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Solution of Large-Scale Networks by Tearing 

FELIX F. wu, MEMBER, IEEE 

Absrruct-A generalized method of tearing, or diakoptics, for solving 
huge-scale networks is derived. The idea of diakoptics is viewed as simply 
the partition of branches and the Kirchhoff laws. A solution algorithm 
based on LU decomposition is presented. If the network may be “torn 
apart,” then the computations at the subnetwork level can be carried out 
independently. We present an example which is a family of networks with 
a parameter p and show that diakopt& compared to the conventional 
network analysis, sometimes saves computations and sometimes requires 
more computations. 

I. INTRODUCTION 

C ONSIDER a network $?I, consisting of many sub- 
networks 92,) 97+. . . , 9& interconnected together by 

branches t,, t,, . . . , tr (Fig. 1). Such networks are common 
in practice, e.g., large-scale interconnected power systems. 
We may view the set of branches t,; . . , tl as having the 
property that their removal tears the network apart into 
several independent subnetworks. The original suggestion 
of the method of tearing, or “diakoptics,” is to solve the 
network problem in two steps: i) subnetwork level: one 
tears away the branches t,, t,, * * * , tr and solves the sub- 
networks %,, !&, . . . , 9Zk independently, ii) interconnec- 
tion level: one combines these results with the branch 
variables associated with t,, t,, . . . , t, to obtain the overall 
solution. 

The idea of tearing was introduced by Kron [l]. He 
applied the concept to solve at certain class of networks. 
His derivation of the approach is based on the concepts 
from tensor analysis. Happ [2.] has expanded the theory 

* and applications along the same line. Kron’s derivation is 
obscure. Branin [3], and Sasson and Brown [17] have 
attempted to clarify the concepts. Recently Chua and 
Chen [4] have shown that diak:optics can be derived from 
the generalized hybrid analysis. 

We present a simple derivation of diakoptics. We view 
the basic idea of diakoptics as merely the partition of the 
branches and the Kirchhoff Lws. Our version of diakop- 
tics is more general and includes all the previous results as 
special cases. 

Diakoptics was developed as an approach to solve 
large-scale networks. In practice large-scale networks are 
usually sparsely connected. We present a solution algo- 
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Fig. 1. Networks from which idea of tearing originated. 

rithm for diakoptic analysis which is based on LU decom- 
position and is suitable to incorporate sparse matrix tech- 
niques [5], [6]. The solution algorithm can be applied 
provided a generic condition on the network is satisfied. If 
the network may be “torn apart,” then there are several 
steps in the algorithm that can be carried out indepen- 
dently. 

It has been questioned whether the diakoptic approach 
saves computation when the sparse matrix techniques are 
employed. We use an example of a family of networks 
with a parameter p to demonstrate that, compared to the 
conventional node analysis, diakoptics sometimes saves 
computations and sometimes requires more computations. 

II. DIAKOPTIC NODE ANALYSIS 

Let 9Z be a connected network having (n + 1) nodes, 
v= {&J,n,,* . . ,n,}, and b branches, j?={b,,b,;-*,b,}, 
with linear time-invariant elements and sinusoidal sources. 
Consider the network % in the sinusoidal steady-state.’ 
Phasor notations will be used throughout this paper. Let 
the branch voltages and currents be denoted by v= 
(v,,v2,- *. ,vJ and i=(i,,i,; *. ,iJ, respectively. In the 
node analysis [7] one node is selected as the datum node.2 
The n node-to-datum voltages V= ( V,, V,, * * . , V,) are 
used as network variables. The basic idea of tearing is to 
distinguish certain branches, henceforth called tearing 
branches,3 from the remaining branches. The set of 
branches j3 is thus partitioned into two classes, j3, and & 
We use subscript r and t to denote quantities pertaining to 

‘We assume that the sinusoidal steady-state response of ‘X exists. 
ZOur terminologies and most of the notations agree with [7]. 
‘Any subset of- branches may be chosen as tearing branches in our 

derivation. Hoewever to achieve the computational advantages it is 
desired to choose those branches whose removal will tear the network 
apart. 
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the remaining branches and the tearing branches, respec- 
tively, e.g., v = (or, vt) and i = (i,, i,). 

Each branch k is assumed to have the general form [7, 
pp. 4094141, which may include a voltage source Vet and 
a current source isk, and mutual coupling may exist be- 
tween branches. We shall however make the following 
assumption, which is desirable from computational 
viewpoint [8, Remark 21, though it is not necessary for the 
derivation. 

Assumption 1 

There is no mutual coupling between the tearing 
branches and the remaining branches. 

Let y, denote the branch admittance matrix of the 
remaining branches and z, denote the branch impedance 
matrix of the tearing branches. The branch relations are 
expressed as 

i 

i I = i,, +Y,v, -Y,v,, 
0, = v*, + z,i, -z&,. 

