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Abstract—To exploit time-domain latency in circuit simulation using
direct methods, an accurate, computationally efficient model for slowly
moving, dormant portions of the circuit is required. A new, implicit
integration method, the overdetermined polynemial method (ODPM),
has been developed which permits the formulation of an accurate la-
tent model. Using the ODPM integration method, the Jacobian of a
dormant subcircuit need not be reevaluated over a large number of
time steps of varying size. An accurate Norton equivalent circuit that
emulates the impedance and current characteristics of the subcircuit
can be obtained without reevaluation of the Jacobian or nonlinear
charge computations. This new approach for utilizing latency produces
significant improvements in circuit simulation speed with no decrease
in accuracy or generality. We have demonstrated speed gains of 3 to
20X over TISPICE for several large circuits.

I. INTRODUCTION

CCURATELY verifying the performance and func-

tionality of circuit designs prior to fabrication is an
essential task in producing IC’s in a timely and cost ef-
fective manner. The SPICE circuit simulator has played
a key role in making this verification a reality since the
1970’s [1]. With the addition of accurate device models
[2], and refinements in the algorithms, SPICE has evolved
to provide an extremely accurate and widely used simu-
lation tool. Unfortunately, the efficiency of SPICE needs
to be much greater than it is presently. Today, cost effec-
tive simulation of VLSI circuits is impossible, even with
greatly optimized versions of SPICE such as TISPICE.
Typically, it is only practical to simulate small, critical
sections of a design for a few input patterns. The designer
then attempts to determine the functionality of the circuit
from these limited circuit simulations and other less ac-
curate simulations, such as timing and logic simulations.
More circuit simulation is nearly always desired, but pro-
hibited because of cost and time. It is unlikely that it will
ever be practical to simulate entire large chips with the
accuracy of SPICE. However, approaches which signifi-
cantly increase the efficiency of circuit simulation provide
the designer with a tremendous advantage, and are highly
desired. Advanced techniques for faster and more accu-
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rate circuit simulation are being pursued vigorously in
many industrial and academic research groups.

Most attempts to improve circuit simulation capabilities
are compromises which trade computation speed for ac-
curacy and/or general applicability. The largest compro-
mises are in switch level and timing simulators, [3]-[6],
where only a bare minimum of accuracy is maintained,
but tremendous speed gains are possible. Other works,
[7]1-19], have simplified the model calculations by using
table models and interpolation; however, for large circuits
the speed gains have been limited since solving the matrix
equation dominates the execution time. Mixed-mode sim-
ulation, [10], is receiving renewed interest since it can
utilize accurate solution techniques on critical sections
while solving the remaining circuitry with faster, but less
accurate algorithms. Though very advantageous for large
circuits with small critical sections, it does not address
the problem of accurate solution of large circuits.

One physical aspect of circuits that can be utilized to
gain efficiency while incurring little or no loss of accuracy
is latency. Time-domain latency occurs any time one sec-
tion of the circuit is changing at a different rate than the
rest of the circuit. The sections, or subcircuits, that are
changing slowly need not be simulated as often as those
that are changing faster, provided that some approach can
be found to model the effect of the ‘‘latent’’ subcircuit on
the rest of the circuit. In large circuits, many of the sec-
tions are latent for long periods of time during simulation
and thus a great potential exists for increasing simulation
efliciency. Iterative methods, such as relaxation based
methods, [11]-[15], can exploit time-domain latency to
attain significant speed gains with SPICE-like accuracy;
however, they have proven to be successful only for spe-
cial classes of circuits and perform poorly for many other
types of circuits.

The direct method solution technique, as implemented
in SPICE, offers accuracy and robust characteristics for
almost all circuits; this makes it highly desirable. There
are many techniques which can be utilized to increase the
speed of the direct method without any loss of accuracy.
Recent work has focused on the utilization of parallel
[16]-{20] and vector [21]-[23] processing machines and
algorithms. These approaches have demonstrated signifi-
cant, cost effective improvements in speed. Our approach
in the SUPPLE simulator is to utilize the direct method
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with a block partitioned matrix approach and a combina-
tion of techniques to improve efficiency. This bordered
block approach makes it possible to simultaneously ex-
ploit parallel processing, vector processing, and latency.
We have previously reported results on parallel process-
ing and some forms of latency [19], [20]. In this paper
we will concentrate on exploiting time-domain latency. A
novel method will be presented which allows effective la-
tency exploitation with the direct method solution tech-
nique for circuit simulation. In the past, circuit latency
exploitation with direct methods has been explored, [24]-
[26], though with less success. The key to success is to
find an approach to accurately model the effect of the ‘la-
tent’’ subcircuit on the rest of the circuit. Techniques de-
veloped thus far in the literature have not solved this mod-
eling problem with sufficient accuracy to allow latency to
be effectively utilized. Our new technique accurately
solves this problem and allows time-domain latency to be
effectively used to increase simulation speed signifi-
cantly.

II. BACKGROUND INFORMATION

During circuit simulation, latent sections of the circuit
have smaller changes in their state variables than other,
more active sections. Latent sections can take longer time
steps than active sections and incur the same truncation
error as the active sections. If a uniform time step is used
for all sections, then the latent sections will require fewer
iterations to solve the nonlinear equations at a time point.
Any approach which uses longer time steps for the latent
sections of the circuit utilizes ‘‘time-domain latency;”’
while, any approach which uses the increased conver-
gence rate of latent sections is utilizing ‘‘iteration la-
tency.’” Both types of latency are similar; however, iter-
ation latency is easier to identify and utilize.
Unfortunately, the gains from iteration latency are very
limited. Typically, convergence is achieved in 2-4 itera-
tions in a transient analysis for any circuit section and at
least 2 iterations are necessary to determine convergence;
thus a latent section saves only 1 or 2 iterations. SLATE
[24] was one of the first programs to effectively utilize
iteration latency; although SLATE’s ability to utilize time-
domain latency was severely limited.

