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Coupling Algorithms for Mixed-Level Circuit and 
Device Simulation 

Kartikeya Mayaram, Member, IEEE, and Donald 0. Pederson, Fellow, IEEE 

Abstract-Mixed-level device and circuit simulation allows the 
use of the numericallphysical models (based upon solution of 
Poisson's equation and the current continuity equations) for 
critical devices in a circuit configuration. Effective coupling of 
device and circuit simulation capabilities is achieved by a proper 
choice of algorithms and architecture. Coupling algorithms for 
dc, transient, and small-signal ac analyses are presented and 
evaluated in the framework of CODECS, a mixed-level circuit 
and device simulator. 

I. INTRODUCTION 
MIXED-level device and circuit simulator provides A a direct link between technology parameters and cir- 

cuit performance and is therefore useful in predicting the 
effects that variations in technology and device designs 
have on circuit performance. It also provides an environ- 
ment for evaluating the interactions between semiconduc- 
tor devices and the circuits in which they are embedded. 
Conventional device-level simulation typically allows 
voltage or current boundary conditions and some parasitic 
capacitive or resistive elements to be specified for a de- 
vice [ l]. It cannot be used to evaluate the performance of 
the device under realistic dynamic boundary conditions 
imposed by a circuit. 

Previous work [2]-[6] in mixed-level circuit and device 
simulation has focused on dc and transient analyses only. 
All of these simulators employ a similar full-Newton so- 
lution scheme, as in [4]-[6], or a block-relaxation algo- 
rithm, as in [2] and [3]. The use of other coupling algo- 
rithms has not been investigated. In this paper, CODECS' 
(coupled &vice and circuit simulator) [7] is used as a com- 
mon framework for evaluating different coupling algo- 
rithms for dc, transient, and small-signal ac analyses. This 
study provides a basis for selecting algorithms that can be 
used to effectively couple existing circuit and device sim- 
ulation capabilities. 

Mixed-level device and circuit simulations have previ- 
ously been used to study single-event upset in memory 
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cells [5], [8]. Examples of applications of CODECS in- 
clude the study of the delay of BiCMOS driver circuits 
[9]-[ll], inductive turn off of power devices [12], eval- 
uation of switch-induced error in MOS switched-capaci- 
tor circuits [ 131, and verification of analytical models for 
circuit simulation [ 141. CODECS incorporates SPICE3 
[15] for the circuit simulation capability, and a brief sum- 
mary of the features is presented in Appendix I. Details 
can be found in [ 131. The algorithms used to couple the 
device and circuit levels of simulation are described in 
Sections 11, 111, and IV and conclusions are presented in 
Section V. 

11. DC AND TRANSIENT ANALYSES 
Since dc and transient simulations are the most useful, 

emphasis has been placed on algorithms for dc and tran- 
sient analyses in a mixed-level circuit and device-simu- 
lation environment. A dc operating point analysis is re- 
quired before a transient run is initiated or for small-signal 
ac and pole-zero analyses. For this reason convergence 
under dc conditions is extremely important; hence, the 
algorithms used for dc analysis must exhibit good con- 
vergence properties. The transient analysis problem is 
better conditioned than the dc problem and solutions from 
the previous time points provide a good initial prediction 
for the solution at the present time point. It can be antic- 
ipated that an algorithm different from the one used in dc 
analysis may perform better. 

This section investigates different ways to couple the 
device and circuit simulation capabilities for dc and tran- 
sient analyses, The two-level Newton algorithm, being 
the most intuitive, is introduced first. In this algorithm 
one needs to compute the terminal conductances of nu- 
merical devices, and this problem is addressed next. The 
framework of the program is then developed and used as 
a basis for describing other algorithms. Implementation 
issues are also presented to illustrate the similarity be- 
tween the different algorithms. An evaluation is then made 
on the convergence properties and run-time performance 
of the different algorithms using a variety of benchmark 
examples. 

A. The Two-Level Newton Algorithm 
The problem of mixed-level device and circuit simula- 

tion is best illustrated by an example of dc operating point 
analysis. Consider the simple circuit shown in Fig. 1. G 
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Fig. 1. Circuit used as an example. 

is a linear conductance and E, is a dc voltage source. The 
nonlinear device is a diode for which the characteristics 
are specified by a doping profile N(x) .  The simulation 
problem can be stated as: 

Given E,, G and N(x)  
Find V. 

