
ΓX ′

k−1 k ≥ 1. (11)

As a result, the subspace colspan{X ′

0, ..., X
′

q} is only an ap-
proximation of the space spanned by the moments of the
original system . Therefore, the reduced model by SMOR
can not exactly match the original system as well.

In SAPOR [?], the RCL−1 system can be rewritten ex-
plicitly in

(s2C + sG + Γ)x(s) = sEiI(s)

u(s) = E
T
i x(s). (12)

Expanding (12) at s = s0 + σ, it becomes

(σ2C + σD + K)x(σ) = b0 + b1σ (13)

where D = 2s0C +G, K = s2
0C + s0G+Γ, b0 = s0EiI0, and

b1 = EiI0.
Introducing a new auxiliary variable z(σ), the system can

be linearized as
»

x
z

–

= (I − σA)

»

X0

Z0

–

(14)

where

A =

»

−K−1D K−1

−C 0

–

, X0 = K−1b0, Z0 = b1. (15)

Obviously, the k-th moment of x is

Xk =
ˆ

I 0
˜

Ak−1

»

X0

Z0

–

. (16)

Using a modified second-order Arnoldi orthonormalization,
a projection matrix X = colspan{X0, X1, ..., Xn} is found
to span the generalized Krylov space K(A, B, X0), where
A = K−1D and B = K−1.

Note that (i) due to the s-term in right-hand-side, the Z0

term is nonzero and linearly dependent on X0; (ii) as di-
mension of nodal voltage variable vn is usually much larger
than branch-inductive-current variable il, boosting L to Γ
resulting in a low-rank matrix that has strongly correlated
rows/columns. As a result, the generalized Krylov space
K(A,B, X0) has strong linear dependent column-span vec-
tors {X0, X1, ..., Xn}. Therefore, this algorithm is prone to
break down or can not generate compact model efficiently.

3. SECOND-ORDER FORMULATION WITH
NODAL VECTOR-POTENTIAL VARIABLE

To effectively apply the second-order Arnoldi orthonor-
malization, we need find a second-oder formulation of RCL−1

system such that the auxiliary initial input p0 at RHS is
zero. This can be achieved by introducing the nodal vector
potential variable.

3.1 Nodal Vector Potential Variable
As shown in [3], the vector potential equivalent is con-

nected with L−1 by

L
−1

Al = Il

dAl

dt
= Elvn, (17)



where Al is the branch vector potential associated with
branch-inductance current Il, and all current are assumed
flowing along z-axis.

Define the nodal vector potential

Al = ElAn (18)

and rewrite (4)

(s2C + sG + Γ)x(s) = EiI(s)

u(s) = E
T
i x(s), (19)

where x(s) = vn. Note that dAn

dt
= vn. Let x = [An vn]T .

(??) can be linearized

Gx(s) + sCx(s) = BI0(s)

u(s) = Lx(s), (20)

where

G =

»

Γ 0
0 C

–

C =

»

G C
−C 0

–

L =
ˆ

0 ET
i

˜

(21)

Note that the output port matrix is to select the nodal volt-
age vn.

Clearly, G + GT � 0 and so does C. The first-order
based MOR like PRIMA, i.e., Arnoldi orthonormalization
and congruencent transformation, therefore, leads to a pas-
sive model reduction of (20). As a result, the pole/residue
can be easily obtained by eigen-decomposition and a MIMO
macro-model is constructed accordingly for both time and
frequency domain simulation. We call this approach as fV-
MOR.

Nevertheless, because only vn is the interested state vari-
able, and compared to direct Arnoldi method, the second-
order Arnoldi method based orthonormalization is observed
more cost efficient in both flop counts and memory require-
ments. More importantly, the RCL−1 in second-order form
leads to structure-preserving model reduction as discussed
in Section ??. Therefore, we present in details of MOR for
(20) in the second-order form using second-order Arnoldi
orthonormalization. We call this approach as sVMOR.

3.2 Second-order Arnoldi Method
Assuming an impulse input I0, and expanding at s = s0 +

σ, (19) can be rewritten

x(σ) = (I − σA)i(σ),A =

»

A B
I 0

–

A = K−1D, B = K−1C, i = [EiI0 0]T . (22)

It results in following moments sequence {m0,m1, ..., mn−1},
where

m0 = i,m1 = Am0

mj = Amj−1 + Bmj−2, j ≥ 2 (23)

is called second-order Krylov space, i.e., K(A, B; i) = colspan{m0,m1, ..., mn−1}.
Its orthonormal basis qi can be constructed via a second-
order Arnoldi procedure [?].
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