Although other schemes are possible, most direct sim-
ulation methods which attempt to utilize latency are based
on either node tearing or branch tearing. These methods
separate the circuit into pieces and form specific struc-
tures with the matrix equations. In node tearing [24], the
circuit is divided into subcircuits separated by intercon-
nect or tearing nodes (Fig. 1). This leads to the matrix
structure shown in Fig. 2, which is called a bordered block
diagonal matrix. This is mathematically equivalent to a
reordering of the circuit equations. Each diagonal block
contains the internal equations for one subcircuit. Entries
for the interconnect nodes are found in the border and also
in the lower-right submatrix, called the interconnect ma-
trix.
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(1)
()

Fig. 1. A circuit can be separated into subcircuits connected by tearing or
interconnect nodes. In this example, an arbitrary circuit is divided into
three subcircuits with N1, N2, and N3 as interconnect nodes.

Entries from subcircuit #1. Entries from subcircuit #2.

Entries from subcircuit #3. . Entries from all subcircuits.

D No matrix entries.

Fig. 2. A bordered block matrix showing individual subcircuit matrices,
border, and interconnect matrix.

In the actual implementation of node tearing, separate
data structures are used for each subcircuit’s internal
equations and its contribution to the interconnect equa-
tions. The subcircuit matrix structures are shown in Fig.
3. A partial LU decomposition and forward substitution
are then used to eliminate terminal subcircuit variables
from each subcircuit’s contribution to the interconnect
matrix. This process converts the subcircuit matrix to a
Norton equivalent expressed in external variables only
(now stored in the lower right corner of each of the sub-
circuit structures in Fig. 3). The contributions of each
subcircuit to the interconnect are summed to form the in-
terconnect matrix, which is solved (LU factored, forward
substituted, and backward substituted) to obtain the inter-
connect voltages and currents. Each of the subcircuit ma-
trices is then backward substituted to obtain the internal
subcircuit variables. Since this is a direct LU matrix so-
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subcircuit #3

subcircuit #1 subcircuit #2

interconnect

Fig. 3. Partitioned matrix structure. Each subcircuit is reduced to a Norton
equivalent circuit in terms of the interconnect nodes. These are combined
to form the interconnect which is solved to obtain interconnect voltages.
These voltages can now be used during backward substitution to obtain
state variables of each subcircuit.

lution method, not an iterative technique, an accurate so-
lution is obtained from one pass of this process. The lack
of convergence robustness and slow rates of convergence
typical of iterative matrix methods are avoided when using
a direct method.

To utilize time-domain latency, the active subcircuits
must take shorter time steps than the latent subcircuits.
To solve the equations at these time points the contribu-
tions to the interconnect matrix from the latent subcircuits
are necessary. To gain efficiency from latency, these con-
tributions must be accurately computed in a very cost ef-
fective manner. Such a model for computing these terms
is the crucial element in developing an effective technique
for exploiting latency with direct methods. If none of the
state variables in a subcircuit are changing at all, for a
period of time, then the subcircuit is completely latent. In
this case its contributions to the interconnect matrix are
simply those from the last full solution of the subcircuit.
This approach for time-domain latency is taken in
SLATE; however, the gains are limited since most latent
subcircuits are not completely dormant, but are moving
slowly. For slowly moving subcircuits, it is not possible
to simply use the last full evaluation to provide the nec-
essary contributions; this is very inaccurate. In fact, tech-
niques which simply estimate the contributions by extrap-
olation introduce far too much error to be useful,
especially considering that latent subcircuits may have
time steps 10 times larger than the active time step.

SAMSON [25], [26] uses a partitioned circuit approach
and attempts to exploit time-domain latency. It models
the effects of latent subcircuits with polynomial extrapo-
lation of the voltages of input nodes and the currents of
output nodes. This approach is severely limited since
polynomial extrapolation is inherently inaccurate for pre-
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dicting the exponential curves typical in circuits and only
applies to a restricted class of circuits.

An ideal latent subcircuit model must provide an ac-
curate Norton equivalent representation of the subcircuit
during its dormant period. To exploit time-domain la-
tency, the computational requirements for dormant sub-
circuits must be much less than for active subcircuits. The
model used in SLATE is invalid if any changes occur in
either state variables or the time step after the model is
evaluated. The method used in SAMSON is accurate for
a slowly moving subcircuit only when the latent time step
is not much larger than the active time step. The ideal
subcircuit model must be valid for both changes in time
step and moderate changes in state variables.

III. IpEaL LATENT SUBCIRCUIT MODEL

To develop the concepts used by our latent subcircuit
model, it is necessary to lay a little groundwork. In tran-
sient circuit simulation, the electrical circuit is modeled
by a system of nonlinear algebraic-differential equations:

F(x,x,1) =0, x(0)=x (1)

where x is an m-dimensional vector of voltages and cur-
rents, X is its time derivative, ¢ is time, and x; is the value
of x at + = 0. In transient circuit analysis, a numerical
solution of (1) is required at a sequence of times, ¢,, f,,
ty, -, t,. At each time point, t = ¢;, the value of x is
represented by x(¢;), (or x; ), and the corresponding ap-
proximate numerical solution by £(¢; ) (or £;). At each of
these time points, three major numerical operations are
performed to obtain the desired solution. First, a suitable
discretization function is used to replace the time deriva-
tives x, ., in (1) with a divided difference approximation:

A

xn+l = gk(fn+l)' (2)
At time 7, ., (1) then becomes
F(-fn+lo gk(£n+l)’tn+l)=0' (3)

The discretization step converts the system of nonlinear
algebraic-differential equations to a system of nonlinear
algebraic equations.