One solution for this problem is motivated by examin- 
ing the problem from a circuit simulation point of view. 
In this case, analytical models are used for the nonlinear 
devices; the diode terminal characteristics are described 
by a closed-form expression, i = Z(V). When Newton’s 
method is used to solve the nonlinear circuit equations, a 
linear circuit (the companion circuit [ 161) is solved at each 
iteration until convergence is achieved. The companion 
circuit for the example under consideration is shown in 
Fig. 2.  The linear conductance, Geq, and the current 
source, Zeq, are obtained from the nonlinear characteristics 
as depicted in Fig. 3 and can be expressed as 

where k is the iteration number. 
Once Geq and Zeq are known, the circuit-level iteration 

can be performed. For numerical devices, the current- 
voltage characteristics are not known as closed-form 
expressions. Thus, Geq and Zeq cannot be calculated by 
function evaluations and numerical techniques must be 
used. The partial differential equations (PDE’s) describ- 
ing a device have to be solved for each operating point 
before Zeq and Geq can be calculated. 

After space and time discretization the device-level 
equations result in a system of nonlinear algebraic equa- 
tions [17]. These nonlinear equations are also solved by 
a Newton method. Once the equations have been solved 
for an applied bias V, the equivalent currents and con- 
ductances can be calculated as described in subsection 
11-B. The overall solution technique is a two-level New- 
ton scheme wherein Newton’s method is used at the de- 
vice level and also at the circuit level. This is a special 
case of the multilevel Newton algorithm proposed in [ 181 
for circuit simulation. 

Fig. 2.  Linearized companion circuit 

i = I(V) 

I 
I 

Fig. 3 .  Calculation of linearized conductance and current. 

The flowchart of the two-level Newton algorithm is il- 
lustrated in Fig. 4. First, the contributions of all circuit 
elements that are represented by analytical models are en- 
tered into the circuit-level Jacobian matrix and the right- 
hand-side vector. Then the partial differential equations 
are solved for each numerical device, with the terminal 
voltages establishing the boundary conditions, until con- 
vergence is achieved at the device level. Once the solu- 
tion at the device level has been obtained, Geq and Z are 
calculated and assembled in the circuit-level equations. 
The linearized circuit-level equations are then solved and 
convergence is checked at the circuit level. If conver- 
gence is achieved, the solution has been obtained; other- 
wise the outer circuit-level loop is repeated. 

“p 

B. Calculation of Conductances 
This subsection describes the technique used for cal- 

culating the equivalent conductances for the two-level 
Newton scheme and is applicable to all types of numerical 
models. After space and time discretization the device- 
level equations can be represented as a set of nonlinear 
algebraic equations, 

F(w(V), V )  = 0 (3) 
where w is the vector of internal variables, i.e., the elec- 
trostatic potential, and the electron and hole concentra- 
tions at each spatial grid point. The dependence on the 
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Fig. 4. Flowchart of the two-level Newton scheme. 

boundary condition V is explicitly written in the above 
equation. CODECS presently implements only voltage 
boundary conditions; the continuation scheme of [ 191 
could be used when the Z-V characteristics are multival- 
ued in V. For a two-terminal device, let i = Z(w, V )  rep- 
resent the terminal current as a function w and V; i is cal- 
culated by summing the current density components of the 
contact nodes. It should be noted that w is also an implicit 
function of V, since the value of w depends on the applied 
voltage. Equation (3) is solved for an applied voltage Vo 
by Newton's method whereby 

AW = -J,'F(w, Vo) (4) 
is solved at each iteration; J ,  = aF/aw is the Jacobian 
matrix of the device-level equations. J ,  is decomposed 
into its LU factors at each iteration and Aw is obtained by 
forward and back substitutions. The iterations terminate 
when Aw satisfies the convergence tolerance and IF(w, 
Vo)l is sufficiently small. At this stage w is the solution 
of F(w, Vo)  = 0 and Z(w, Vo)  can be calculated, since 
w(Vo) is known. To calculate the linearized conductance 
Geq = ai /aV,  use is made of the chain rule, which gives 

(5 )  

where aZ/aw and aZ/aV are obtained by symbolic differ- 
entiation of the function Z(w, V). The quantity aw/aV is 

determined as in [20] or, equivalently, in the following 
manner. The derivative of (3) with respect to Vis 

with Jv = aF/aV.  From (6)  one can solve for aw/aV as 

aw 
- = - J ; ' J ~  av (7) 

Jv has nonzero terms corresponding only to the contact 
nodes and can be easily assembled. Since J ,  is available 
in its LU factors (calculated during the solution of (3) by 
use of (4)), only forward and back substitutions are re- 
quired in calculating aw / a V ,  which is computationally 
inexpensive. Then Geq can be calculated from ( 5 ) .  The 
conductance calculation and the computation of aF/a  V 
are described in Appendix I1 for a one-dimensional diode 
example. 