Let us also partition the set of nodes v. The removal of 
the tearing branches may result in many separate parts,4 
and one of them contains the original datum node. For 
each of the remaining separate parts, we pick a node as a 
reference node.5 Let vc denote the set of all these reference 
nodes.6 Let v0 denote the set of all the other nodes that are 
not in vc. Hence v is partitioned into v,, and vc. We use 
subscript o and c to denote quantities pertaining to v0 and 
vc respectively, hence V= (V,, V,). The set of nodes that 
are connected only by the tearing branches is a subset of 
v~.~ For our later reference, we denote this set of nodes by 
vc2 and denote the complement of vc2 with respect to vc by 
“cl* 

The foregoing partition of branches and nodes gives 
rise to a natural partition of the reduced incidence matrix 
A8 

are expressed as follows: 

@CL) 
A,i,+A,i,=O 
a,i,+a,i,=O 

(1) 
(2) 

(KVL) ! v, = A,?‘, + arTV E 
v, = AtTVo + utTvc 

P) * ( 
4 = isr +Y,v, -Y,v,, 
0, = v,, + ztir - z,i,,. 

(3) 
(4) 

(5) 
(6) 

We shall call the network resulted from % by removing 
all the tearing branches and the nodes in vC2, the torn 
network of GJL. 

Remark 1 

Suppose vc2 is empty.’ The KCL, KVL, and BR for the 
torn network are expressed as 

The network variables are constrained by the Kirchhoff or 
current law (KCL), Kirchhoff voltage law (KVL), and the 
branch relations (BR). The constraints in node analysis 

(7) 
(8) 

(KVL) U, = ArTVO + a,%- c (9) 

tw 4 = isr +Y,v, -y,v,,. (‘0) 

The standard procedure for node analysis in this case is 
to substitute (9) into (lo), and then substitute the result 
into (7) and (8) to obtain equations relating the variables 
V. 

The idea of tearing involves solving the torn network as 
the first step. Therefore, let us compare (7)-(10) of the 
torn network with (l)-(3), (5) and perform the same 
procedures of node analysis described above to (l)-(3), 
(5), i.e., we substitute (3) into (5) and then substitute the 
result into (1) and (2) to obtain (11) and (13) below. The 
remaining two equations (4) and (6) are combined into 
(12) below 

A,y,ArTV, + A,i, + A,y,ul’VC = J, (1’) 
AtTV,, - z, i, + qTVC = E (‘4 

a,v,A,?-V, + a, i, + ary,u,.‘VC = J, (13) 

4A maximal connected subnetwork of an unconnected network is 
called a separate purr [7, p. 387). 

51f a separate p art contains more than one node, then the choice of the 
reference node can be arbitrary. However it ma’y be desirable to pick one 
among the nodes which are connected by the tearing branches. 

6As will be clear later, the node voltages associated with vC will be 
calculated at the interconnection level, and v,, contains all the other 
nodes. 

‘An isolated node is a separate part. 
*The rows of A correspond to the nodes (deleting the datum) and the 

columns of A correspond to the branches [7, p. 4171. 

AtT -z, 

wAT a, 

where J, g A,y,v,, - A,&,, J, 2 a,y,v,, - a&, and E 2 v,, 
- z,is,. Equation (14) will be referred to as the diakoptic 

‘This assumption is only for notational convenience, otherwise J, in 
(13) would be J,,. etc. 
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%? 

networks corresponds to the special case where v, is 
empty. The diakoptic node equation then reduces to a 
simpler form [8]. Happ [9] has recently generalized Kron’s 
derivation to include what he calls “radially unattached” 
networks. This class of networks corresponds to the spe- 
cial case where vC2 is empty. Our general derivation of 
diakoptics in node analysis may include the case where 

4 there are nodes connected by tearing branches only (Fig. 

Fig.‘Z. 
2). This enlarges the applicability of diakoptics. 

Diakoptic analysis in this paper also applies to networks that 
have nodes connected only by tearifig branches. 

III. SOLUTION ALGORITHM 

node equation. The process of arriving (14) and the solu- We will present a solution algorithm for the diakoptic 
tion of it will be referred to as the diakoptic node analysis. node (14). Our solution algorithm is based on LU decom- 

position and is suitable to incorporate the sparse matrix 
techniques. 