An iterative solution technique is then used to solve the
discretized circuit equations (3). Most direct method cir-
cuit simulation algorithms utilize the Newton-Raphson
(NR) method for solution. Each iteration of the NR
method is described by the equation [1], [25]:

VF(£, )85 = —F(£,401) + VF(£,,)%,0 (4)
where VF(£!, ) is the Jacobian matrix of F, and i is an
iteration counter. Starting with an arbitrary guess £2,, and
subject to specific conditions, (4) will converge to the de-
sired solution, £, , ;. For linear networks, only one itera-
tion is required for convergence.

After convergence is obtained with the NR method, an
estimate must be made of the error obtained in the nu-
merical solution. Because truncation of the series approx-
imations used in obtaining g is the principal source of
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error in obtaining £, , ;, this phase of the simulation pro-
cess is usually termed truncation error analysis. From an
estimate of the truncation error, the solution is either ac-
cepted at this time point, or it is rejected and a smaller
time step taken. The truncation error estimate is also used
to select an appropriate time step for the next solution.

The Jacobian of (3) can be shown to be a dc Jacobian,
which contains dc conductance terms, added to the prod-
uct of a scalar f (4, IM ) and a matrix C of branch capac-
itances values. The scalar f (5, IM ) is a function of the
time step, h, and the integration method (/M ) used for
the discretization step. For any particular implicit inte-
gration method:

Fpe1 = LPo _yaix,; + L obix, _;

f(h,IM) =a_,. (5)
At many time points in the transient simulation, the Ja-
cobian would not need to be reloaded, if the time step did
not change. Both the dc conductance and the capacitances
are sufficiently linear that the matrix would converge in a
single Newton iteration. These sections of the circuit are
latent and would have small truncation error and large time
steps. If a method can be found to use the previous matrix
formulation at new time points for these latent subcir-
cuits, an ideal latent subcircuit model would result and
significant savings from time-domain latency would be
possible.

Since the dc Jacobian terms and the capacitances are
constant for this case, reusing the Jacobian requires that
f (h, IM ) be held constant for changing &. Unfortunately,
traditional integration methods require a one-to-one cor-
respondence between f(h, IM) and h. It is possible to
use two integration methods that have a common f (4,
IM ) at different values of &#; however, this is of limited
usefulness since only one such point exists for each pair
of integration formulas. To reuse the Jacobian for any
value of &, a new integration method is required that al-
lows f (h, IM) to be held constant. This will allow the
Jacobian to be reused whenever the old linearization is
sufficiently valid.

The requirements for keeping f (h, IM) constant in a
dormant subcircuit model are different from the problem
addressed by Jackson and Sacks-Davis [27]-[29]. They
have described an integration procedure which permits
f(h, IM) to be held constant by interpolating the state
variables at past times to match the time intervals required
for integration using standard integration methods. This
method should be useful for incremental changes in the
global time step. However, in exploiting multirate behav-
ior in circuit simulation, the effective time step for a dor-
mant subcircuit must often be varied by more than an or-
der of magnitude. The integration method described in the
following section does not require interpolation to obtain
the past values of the state variable and should be more
efficient. In addition, the new method uses the past, cal-
culated values of the dependent variable directly and
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eliminates possible interpolation errors. To minimize in-
tegration errors it is important to take full use of the most
recent calculated values of the state variables.

IV. OVERDETERMINED POLYNOMIAL INTEGRATION

This section will present an integration method that al-
lows the value of f (h, IM ) to be held constant while 4 is
varied. This is an important innovation in the modeling
of latent subcircuits. Any multistep integration formula,
with constant &, can be expressed as

L= L0 _\a;Q,_; + L b1, _; (6)

where Q is the charge and / is the current, the time deriv-
ative of charge, the two variables of primary interest in
circuit simulation. If the 2p + 3 coefficients (a_,, ag,
, @y, by, by, - -+, b,) are chosen so that the formula
is exact for any polynomial of degree &, then k + 1 of the
coefficients are derived formulas that are determined by
the time steps used in the integration. The remaining coef-
ficients are fixed when the formula is derived. Tradition-
ally in the Adams-Bashforth algorithms or the Gear al-
gorithms, these 2p + 2 — k coefficients are set to zero to
minimize the complexity of the formula and the amount
of data required to implement it. In the A-contractive
methods [30]-[33], more than k£ + 1 non-zero coefficients
are utilized to improve the stability and damping proper-
ties of the numerical integration. We propose a different
choice. Since f (h, IM ) is a_,, set a_, to a constant, non-
zero value. Now set 2p + 1 — k coefficients to zero and
solve for the remaining & + 1 coefficients in terms of a_;.
We call this approach ‘‘overdetermined polynomial inte-
gration method’” (ODPM).
Now we will derive ODPM 2, an ODPM which uti-
lizes charge at the three previous time points:

In+] =a—]Qn+l +a0Qn+a]Qn——l +aZQn——Z' (7)

The goal here is to hold a_, constant for any given time
step h = (1,4, — t,). If a_, is held constant, then the
coeflicients for the ODPM at time 7, , | can be determined
by requiring the formula to be exact to a second-order
polynomial and solving for the undetermined coefficients.
The coefficients are:

<(2h + hy) —a_ (B + hh,)>

@ (hy + hy)hy

_ <a-1h - az(h] + hz) - 1>
a, = hl
a() = “_az - a‘ - a__,

where by = (¢, — t,_,), and h, = (t,_, — t,_»). This
formula is an implicit integration formula since both sides
of the equation depend on Q, ;. While this integration
method is valid for any constant value for a_,, the use
intended presents a logical choice. If a step 4’ is predicted
for the latent subcircuit, a_, should be chosen so that the
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coefficients a_,, ay, a;, and a, match the second-order
Gear’s coefficients when £ = h’. This requires that a_,
be the normal second-order Gear’s coefficient for 2’ and
hl:

< 2h' + h >
a, =\—"—5 .
(h') + h'h

The other coefficients will automatically go to the second-
order Gear’s coeflicients when h = h'.