C. The Modijied Two-Level Newton Scheme 
Newton's method requires a good initial guess to en- 

sure convergence. A linear prediction step can be used to 
provide such a guess at the device level of simulation. 
The two-level Newton scheme with the linear prediction 
step is referred to as the modified two-level Newton al- 
gorithm. A first-order prediction is made by use of the 
forward-Euler scheme, 

where A V is the change in voltage from circuit iteration 
k to k + 1, and aw/aV is calculated as in (7). As shown 
later, the modified two-level Newton scheme exhibits bet- 
ter convergence than the two-level Newton scheme. 

D. Architecture of CODECS 

It is clear from the previous subsections that a numer- 
ical device model for circuit simulation is similar to an 
analytical device model in several respects. Given the ter- 
minal voltages, the equivalent currents and conductances 
have to be calculated and used in the circuit-level equa- 
tions. For any analytical model this task involves function 
evaluations, whereas for a numerical device the three 
PDE's have to be solved. The interface to a circuit sim- 
ulator can be identical for the two types of models, as 
shown in Fig. 5, where the task of model evaluation is 
illustrated. The interface to the circuit simulator is through 
routines for model evaluation and for loading the equiv- 
alent currents and conductances in the circuit-level Jaco- 
bian and right-hand-side vector. 

The overall framework of CODECS is shown in Fig. 
6. The circuit simulator is the controlling program. It sup- 
ports analytical models for the circuit elements and also 
stores the vector of node voltages. These voltages are 
available to the model-evaluation subroutines that calcu- 
late the equivalent conductances and currents for a de- 
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Fig. 5. The task of model evaluation. Given the terminal voltages, the 
terminal currents and conductances are calculated. 
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Fig. 6 .  Architecture of CODECS. Numerical devices are interfaced with 
the circuit simulator in  a manner similar to that for analytical devices. The 
circuit node voltages establish the boundary conditions for the numerical 
devices. The device partial differential equations are solved by the device- 
level simulator of CODECS. 

vice. The numerical devices are simulated by the device 
simulator of CODECS, and the interface to the circuit 
simulator is identical to that for analytical models. De- 
vice-level simulation is used to solve the PDE's for a nu- 
merical device for given terminal voltages. Then the ter- 
minal conductances and currents are calculated at the 
operating point and assembled in the circuit-level Jaco- 
bian matrix and right-hand-side vector. 

E. The Full-Newton Algorithm 
This algorithm for solving the mixed-level circuit and 

device simulation problem uses an alternative formulation 
of the problem. The device-level and circuit-level equa- 
tions are combined and expressed as one system of equa- 
tions. Newton's method is then applied to the complete 
system of equations. In contrast to the two-level Newton 
algorithm, where the device and circuit-level unknowns 
are solved separately in a decoupled manner, the complete 
set of unknowns is solved simultaneously. For the circuit 
of Fig. 1, the device-level equations are F(w, V )  = 0 and 
these are combined with KCL at the circuit level to yield 

F(w, V )  = 0 (9) 

(10) I(w, V )  + G(V - E,) = 0. 

Equations (9) and (10) are solved using Newton's method. 
The equations to be solved at each iteration are then 

J,.Aw + J v  AV = -F(w,  V )  (1 1) 

az ar 
- aw AW + - av A V + G A V = -I(w, V ) - G(V - Es) .  

(12) 

From ( 1  l),  Aw can be expressed as 

AW = J i l [ - F ( w ,  V )  - Jv A V ]  

AW = AW - J ; ' J ~ A V  

(13) 
which can be rewritten as 

(14) 

where A$ = J , ' [ - F ( w ,  V ) ] .  Substituting Aw from (14) 
into (12), one obtains 

av az 1 - - J J , ' J V  + - + G AV 

This equation can be rewritten as 

(Geq + G )  AV = - I T  - G(V - Es)  (16) 

with Geq = - (aZ/aw) J ; ' J V  + aI /aV  and IT = I ( w ,  V )  
+ (aZ/aw) AB. Equation (16) is similar in form to that 
obtained with an analytical model for the diode of the ear- 
lier example, or by use of the two-level Newton algo- 
rithm. Thus the above technique can also be used to embed 
numerical models within the previously described frame- 
work. The full-Newton scheme can be implemented in two 
different ways. 