Remark 2 

Equation (14) can also be expressed as Remark 5 

[;;;; ::t ?jJ[;]=[j 

‘Sparse matrix equations are normally solved by the 
optimally ordered LU decomposition [lo]. For a nonsin- 

(14) gular matrix A, the existence of an LU decomposition is 
not always guaranteed unless we allow row and column 
permutations [lo], [ 11, pp. 3 l-341. It can be shown [ 151 

where that if sinusoidal steady state solutions exist for the three 
networks GJL, ?&, and %+,, then the coefficient matrix of 

j, 2 i, - is* + zt- bsr (14), with the present block-ordering of rows and columns, 

Jd k -A,i,+A,y,u,,-A,i,,+A,z,-‘v,, 
is block LU-decomposable,” where %a is the network 
derived from % by coalescing all the nodes of vC with the 

and datum node (i.e., forcing the node voltages at v, to be 
zero) and En, is the network derived from ?Xa by remov- 

J,' ii - a, isr + w,v,, .- a, is, + as,- 'vs,. 
ing all the tearing branches. 

In the derivation of the solution algorithm we shall 
make use of the following Fact, whose proof is in the 

Remark 3 Appendix. 

The coefficient matrix of (1~4) is easy to form. Note that 
the following four blocks 

Fact 1 

are precisely the node admittance matrix of the torn and Y,, 2 a,y,A,r. Let us first LU-decompose Y,,, 
network. It can be formed by the standard procedure.” 
The other five blocks are immediately obtained from the Y,, = LU. (1’) 
reduced incidence matrix and the branch relations. 

Equation (11) becomes 

Remark 4 

Kron’s [l] derivation of diakoptics is applicable to what Substituting V, from (18) into (12), we have 

he calls “diffusion-type” networks, or “radially-attached” 
networks, as Happ calls them. This is a class of networks 

(z,+A,TU-lL-lA,)i,= -E+A,TU-lL-lJO 

for which the torn network is connected and hinged at the + [afT-ATU-’ f L-‘Y,&. (19) 
datum node. In terms of our approach, this class of 

‘OFor networks without coupling, see [7, p. 4291. Modification is 
“Note that LU decomposition does not exist if we interchange the 

needed to take care of the coupling. 
second block rows and the third block of rows, and also the second 
block of columns and the third block of columns. 
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Let us define 

a, 4 L-IA,, @‘I g L-‘Y,,, \k, k AtTU-l, 

‘P2 k YcOU-‘, 5 2 L-‘JO 

and 

Fk Zt+*,@,. (20) 

Substituting (16), (1 S), and (19) into (13), we have 

=J,-[\k2~+(a,-~,~,)F-‘(~,E-E)]. (21) 

Therefore, we may solve V,, i,, V, in the following 
sequence:( 17)-(20)-(2 I)-( 19)-( 18). 

In the application of diakoptics, the case where the torn 
network has several “independent” subnetworks is of spe- 
cial interest. To be more specific, this is when the torn 
network is separable. l2 Let the torn network have k separ- 
able subnetworks ‘Xi, &, * . * , Sk. Let v0 (respectively, 
P,) be partitioned into k classes v,, v2, * . * ,v, (respectively, 
P,,Pz,* * * ,&), where vi (respectively, pi) is the intersection 
of v0 (respectively, /3,) and the nodes (respectively, 
branches) of ai. With this finer partition, we have V,= 
(V,, v,,* * * , Vk), Jo = (J,, J,; . . , Jk), and 

Pl P2 *-* PL- 

Vl Al 0 
A,= v2 -42 

“k 0 Ak 

(22) 
Suppose the following assumption holds. 

Assumption 3 

There is no mutual coupling between branches belong- 
ing to the different separable subnetworks. 

Then the matrix Y,, takes a block diagonal form 

Yl 0 
yz 

L = . (23) 

0 ‘k 

Let A,, A,‘, Y,, and Y,, be partitioned into (A,)i, (At?;> 
( Y,c)i, and ( YcJi, i= 1, 2,. . . , k, accordingly (Fig. 3(a)). 
Note that the matrix is in a desired bordered block 
diagonal form (Fig. 3(b)) [6, p. 201. 

“A network is separable if it has several separate parts and/or it is 
hinged [7, p. 4451. 

Fig. 3. (a) Partition of coefficient matrix according to k separable 
subnetworks. (b) Bordered block diagonal form. Unshaded area con- 
sists of all zeros. 

We may modify the previous solution procedure to take 
advantage of the decoupled block structure. Note that it is 
possible to perform computations of (17), (20) and (IS) 
for -each subnetwork independently. We arrive at the 
following solution algorithm. 

Solution Algorithm 

1) For each i, i= 1, 2; *. ,k, do steps (Sl) to (S6) as 
follows 

(Sl) 
w 
(S3) 

(S4) 
w 

W) 

input & (Y,,)i, (Yco)i, (A,)i, Ji; 
factor Y. = Li Ui; 
solve LiQli =(A,)i for ali, L,Q2i= ( YO,)i for Q2i; 
*kliUi=(A,T)i for ?Trii, \k2i’q =( Y,Ji for \k2i; 
solve Li& = Ji for &; 
form <= *iiQii, Gi = \kliQzi, Hi = ?I12$ii; 
gi=*,i&, hi=*21&; 
output Fi, Gi, Hi, g,, hi. 