To be useful to form a latent subcircuit model, the ac-
curacy of the integration formula is important. The ac-
curacy of any integration formula is measured by its trun-
cation error [34]. The formulas for calculating truncation
error are well presented by Chua and Lin [35]. Their for-
mulas can be directly utilized if the integration method is
written in a more traditional form:

Onir = Ef_04; Qi + hEF- B, (8)
If h is held constant so that ¢, , ¢,, f,_,, and ¢, _, are
evenly spaced and the coefficient a_, is set to an arbitrary
constant, the formula derived for ODPM 2 can be re-
written in this form. The new integration coefficients Ay,
A,, A5, and B_; can be calculated; all other coeflicients
are zero:

B = 1
T \a_h

Oui1 = A0, + A0y + 4,0, + hB_1,.1. (9)

The standard form for expressing the truncation error
(see [35, p. 458]) of an integration method:

Qv =LV 0A;Q,; + hZ?__ B, _;

(10)

which is exact to any polynomial of degree less than or
equal to &, given by

€r = CkXA(k-}-l)(i\_)hkw‘-l — O(hk+l) (11)
where
—ph < 3 < h

and

) o (B

-1

+ (k + 1),-121 B(p - i)k>>.
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I

R = 1K C = IE-12F

V = Sexp( -t / RC) = 5exp( -t*1E9 )

Fig. 4. Simple RC circuit used for analysis of truncation error.

Utilizing this theorem, it is easy to calculate the trunca-
tion error formula for ODPM 2:

(12)

In this method p = 2 and & = 2. The general form of the
truncation error formula is

Qi1 =aQ, +a10,- + a,Q,_» + hb_1,,,.

er = GXP (7)) = O() (13)

and the value of C, is

11
6a_h’

C2=1—

A simple example will provide another method of look-
ing at the truncation error of ODPM. The truncation error
for a simple RC circuit (Fig. 4) is examined for the
ODPM_2 just derived. In this example, h;, h,, and A’
were set to the same value (2’ = 0.1 RC = 0.1 ns). The
value of ¢, _,, 1, _, t,, and 1, + h' were arbitrarily chosen
to be 0.8, 0.9, 1.0, and 1.1 ns. The value of & was then
varied from 0.001 to 0.10 ns and the value of V, ., was
calculated using ODPM_2 and a simple nodal approach.
Correct values for V,, V,,_, and V, _, were obtained an-
alytically and used to predict V, ., using ODPM_2 with
a_, calculated for second-order Gear’s with constant time
step, hy = h, = h'. V,,, was predicted for many values
of ¢, , | between 1.0 and 1.1 ns. The answers obtained for
V,+1 as h is stepped from 0.001 to 0.1 ns are not saved
and do not affect the next computation of V, , . This is
exactly the way that ODPM_2 will be used to provide a
dormant subcircuit model. The state variables calculated
with ODPM_2 will not be saved, since the values at ¢,
t,_1, and f,_, are used each time the values at ¢, , | are
calculated for a different #, , |. Fig. 5 compares the esti-
mates using ODPM_2 with the correct answer and the an-
swer if non-constant time step, second-order Gear’s in-
tegration was used to predict V, , ;. It is nearly impossible
to differentiate the three curves; Fig. 6 plots the percent-
age error of ODPM_2 and second-order Gear’s. The error
with ODPM is greater than the Gear’s error for & equal to
small fractions of #’. In normal use, a time step 2’ would
have been selected for which the second-order Gear’s
truncation error was satisfactory. Since the error at any %
less than &’ is never much larger than this error, ODPM_2
is sufficiently accurate to be used as part of a model for a
latent subcircuit.

The choice of coefficients used when deriving the
ODPM just presented was purely arbitrary. To illustrate



1056

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 8, NO. 10, OCTOBER 1989
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—— ODPM_2
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1

- — = 2nd order Gear's |
—— Correct Voltage

1.85—

1.80—

175

Voltage.

1.70—

1.651— —

1.60 1 l 1 I 1 I L } i
1.00 1.02 1.04 1.06 1.08 1.10

Time (ns).

Fig. 5. Comparison of estimated voltage for the RC circuit shown in Fig.
4 using ODPM _2 integration and second-order Gear integration with the
true voltage obtained analytically.

0.000

—0.005 |— T~

—0.010 h
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~0.025
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Fig. 6. Percentage error in voltages of Fig. 5.

this, we will derive ODPM 1, a method exact for first-
order polynomials, using previous current information:
Ly =a_1Qpiy + aoQ, + byl (14)

n+1
If we hold a_; constant and require the formula to be ex-
act to first order, the values for a_, ay, and b_, are easy
to determine:

ag = —a_
b() =1 - a_,h

where h = (t,,, — t,). These can be rewritten in standard
form:

AO = l
1
B7 =
I <a_]h>
1
By=1—
0 <a_]h>

Qni1 = AgQ, + hB_ 1, + hByl,. (15)

- — — Trapezoida! ]
Correct Voltage

1.85+—

1.80

1.75—

Voltage.

1.70—

eol 10
1.00 1.02 1.04 1.06 1.08 1.10

Time (ns).

Fig. 7. Comparison of estimated voltage for the RC circuit shown in Fig.
4 using ODPM_1 integration and trapezoidal integration with the true
voltage obtained analytically.

The logical choice for a_; would require the equation to
match trapezoidal integration for the predicted dormant
timestep h':

The truncation error can be calculated with the same
procedure used to calculate it for the ODPM_2 method.
In the ODPM_1 method, p = Q and & = 1. The truncation
error formula is

er = CXP(#)H = O(K)

and the value of C; 1s

(16)

1
a_h’

When h equals 2, C, is zero and the method will be exact
for second-order polynomials.