1) Full LU-Decomposition Technique: J ,  is decom- 
posed into its LU factors and used to calculate AW and 
J , ' J v  of (14) by forward and back substitutions. Then 
Geq and IT are computed. Equation (16) is solved whereby 
A V is obtained and Aw is calculated from (14), using the 
previously computed values of AW and J , '  Jv.  The equa- 
tions are solved to convergence. This technique is similar 
to the use of the block-LU decomposition with bordered- 
block-diagonal matrices in circuit simulation [2 11, [22]. 

2) Block-Iterative Technique: J ,  is decomposed into 
its LU factors; AW, Geq, and IT are calculated as above. 
A V  is then obtained from (16), and Aw is assigned the 
value of AW. This is equivalent to assuming A V  = 0 in 
(14) and ignoring the coupling term arising from A V .  The 
equations are solved to convergence. A variant of this al- 
gorithm is used in MEDUSA [2]. 

F. Implementation Issues 
The four algorithms described above have been imple- 

mented in the framework of CODECS shown in Fig. 6 .  
The interface to the circuit simulator is through a model- 
evaluation subroutine which calculates and loads the de- 
vice contributions in the circuit-level equations. The sub- 
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routines differ according to the algorithm used but the es- 
sential features are identical. First, the new terminal 
voltages are calculated and used to establish the boundary 
conditions for the device-level equations; then the device 
equations are solved. This is followed by calculation of 
the terminal currents and conductances, which are then 
loaded in the circuit Jacobian matrix and right-hand-side 
vector. The pseudo-C code for the four algorithms is 
shown below and illustrates the similarity between them. 
Furthermore, no algorithm has any significant advantage 
from an implementation point of view and all four tech- 
niques effectively decouple the device-level equations 
from the circuit-level equations, as seen from the pseudo 
code. The function setBoundalyConditions is used to es- 
tablish the boundary conditions for the device; the func- 
tion biassolution solves the device equations to conver- 
gence or the iteration limit iterLimit, whichever is reached 
first. An iterLimit value of one allows calculation of A* 
of (14). The function upduteSolution is used to calculate 
-J,l Jv  A V  and add it to the present solution vector. 
Therefore, it is used for the prediction step in the modified 
two-level Newton scheme (Eq. (8)) and in the full-LU 
decomposition algorithm for computing the solution at 
Newton iteration k + 1, wk+l = - J , ' J v  AV, 
where = wk + A$'. 

I )  The Two-Level Newton Algorithm: For the two- 
level Newton scheme, at each operating point the new ter- 
minal voltages (boundary conditions) are imposed on the 
device and a solution is obtained for the new bias condi- 
tions: 

s e t B o u n d a r y C o n d i t i o n s  

b i a s s o l u t i o n  
( d e v i c e ,  d e l t a V  1; 

( d e v i c e ,  i t e r L i m i t  1; 

2)  Mod$ed Two-Level Newton Algorithm: As de- 
scribed earlier, the modified two-level Newton scheme 
makes use of a linear prediction step before solving the 
nonlinear device level equations. The pseudo-C code for 
this algorithm is given as 

u p d a t e s o l u t i o n  ( d e v i c e , d e l t a V  1; 
b i a s S o l u t i o n  ( d e v i c e ,  i t e r L i m i t  1; 

3) The Full LU-Decomposition Algorithm: For the full 
LU-decomposition scheme the device simulator first de- 
termines the LU factors of J,,, followed by a calculation 
of A$. The circuit node voltages are calculated by the 
circuit simulator. The quantity Aw can be obtained only 
after the circuit-level equations have been solved since 
A Vis required for its calculation. The following approach 
is used. At the completion of the device-level solution, 
only $ is calculated and stored. Before starting the next 
device-level iteration, w is calculated from t? and A V .  
The new updated value of w is used for the next iteration. 
This sequence of operations allows a decoupling between 
the circuit and device simulators. At the first iteration of 
an operating point the terminal voltages are imposed on 

the device. However, in the subsequent iterations the sub- 
routine upduteSolution is used to establish the new bound- 
ary conditions, to calculate -J , 'Jv  A t  this gives the 
correct value of w to be used for the new iteration. 

i f  ( C k t N e w t o n I t e r a t i o n  I S  1 1 { 
s e t B o u n d a r y C o n d i t i o n s  
( d e v i c e ,  d e l t a V  1; 

u p d a t e s o l u t i o n  ( d e v i c e ,  
} e l s e  { 

d e l t a V  1; 
1 
b i a s s o l u t i o n  ( d e v i c e ,  1 ) ;  
4) The Block-Iterative Algorithm: The algorithm is 

similar to the two-level Newton scheme except that only 
one pass is made through the device-level equations for 
each circuit-level iteration and the calculation of con- 
ductances and currents is done in a different manner: 

s e t B o u n d a r y C o n d i t i o n s  ( d e v i c e ,  

b i a s s o l u t i o n  ( d e v i c e , I ) ;  

Four possible techniques to couple the device simulator 
to the circuit simulator have been described. These are the 

1) modified two-level Newton algorithm (M2lev) 
2) two-level Newton algorithm (21ev) 
3) full LU decomposition technique (FullLU) 
4) block-iterative technique (BlockIt) . 

d e l t a V  1; 

These algorithms are now evaluated on the basis of their 
convergence and run-time performance. 