To examine the accuracy of this approach, we apply it
to the same simple RC circuit (Fig. 4) that we used for
ODPM_2. Similar voltage and error curves are shown in
Figs. 7 and 8. This formula has a much larger truncation
error in the center of the dormant region. This is expected
since it is only exact for first-order polynomials at this
point. Since AN = 0.1, we would expect the error in this
region to be approximately one order of magnitude greater
than the trapezoidal error. The results substantiate this ex-
pectation.

Cl =0.5 -

V. IMmpLICIT SUBCIRCUIT MODEL

In circuit simulation, the state variables for each of the
subcircuits are often changing at very different rates and
require different time steps to maintain acceptable trun-
cation errors. To exploit time-domain latency, we would
like to simulate each subcircuit with its own, independent
time step. The global simulation time step must be deter-
mined by the most active part of the circuit. However, the
simulation step for less active subcircuits would be the
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Fig. 8. Percentage error in voltages of Fig. 7.

step required to maintain its own local truncation error
within specified tolerances. With the iterative methods,
this subcircuit independent time step control can be easily
implemented. However, the resulting simulators lack the
robustness and generality of SPICE; moreover, cumber-
some schemes are needed to allow the backup of time
points to maintain simulation accuracy [15]. However,
with the direct methods, no good schemes were previ-
ously available to implement this subcircuit independent
time step control. Overdetermined polynomial integration
provides us with the tools to develop an accurate model
for a latent, slowly moving subcircuit at intermediate
global time points using the direct methods. This model
is actually the Norton equivalent of a valid linearization
of the subcircuit for the latent time step, (h). As an actual
equivalent circuit, the model is sensitive to changes in the
operating conditions of the circuit.

To comprehend the value of this model, it is necessary
to review the steps required to generate the Norton equiv-
alent of an active subcircuit, which describes the contri-
bution of that subcircuit to the interconnect matrix. Dur-
ing each NR iteration:

1) linearized conductance and currents must be calcu-
lated for all nonlinear devices at the present operating
point,

2) the contributions from all devices must be loaded
into the Jacobian and the right hand side of the matrix,

3) the charge must be integrated and the appropriate
currents summed into the right hand side,

4) the subcircuit matrix must be partially LU factored
and forward substituted to remove internal subcircuit vari-
ables from the equations which represent the subcircuit’s
contribution to the interconnect.

After the contributions from each subcircut have been
combined to form the interconnect matrix, it is solved to
determine the interconnect voltages and currents. Each
subcircuit matrix is then backward substituted to deter-
mine the subcircuit’s state variables. The branch voltages

1057

Backward Substitution
MOSFET DC Model
MOSFET Charge Calculations
Convergence Checking

Matrix Equations Load
Integration

LU Factorization

Forward Substitution

Truncation Error Calculation

Dormant Subcircuit.

Active Subcircuit.

Fig. 9. This figure illustrates the savings of the dormant subcircuit model
when compared to the simulation time for an active subcircuit. The bars
illustrate the approximate relative work of the different tasks required to
simulate the subcircuit. In most cases, a dormant subcircuit can be sim-
ulated, using the dormant subcircuit model, with less than 10 percent of
the effort required for an active subcircuit.

and currents are then checked for each nonlinear device
to determine if the Newton iterations have converged. If
not, then another iteration of this process is required. A
typical time chart for one iteration of a circuit containing
over 2400 MOSFET’s and 1400 equations is shown on
the left of Fig. 9.

Overdetermined polynomial integration allows the use
of the same Jacobian to model subcircuits at dormant time
points. First, the Jacobian is either obtained from the last
iteration at the previous subcircuit time point or created
for the time step k' predicted for the latent subcircuit. At
intermediate, latent time points, the effort to generate the
Norton equivalent of the subcircuit is greatly reduced. To
generate this implicit subcircuit model it is only necessary
to:

1) integrate the node charges using ODPM integration
and update the right hand side of the matrix equation,

2) forward substitute the subcircuit matrix using the
new current vector.

Since the linearity of all subcircuit elements has not
changed, it is not necessary to evaluate any nonlinear
models, load the Jacobian, or LU factorize it. Two inex-
pensive steps, integration and forward substitution, are all
that is required to generate the Norton equivalent of a la-
tent circuit.

These equivalent circuits are then combined to form the
interconnect matrix and solved to determine the intercon-
nect voltages. An inexpensive step, backward substitu-
tion, is then done for all subcircuits, except the truly in-
active ones, to obtain internal node voltages. These
voltages are not saved; however, they must be monitored
to determine if the linearization of any device has changed
and the subcircuit must be activated. Another advantage
of this approach is that since all the external and internal
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node voltages are computed, truncation error analysis can
be performed at every global time point. If a subcircuit is
active, the truncation error is used to determine if the cur-
rent time point is acceptable and to estimate a new time
step for the subcircuit. If a subcircuit is slowly varying,
the truncation error is used to determine if the current time
point is acceptable, but is not used to compute the next
time step. If the truncation error of any subcircuit is un-
acceptable, the time point is rejected, and the simulation
backs up only one time point. Since the truncation error
of all subcircuits was acceptable at the previous time
point, no ‘‘unzipping effect’’ effect occurs when the trun-
cation error of a slowly varying subcircuit is unaccept-
able. Most approaches must back all subcircuits up to the
last time when the dormant subcircuit was active, to as-
sure overall accuracy. This eliminates the most persistent
problem with time-domain latency schemes. The speed
advantage of this dormant subcircuit model is shown on
the right of Fig. 9.