G. DC Analysis Comparisons 

The convergence properties of the four algorithms are 
examined by evaluating their performance on several 
benchmark circuits. A short summary of the circuits and 
the numerical models which are used is given in Table I;  
CODECS input listings are provided in [ 131. 

In Table I1 the results for the dc operating point anal- 
ysis of circuits' with one-dimensional numerical models 
for the bipolar transistor are given. The results are given 
as the number of circuit-level iterations followed by the 
total simulation time. A dash indicates that convergence 
was not achieved in 100 iterations. 

As can be seen from Table I1 the modified two-level 
Newton scheme (M2lev) was always successful in finding 
an operating point, whereas the two-level Newton and full 
LU-decomposition schemes were only partially success- 
ful, and the block-iterative algorithm failed the test in all 
of these cases. Similar results were obtained with other 
circuits. Based on these experimental studies CODECS 
uses the modifed two-level Newton scheme for dc oper- 
ating point analysis. The modified two-level Newton 

*For the Oscilluror, VCO, and Astable circuits, the dc operating point is 
the initial state of the circuit as obtained by the simulator under specified 
initial conditions. The oscillations are initiated in transient analysis by 
pulsing a current or voltage source in the circuit. 
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TABLE I 
DESCRIPTION OF BENCHMARK CIRCUITS 

No. Circuit No. Numerical 
Circuit No. Nodes Elements Devices Model Type No. Grid Points 

RTLinv 
Oscillator 
vco 
Invchain 
Astable 
MECLgate 
Pass 
MOSinv 
Chargepump 

4 
5 
7 

10 
6 

26 
6 
5 
7 

4 
8 

10 
10 
8 

24 
7 
5 
7 

1 BJT 
1 BJT 
6 BJT 
4 BJT 
2 BJT 
11 BJT 
1 MOS 
1 MOS 
1 MOS 

1D 
1D 
1D 
1D 
1D 
ID 
2D 
2D 
2D 

61 
61 
61 
61 
61 
61 

31 x 19 
31 x 19 
31 x 19 

TABLE I1 
COMPARISON OF ITERATIONS AND RUN TIMES FOR DC OPERATING POINT 

ANALYSIS 

Circuit M2lev 21ev FullLU BlockIt 

RTLinv 8/5.0 s 8 / 5 . 5  s 8/2.4 s - 
Oscillator 8/4.5 s 8/4.9 s 9/2.6 s - 
vco 8/25 s - 10/16 s - 
Invchain 9/22 s - - - 

As t a b 1 e 9/11 s - - - 
MECLgate 51/81 s 51/94 s - - 

scheme is computationally expensive compared with full- 
LU decomposition but is preferred for dc analysis since it 
is more robust and has worked well over a wide variety 
of examples. 

H .  Transient Analysis Comparisons 

The transient simulation problem is better conditioned 
than the problem of simulating the dc operating point; 
hence, the algorithm that works best for simulation of the 
dc operating point may not be most suited for transient 
analysis. In this subsection the four algorithms are com- 
pared on the basis of their performance for transient 
mixed-level circuit and device simulations. The simula- 
tions are started with the dc operating point of the circuit 
being obtained by the modified two-level Newton algo- 
rithm. All simulations have been run with a latency check, 
which is described in the next subsection. The second- 
order backward-differentiation formula [23] is used for 
time discretization, and automatic time-step control is 
used based on local truncation error estimates. A starred 
entry indicates that the simulation was not completed suc- 
cessfully owing to a “time step too small” error, and the 
result is reported with the latency check turned off. In Ta- 
ble 111, the number of circuit iterations are presented for 
transient analysis of the benchmark circuits. 