Our implicit subcircuit model has some similarity to the
NR method described by Bank and Rose [36] at the New-
ton iteration level, but is much more general. In the NR
method, at the Newton iteration level, the Jacobian is ap-
proximated by reusing the previous one. With the tradi-
tional integration methods, the Jacobian changes with a
changing step size. Thus at a new time point, this ap-
proximation is not very good and the evaluation of a new
Jacobian is normally needed to ensure rapid convergence.
In our approach, a new integration scheme, ODPM, is
developed to allow the Jacobian to stay constant with a
changing step size. However, in the region for which our
dormant subcircuit model is intended, the changes in volt-
age are small enough that the linearization of circuit ele-
ments is not significantly altered. The Jacobian terms and
all terms in the right hand side of the matrix equation are
constant with the exception of currents estimated from the
change in charge at each node. A single integration step
is all that is required to update the right-hand side.

V1. StABILITY

One important issue when considering any simulation
approach that modifies the integration algorithms is sta-
bility. One of the ODPM methods described in Section
IV will be shown in this section to be stiffly stable. In
addition, the A-contractive methods can be considered as
a special class of ODPM; their stability properties are well
known [30]-[33]. Therefore, there are at least a few
OPDM’s which can be used in our implicit subcircuit
model with guaranteed stability. Other ODPM integration
methods derived by using all possible combinations of de-
fining coefficients cannot be generally guaranteed to be
stable. Following the stability analysis procedure de-
scribed by Chua and Lin [35], it can be shown that some
choices of ODPM methods may have limited ranges of
stability and would not be useful as general integration
schemes. However, we contend that they can still be used
in our dormant subcircuit model without causing stability
problems for the following reason.
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If an integration method is stable, then errors made at
one time step do not get amplified, but actually decrease
with time. It can be shown that some ODPM alternatives
are not stable by this definition. This can only be a prob-
lem if the state variables for the dormant subcircuit were
saved and used to compute values at later time points; the
errors could then be amplified. However, as we discussed
when considering truncation error, our dormant subcircuit
model is only used to provide a Norton equivalent of the
dormant subcircuit to the rest of the circuit; the results
affected by ODPM are not saved. If the dormant subcir-
cuit is used to provide a Norton equivalent subcircuit at
t,+n and t,,,,, the same information about previous
charges and currents that are used for the ODPM integra-
tion at t, ., is used at t, , 5, (provided that the dormant
subcircuit was not active between 1, , and t, . ,,). Any
error in a charge, Q, ,;, cannot be amplified by ODPM
at £, . o5, since Q, ,, is discarded and not used during in-
tegration at 7, . ,,. Since variables in the active portions
of the circuit are all that is saved and they are using stable
integration approaches, the use of ODPM in our dormant
subcircuit model does not affect the stability of the circuit.
Some simple RC circuits have been analyzed to verify this
result.

Stability of ODPM is not necessary for our dormant
subcircuit model. However, if desired, stable ODPM
methods are available for the dormant subcircuit model.
Here we will show that one of the ODPM approaches de-
rived in Section IV is stiffly stable in a significant region
of operation. One approach, ODPM_1, was derived that
used previous current information:

Qn+l = AOQn + hB-11n+l + hBOIn (17)

where

&
I

a_|, = .

This approach is stiffly stable as long as the time step, 4,
since the dormant subcircuit was last simulated does not
exceed the time step, A’ that was used in formulating the
dormant subcircuit’s Jacobian.

This property can be shown by following the ap-
proaches taken by Chua and Lin [35]. Assume a simple
exponential, where the current (/) is the derivative of the
charge (Q ) with respect to time:

I=-)\0, 0(0)=1.
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The equation
Qn+] = AOQn + hB_11n+] + hBOIn
can be recast as the following difference equation:

(1 + 6B_1)Qn41 — (4g — 0By)Q, =0

(18)

(19)
where
g = h\.
The solution to this equation is given by
0, =z}
where z, is the root of the polynomial equation
P(z) = (1 + oB_))z — (4y — 0By) = 0. (20)

To be stable for a certain value of 0, |z] < 1 must be
true. In general ¢ can be complex and for the approach to
be stiffly stable several criteria must apply. One good
quick stability test is to consider the stability of the inte-
gration approach for o = O and 0 = +o0.

If ¢ = O then

z—1=0
z=1.

This implies that this version of ODPM is stable at ¢ =
0 for all choices of a_;.
If 6 = +oo then

B_ iz +By=0

(62

Using the values calculated for B_; and B,

()

1 - a_lh.

=

To be stable {z| =< 1, which implies

050_1’152.

Since the Jacobian was set up for the trapezoidal method
with a time step of A’

2h
={=])=2
0<h=<h.

Thus the approach is stable for 0 = +o0 as well as 0 =
0 as long as 2 < h'. Furthermore, the approach is stiffly
stable as long as & < h’. This can be verified by plotting
the regions of stability for complex ¢ as a function of 4.
Stability plots for all values of a complex ¢ with four val-
ues of h are shown in Fig. 10.
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Fig. 10. This figure shows the stability properties ODPM_1. This method
is exact for first-order polynomials. For h < h’, the algorithm is stiffly
stable. For h > h', it is not stiffly stable. For h = k', the stability prop-
erties are exactly this for trapezoidal integration, since the formulas are
equivalent. For the four choices of & presented here, the shaded regions
indicate where the algorithm is stable.

VII. RESULTS

This implicit subcircuit model for exploiting time-do-
main latency has been implemented in SUPPLE [19],
[201, [37], a general purpose circuit simulation program
based on TISPICE. Benchmark results using several large
digital, memory, and analog circuits have shown that
SUPPLE achieved a 3-20X speed up, while producing
accurate results equivalent to TISPICE. In the following,
we will describe these results. For the ease of demonstra-
tion, we will first start with two simple RC circuit exam-
ples to examine the performance of this model, then we
will discuss the benchmark results obtained from the large
industrial circuits.

The first simple RC circuit we will examine is shown
in Fig. 11, which has but one time constant. If the circuit
is divided into two subcircuits, with C; and R, in the first
subcircuit and C, and R, in the second, the time step pre-
dicted by each subcircuit would depend solely on the value
of C; and C,. If C, = nC,, where n is any integer, then
the time step chosen for subcircuit two can be expected
to be approximately n times longer than the time step for
subcircuit one. We will use this to determine how long
the latent time steps should be for subcircuit two when
subcircuit one is simulated with constant time step #. Dur-
ing the latent time steps, subcircuit two will be approxi-
mated using the implicit subcircuit model. To perform this
simulation, we will use difference equations for this par-
ticular circuit. The circuit can be discretized (Fig. 12),
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subcircuit #1 subcircuit #2

R; =R, = 2K C; + C; =1E-12F
V = Sexp{ -t*1E9)

Fig. 11. Single time constant circuit partitioned into two subcircuits.

Icl R(‘I R

subcircuit #1 subcircuit #2

Fig. 12. Discretized version of circuit in Fig. 11.

and the nodal equation written:
1 1 1 1
—J+ =)+ (=) + |5
(@) &)+ (5)+ (&)
(21)

where R, Re,, I¢,, and I, are determined by the integra-
tion method. If second-order Gear’s integration is used
for subcircuit one and ODPM_2 is used for subcircuit two:

2C C
[C] = <"h_l>Vn - <§i> Vn——l

1C2 _XCZVn - YCZVn—l - ZCZI/M—Z

2h
Re, = 3C,

RC2 = WCZ .

I/l1+1 = IC] + IC:

The simulation was performed with C; = nGC,, forn = 1,
4, 8, and 16. These values were chosen to allow the latent
subcircuit’s time step &' to be h, 4h, 8h, and 16h. The
value of & was held constant so that AN = 0.01, a reason-
able value for simulation. The voltage curves for these
simulations are contained in Fig. 13. Since it is nearly
impossible to distinguish the curves, Fig. 14 was included
to plot the error of each simulation. The error in voltage
is around 0.5 percent for normal second-order Gear’s in-
tegration (A’ = h) and is never greater than one precent
for ODPM. A small increase in error was expected since
overdetermined polynomial integration has a slightly
higher error coefficient and the latent subcircuit has more
error due to its increased time step.
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Fig. 14. Error curves for voltages curves in Fig. 13.

The overall increase in error is not significant because
the error in the active subcircuit dominates. This is clearly
demonstrated in Fig. 15. When the entire circuit is al-
lowed to move at the large time step of the dormant sub-
circuit, the error increases by an order of magnitude. If
these individual RC subcircuits were actually Norton
equivalent subcircuits of two equal, large subcircuits, then
the majority of simulation time would be required to gen-
erate the Norton equivalents. If the time step of the entire
circuit was allowed to increase, the truncation error would
increase to an unacceptable level; however, if only the
latent subcircuit’s time step was increased, the maximum
speedup due to time-domain latency exploitation, roughly
half the execution time savings, could be obtained with
no significant error increase.

A slightly more complex example makes this generali-
zation more clear. A two node RC circuit (Fig. 16) has
similar capacitance, but the voltage at each node changes
at a different rate. This can be discretized (Fig. 17) to
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l " AL
[oh ;R
subcircuit #1

subcircuit #2

R, = R, =2K

C, = 2E-12 C, =1E-12

Fig. 16. More complex, two node RC circuit partitioned into two subcir-
cuits.

subcircuit #1 subcircuit #2

Fig. 17. Discretized version of two node RC circuit in Fig. 16.

obtain nodal difference equations similar to the approach
used above. The implicit subcircuit model can then be
used to predict subcircuit one in the region where it is
moving slower than subcircuit two. The circuit was ex-
amined for a particular choice of capacitor and resistance
values where subcircuit one is moving much slower than
subcircuit two. Figs. 18 and 19 compare the voltage
curves for various latent time steps for subcircuit one with
the voltage curve if the overall timestep is increased to
match the largest latent time step. The value of the latent
time step makes no discernible difference in the voltage
curves for node 2; however, moving the entire circuit at
the large time step introduces maximum errors approach-
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Fig. 18. Transient voltage of Node 2 of the two node RC circuit as func-
tion of h'.
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Fig. 19. Transient voltage of Node 1 of the two node RC circuit as func-
tion of h’.

ing 100 percent. The most interesting curves are those for
node 1. Even though the latent subcircuit is only simu-
lated at each latent time point, its voltage is accurate for
large latent time steps. However, when the whole circuit
is simulated for large time steps, the error in the voltage
at node 2 causes a dramatic increase in the error of the
voltage at node 1.

Now let us examine the benchmark results obtained
from large industrial circuits. The circuits tested include
digital, memory, and analog circuits. The voltage wave-
forms obtained with SUPPLE are virtually identical to
those obtained with TISPICE. One set of simulated wave-
forms are given in Fig. 20. The circuit example used in
this figure is ROW1S, a large section of a 4-Mbyte dRAM
circuit. Waveforms from two nodes are specifically cho-
sen to demonstrate the accuracy and robustness of our ap-
proach. The first node has a strong coupling from nearby
subcircuits and has a very noisy waveform with glitches
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Fig. 20. This figure illustrates the close agreement in results between
SUPPLE (the dashed waveform) and TISPICE (the solid waveform) for
two nodes of Rowl!5, a large section of a memory circuit. These nodes
are of particular interest since they do not have simple logical wave-
forms. The first node is a noisy logic signal and the second is a bootstrap
node. Even for these complex waveforms, the results of SUPPLE and
TISPICE are indistinguishable.

and crosstalks. The second node is a bootstrap node with
ungrounded capacitors and normally presents a major
problem for circuit simulators based on iterative methods.
It can be seen from Fig. 20 that SUPPLE accurately sim-
ulated this circuit and the waveforms of SUPPLE and
TISPICE are indistinguishable. However, utilizing the
new implicit subcircuit model, the present version of
SUPPLE executes 17 times faster than TISPICE.