The modified two-level Newton algorithm requires the 
smallest number of circuit-level iterations. The two-level 
Newton algorithm requires 10% more iterations in some 
examples, and the full-LU technique takes approximately 
25% more iterations than the modified two-level Newton 
method. In all the examples algorithm BlockIt takes the 
largest number of circuit iterations and in the MECL-gate 

TABLE I11 
COMPARISON OF NUMBER OF CIRCUIT ITERATIONS FOR TRANSIENT ANALYSIS 

Circuit M2lev 21ev FullLU BlockIt 

Oscillator 
vco 
Invchain 
Astable 
MECLgate 
Pass 
MOSinv 
Chargepump 

16916 
5093 
1563 
5930 
2450 

236 
287 

1644 

16916 
5 109 
1578 
6305 
2450 

236 
313 

1661 

18333 
5864 
1716 
6369 
2609 
295 
336 

1850 

23836 
7028 
2324 
9087 
3236* 

338 
533 

266 1 

example the simulation could only be performed by tum- 
ing off the latency check. 

In Table IV are presented the number of time points 
that were accepted and rejected during the transient anal- 
ysis. It is seen that the time points accepted and rejected 
are of the same order for the circuits using the above al- 
gorithms. 

The simulation run times are presented in Table V. The 
full-LU decomposition scheme takes the smallest amount 
of time. The modified two-level Newton scheme on aver- 
age is a factor of 1.7 slower than the full-LU decompo- 
sition scheme, and in some cases does even better than 
algorithm BlockIt. This might appear surprising at first 
because the modified two-level Newton scheme requires 
more CPU time for each circuit-level iteration. However, 
a smaller number of circuit-level iterations are required at 
each time point. Algorithm BlockIt has no apparent ad- 
vantage; it requires more computational effort and does 
not work well with the latency check. 

Based on the above experimental results CODECS 
makes use of the full-Newton algorithm for transient sim- 
ulations. The modified two-level Newton algorithm is 
used only for dc analysis. 

I .  Latency Check in CODECS 

At each time point the numerical devices converge in a 
different number of iterations depending on how their ter- 
minal voltages vary. If a device converges at a particular 
operating point and its terminal voltages do not change, 
then there is no need to evaluate the device. This form of 
latency, called iteration-domain latency, has been found 
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TABLE IV 
COMPARISON OF TIME POINTS ACCEPTED AND REJECTED 

Number of Time Points Accepted Number of Time Points Rejected 

Circuit M2lev 21ev FullLU BlockIt M2lev 21ev FullLU BlockIt 

Oscillator 
vco 
Invchain 
Astable 
MECLgate 
Pass 
MOSinv 
ChargePump 

5274 
1099 
40 1 

1473 
619 

82 
95 

497 

5274 5274 
1106 1125 
404 40 1 

1583 1465 
619 619 

82 82 
104 95 
497 493 

5274 
1093 
410 

1554 
619* 

82 
104 
492 

366 366 361 
161 161 176 

17 18 17 
198 234 181 
30 30 31 
8 8 8 
4 8 4 

74 74 73 

36 1 
164 
20 

219 
31* 

8 
8 

75 

TABLE V 
COMPARISON OF TOTAL ANALYSIS TIME 

Circuit M2lev 21ev FullLU BlockIt 

Oscillator 
vco 
Invchain 
Astable 
MECLgate 
Pass 
MOSinv 
ChargePump 

3126 
4085 

890 
2085 
3629 
1786 
1626 
7172 

3636 
5440 
965 

2538 
393 1 
1955 
2194 
8045 

2352 
291 1 

514 
1230 
2121 
1059 
1155 
4039 

3123 
3901 
806 

203 1 
4577* 
1235 
1800 
5910 

TABLE VI 
COMPARISON OF TOTAL ANALYSIS TIME WITH AND 

WITHOUT LATENCY 

Latency No Latency 
Circuit Check Check Ratio 

Oscillator 
vco 
Invchain 
Astable 
MECLgate 
Pass 
MOSinv 
ChargePump 

2352 2353 
291 1 4467 

514 908 
1230 1713 
2121 3893 
1059 1160 
1155 1239 
4039 4356 

1 .o 
1.5 
1.8 
1.4 
1.8 
1.1 
1 .o 
1.1 

to be useful in event-driven simulation [24]. The latency 
check in CODECS is based on a similar idea and is also 
similar to the bypass scheme of SPICE [25]. A numerical 
device is considered to be latent when all the following 
conditions are met for the full-LU algorithm. 

(a) the device-level equations have converged; 
(b) the terminal voltages meet the convergence crite- 

rion, i.e., they are within the error tolerances; 
(c) the change of current is also below the tolerance 

for device currents. 

The last two conditions can be described by the following 
equations: 

where f k  is the linearized terminal current that corresponds 
to the voltage Vk. A comparison of the use of the above 
latency scheme in CODECS is given in Table VI. The 

number of time points remains approximately the same; 
hence, only the analysis times are given in Table VI. An 
improvement in speed is achieved since the devices that 
have converged need not be reevaluated. The circuits Os- 
cillator, Pass, MOSinv, and ChargePump, have only one 
numerical device; therefore, there is no improvement in 
performance. A latency check in the iteration domain is 
appropriate for circuits in which there are multiple nu- 
merical devices. On average 50% speedup is obtained for 
these test examples. 

111. SMALL-SIGNAL AC ANALYSIS 
Small-signal ac analysis is useful for analog circuit sim- 

ulations. Since CODECS is intended to be a general-pur- 
pose coupled device and circuit simulator, it also provides 
a capability for small-signal ac analysis. Alternatively, 
one could run a transient simulation and extract the fre- 
quency-domain response using Fourier transform tech- 
niques. However, this approach is computationally ex- 
pensive, and ac analysis provides a good way of obtaining 
the small-signal frequency-domain response. 

The ac admittances for each device have to be com- 
puted and loaded in the linear circuit-level equations. The 
admittances are functions of frequency, and at a particular 
frequency, w ,  the solution of the algebraic circuit-level 
equations gives the small-signal circuit node voltages and 
voltage source currents. For analytical device models the 
admittances are calculated at an operating point by func- 
tion evaluations. For a numerical device the admittances 
can be calculated at the frequency w by solving the small- 
signal device-level equations [26]. The solution of the de- 
vice-level equations gives the small-signal ac values of 
the internal variables, the electrostatic potential, and the 
carrier concentrations at each spatial grid point. From this 
information the ac admittances for a numerical device can 
be calculated and then used in the circuit-level equations. 

A. Calculation of AC Admittances for Numerical 
Devices 

device can be expressed as 

where IV is the vector of small-signal values of the elec- 
trostatic potential and electron and hole concentrations, 

The small-signal ac terminal current, 6 for a numerical 

$U) = I[*(w), v, U], (19) 
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P is the applied small-signal voltage, and w is the radian 
frequency. The explicit dependence on w in (19) is through 
the displacement current component of the total current. 
The small-signal ac admittance is given by 

i'w) 
Y(w) = 7. 

V 

If P i s  taken to be unity, 

Y(w) = i'w). (21) 
The small-signal ac current is given by the linear term of 
the Taylor series expansion of i = I(w, V )  at the operating 
point (wo, V,). Therefore, 

- a1 a1 
Y(w) = i(w) = - w + - 

aw av' 
where aI /dw  and aZ/aV are evaluated at the dc operating 
point by use of symbolic differentiation, and B is calcu- 
lated as described in [26]. 

IV. POLE-ZERO ANALYSIS 

Pole-zero analysis is used to determine the poles and 
zeros of transfer functions of the circuit linearized at an 
operating point. To obtain the poles and zeros the admit- 
tances of a device as a function of the complex frequency 
s = (T + j w  is computed. The technique used to calculate 
the admittance for a numerical device is an extension of 
the method used for small-signal ac analysis. Instead of 
using a frequency w ,  the complex frequency s is used and 
the admittances are expressed as Y(s). Given a value for 
s, Y(s) can be calculated and used in the circuit-level 
equations. The circuit-level transfer function can then be 
computed and its poles and zeros can be determined. For 
numerical devices, Y(s) is computed starting from the 
basic device equations. The unknowns are assumed to be 
of the form 

w = wo + wesf.  (23) 

Using a Taylor series expansion at an operating point and 
retaining the linear terms, one can assemble the device- 
level equations in the form 

[ J ,  + D]w = B,  (23) 
where J ,  is the dc Jacobian matrix of the device-level 
equations; D is a diagonal matrix with entries 0 corre- 
sponding to Poisson's equation, -s corresponding to the 
electron current-continuity equation, and s corresponding 
to the hole current-continuity equation; w is the vector of 
small-signal values of the electrostatic potential and elec- 
tron and hole concentrations; and B is the right-hand-side 
vector that accounts for the boundary conditions. 

The above equations are solved for w(s) by a direct so- 
lution method and Y(s) is computed by 

a1 a1 
aw av7 Y(s) = - W(s) + - 

where a l /aw  and a I / a V  are computed by symbolic dif- 
ferentiation. Y(s) is then used in the circuit-level equa- 
tions and the poles and zeros of the transfer function of 
the linearized circuit can be obtained by a root-finding 
algorithm of the type described in [27]. Spatial discre- 
tization of the numerically simulated device could add 
many poles and zeros, and this approach may not work 
well if the number of poles and zeros is very large. 