Results for some of the large circuits we have tested are
given in Table 1. The reported execution time was ob-
tained with all Fortran source code on a CONVEX C-240
system. The CONVEX C-240 is an advanced parallel/
vector processor but neither the parallel nor vector fea-
tures were utilized in obtaining these timings. ADDENA
and TREE are digital circuits. The 34-bit ALU circuit is
a critical path from a large LISP microprocessor. ROW 15,
as stated earlier, is a large section of a 4-Mbyte dRAM
circuit. An inverter chain example is also included for
comparison purpose. In general, SUPPLE runs about 3 to
20X faster than TISPICE (Table I). The two programs,
TISPICE and SUPPLE, are identical except for the utili-
zation of latency by SUPPLE; the speed-up factor for a
given circuit is determined by the amount of time-domain
latency which can be exploited. For example, the speed
up for the 34-bit ALU is about 3X; it is a dynamically
clocked circuit with very little time-domain latency. In
obtaining these results, the circuits were partitioned using
both user-defined subcircuits and an automatic circuit par-
titioner which we have described elsewhere [37]. Since a
direct solution method is used in SUPPLE, the partition-
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TABLE 1
ComprarisoN ofF ExeEcuTioN TiMEs FOR TISPICE anp SUPPLE. SUPPLE
RuNs FROM 3 TO 20 TIMES FASTER THAN TISPICE DEPENDING ON THE
DEGREE OF LATENCY AVAILABLE IN THE CIRCUITS. ALL SIMULATION TIMES
ARE IN SECONDS AND CIRCUIT SIZE 1S SPECIFIED IN # MOSFET 's/#

EQUATIONS
}(Tircuit \ Circuit Size | TISPICE | SUPPLE lGAIN LSP 'LE>|
UPPLE
addena | 3017249 | 136.6 19.0 71X
ree 419/ 490 61.0 17.8 3.4%
34bitalu | 1839/ 1014 | 733.0 | 2529 2.9X
rowls | 248371589 | 2908.1 173.0 16.8X
inv chain} 256/ 136 217 1.1 19.7X

ing can effect the efficiency of latency exploitation, but
not the accuracy of the results, or the convergence of the
matrix solution. A number of issues such as the effect of
circuit partitioning on efficiency, truncation error analy-
sis, and individual subcircuit time step control are impor-
tant considerations in circuit simulation. However, these
are complex problems worthy of papers in their own right
and will not be discussed here.

VIII. CoNcLusION

Accurate and efficient algorithms for circuit simulation
are essential for VLSI design. There exists a critical need
for simulation techniques which produce a significant im-
provement in execution speed while maintaining the ac-
curacy and robustness of SPICE. This paper addressed the
topic of exploiting time-domain latency within the circuit
while using the traditional direct method solution tech-
niques. Our simulator used a block partitioned matrix ap-
proach to allow latency to be exploited on a subcircuit by
subcircuit basis. The key element for success was in our
development of an important new model for latent sub-
circuits which is both efficient and accurate. Dramatic re-
ductions in simulation time, by factors of 3X to 20X over
TISPICE, have been demonstrated on large circuits from
commercial VLSI designs, without sacrificing accuracy.
This is significant because it is the first method which al-
lows time-domain latency to be exploited to produce sub-
stantial speed improvement while maintaining accuracy
for general circuits.

The new model provided an accurate Norton equivalent
of the latent subcircuit’s impedance and currents which
was used in the circuit equations at intermediate time
points. These calculations are computationally efficient as
compared to performing a complete evaluation of the la-
tent subcircuit at these dormant time points. The gain in
efficiency depends upon the amount of latency present in
the circuit; circuits with much latency execute very effi-
ciently. While those with little latency will show limited
gains, the technique will never degrade the efficiency. Our
method is based on an actual equivalent circuit that can
be constructed with a minimal effort using a novel inte-



COX et al.: EXPLOITATION IN CIRCUIT SIMULATION

gration scheme, overdetermined polynomial integration or
ODPM. In ODPM, a_,, the coefficient multiplying
O, + 1, is held constant for any value of time step, 4. This
allows the same Jacobian to be used for multiple time
steps. As presented, the Jacobian is constructed for the
projected time step of a slowly moving section of the
equations, and used to model the latent section at inter-
mediate time steps. Another valid approach is to use the
Jacobian from the previous time point until the latent sec-
tion is ready to be simulated again.

One very important advantage of our model is that the
internal node voltages of all dormant subcircuits are com-
puted at each Newton iteration. These are monitored to
assure that the dormant model is valid. Furthermore, trun-
cation error is checked at each time point to assure that
the results is acceptable. If a dormant subcircuit is dis-
covered to have unacceptable truncation error, the simu-
lation can be backed up a single global time step with
assured accuracy. Other approaches cannot monitor the
truncation error of dormant subcircuits. If a dormant sub-
circuit has unacceptable truncation error when it is finally
simulated, the entire simulation must be backed up to the
last time the dormant subcircuit was fully simulated. This
“‘unzipping’’ of previous work can quickly override the
gains of latency. Our approach defeats this nagging prob-
lem of time-domain latency simulation programs.

Two specific formulations for ODPM methods were de-
rived and analyzed in this paper. It is possible for many
other formulations to be derived. An ODPM method can
be derived for any formulation that is normally kth order
by holding a_, constant and requiring the approach to be
accurate to (k — 1)th order.

The implicit subcircuit model has been implemented
successfully in SUPPLE and has been shown to produce
equivalent results to TISPICE. There are a few important
implementation issues when applying the model to non-
linear devices. They are extensive and will be covered in
later papers. The purpose of this paper is to introduce the
concept and potential of ODPM’s and the implicit subcir-
cuit model.
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