V. CONCLUSIONS 
A general framework for mixed-level circuit and device 

simulation has been described and used in the develop- 
ment of the simulation program CODECS. Various al- 
gorithms to couple the device and circuit simulators for 
dc and transient analyses have been implemented in CO- 
DECS. These algorithms are evaluated based on their 
convergence properties and run-time performance. This 
study provides guidelines for choosing a particular cou- 
pling algorithm. A modified two-level Newton algorithm 
is used for dc analysis whereas a full-block-LU decom- 
position algorithm is used for transient analysis. This 
combination of algorithms provides reasonable conver- 
gence and run-time performance. A simple latency scheme 
provides a 50% speedup. Coupling for small-signal ac and 
pole-zero analyses have also been described. 

The techniques to couple the circuit and device simu- 
lators are general and can be used with other simulators 
as well. 

APPENDIX I 
CODECS incorporates SPICE3, a general-purpose cir- 

cuit simulation program written in the C programming 
language, for the circuit-simulation capability and for an- 
alytical models of semiconductor devices. A device sim- 
ulation capability has been developed that supports both 
one- and two-dimensional numerical models. Coupling of 
the device simulator to SPICE3 has been achieved in such 
a way that the core of the circuit-simulation program has 
been not modified; therefore, the coupling techniques can 
be easily adapted to other circuit- and device-simulation 
programs. 

Nonlinear dc and transient, small-signal ac, and pole/ 
zero analyses can be performed on circuits containing one- 
and two-dimensional numerical models for diodes and bi- 
polar transistors and two-dimensional numerical models 
for MOSFET's. The numerical device models in CO- 
DECS include physical effects such as bandgap narrow- 
ing, Shockley-Read-Hall and Auger recombinations, 
concentration- and field-dependent mobilities, concentra- 
tion-dependent lifetimes, and avalanche generation. 

APPENDIX I1 

In the two-level Newton algorithms the conductances 
for numerical devices are calculated as described here. 
Conductance calculations involve computing Jv = aF/ aV 
at an operating point and the pseudo-C code is given be- 
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low for a diode example. 

c o m p u t e D i o d e C o n d u c t a n c e  ( p D e v i c e ,  gd 1 
/ * p D e v i c e i s t h e d e v i c e p o i n t e r , g d i s t h e  c a l c u l a t e d  c o n d u c t a n c e  * /  

z e r o R h s V e c t o r  ( p D e v i c e  I ;  
/ * s t o r e  c o n t r i b u t i o n  o f  b o u n d a r y  n o d e s  i n  r h s  * /  
a s s e m b l e B o u n d a r y R h s T e r m s  ( p D e v i c e  ) ;  
/ * f i n d  t h e  s o l u t i o n  f o r t h e  new r h s  v e c t o r * /  
/ * d e v i c e J a c o b i a n a l r e a d y a v a i l a b l e  i n a  f a c t o r e d  f o r m * /  

{ 

s o l v e  ( p D e v i c e - > m a t r i x  1’; 
c o m p u t e C o n d u c t a n c e  ( p D e v i c e  I ;  

I 
The function assembleBoundaryRhsTems needs fur- 

ther explanation. The right-hand-side vector corresponds 
to the terms aP/aV,  and a one-dimensional diode exam- 
ple is used to illustrate the calculation of a F / a V .  The 
diode is discretized in space using L + 1 grid points. For 
an ohmic contact at node L + 1, the potential is given by 

(‘41) 

where J/o,  + is the equilibrium potential and V is the ap- 
plied voltage. Only the equations at node L have a direct 
dependence on V,  through the dependence of J / L  + on V. 
Therefore, only the entries corresponding to node L are 
nonzero in the right-hand-side vector. The Poisson and 
current continuity equations at grid node L are given by 

* L + l  = * o , L + I  + V ,  

* L + l  - *L - *L - * L - 1  
F +  = 

h L  h L -  1 

h~ + h ~ - I  = + (NL + P L  - n L )  

F n  = J n , ~ + 1 / 2  - J n , ~ - 1 / 2  

+ [-2. ( G - R 1 I L  h L  + h L - I  

+ [$ - (G - R ) ]  h L  + h L - I  

F p  = J p , L + 1 / 2  - J p , L - 1 / 2  

L 2 ’  

From these equations one obtains 

1 aF+ - - - 
ay a*,+, h L  

These derivative terms are used to assemble the right- 
hand-side vector. A similar calculation is also used to as- 
semble the right-hand-side vector for calculating the 
small-signal ac admittances [ 131. 
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