2) Do steps (Cl) to (C8) as follows: 

(Cl) input z,, a,, J,, and Z$, Gi, Hi, g,, hi, i= 1, 2; . . , k; 
(C2) form F=z,+ZFi, G=azT-21Gi, H=a,-2Hi, 

g= E+Zg,, h=Zhi; 
((3) solve KF= H for K; 
(Cd) form P=KG,p=J,-h-Kg; 
((25) solve PV,=p for V,; 
(C6) form f= g + G V,; 
(C7) solve Fit =f for it; 
(C8) output V,, i,. 

3) For each i, i= 1, 2;. * , k, do steps (S7) to (SlO) as 
follows: 

(S7) input V,, i,; 
(S8) form Ii = & - Qlii, - @2i V,; 
(S9) solve U, Vi= 5; for Vi; 
(SlO) output Vi. 
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Remark 6 

The solutions of the triangular matrix equations in steps 
(S3), (S4), and (S9) are mereby substitutions. Also note 
that since most of the columns of (A,), and (Y,,);, and the 
rows of ( Y,Ji are all zeros, computations for these zero 
rows and columns in Steps (S3) and (S5) need not be 
performed. Furthermore, in practical applications, the di- 
mensions of F and P are usually small. 

Remark 7 

Parts 1) and 2) of the. solution algorithm-can be carried 
out independently for all the subnetworks. For example, a 
subroutine can be called repeatedly for i= 1, 2; * . , k. 
Branin [16] has pointed out that the only significant 
computational advantage to be gained from piecewise 
method comes from economics made in the repeated use 
of the subnetwork LU factors. 

Remark 8 

Part 1) of the algorithm corresponds to the “subnetwork 
level” of diakoptics mentioned in Section I and parts 2) 
and 3) correspond to the “imerconnection level” of di- 
akoptics. 

Remark 9 

If v, is empty the algorithm reduces to a simpler version 
PI. 

IV. COMPUTATIONAL CONSIDERATIONS 

Applying the conventional node analysis to the network 
%, we arrive at the following equation: 

Where Jd and J,’ are the equivalent current source vectors 
at v, and vc respectively, as defined in Remark 2. The 
coefficient matrix here is simply the node admittance 
matrix Y of %. Both the conventional node analysis 
(solution of (24)) and the diakoptic node analysis (solution 
of (14)) give us the node voltages. Naturally we would like 
to know which one requires less total computation to 
obtain the solution. For ease of later reference we will 
denote the matrix of (14) by 7’. In what follows, we count 
only multiplications in the cornparison.13 

For large-scale network, the matrices Y and T are very 
sparse. In sparse matrix computation, operations involv- 

13The formation of the matrices Y ;and T involves only additions. For 
node analysis, voltage sources have usually been transformed into cur- 
rent sources. Hence the formation of .I: and Jr involves only additions. 
We assume (14’) instead of (l4), is used for d’akoptic node analysis. 

. . . 

. . . 

d2v dzp-1 %p-2. 

Fig. 4. Network for example. Branches in heavy lines are tearing 
branches. 

ing zero are not performed. Consider solving the sparse 
system Ax = b, where A is n X n and A = LU, let Ii denote 
the number of nonzero elements in the ith column of L, 
and ui denote the number of nonzero elements in the ith 
row of u. It can be shown [8], [12], by simple counting, 
that the total number of (complex) multiplications re- 
quired to solve Ax = b is equal to X7= i(li+ I)u, -2n. 
Clearly the ordering of rows and columns of A affects 
greatly the ii’s and u;‘s. Several locally optimal ordering 
schemes [5], [6], are known. 

We now present an example of a family of network 
having a parameter p. Depending on the value of p, the 
number of multiplications required for the diakoptic node 
analysis may be less than, or greater than that for the 
conventional node analysis, both with optimal ordering.14 
This clearly demonstrates that neither approach is ab- 
solutely superior to the other, as far as the total number of 
multiplications is concerned. 

Example 

Consider the network shown in Fig. 4. Let all the 
branches be two-terminal elements (no mutual coupling). 
The branches connecting nodes 4.‘~ are defined as 
follows: 

i) for all 3 < i < p, i < j < 2i, there is a branch connect- 
ing nodes di and 4; 
ii) for all p < i f 2p, i<j < 2p, there is a branch con- 
necting nodes d, and 4. 

For the conventional node analysis, we first form the 
matrix Y, which has the same sparsity structure as the 
network %, i.e., the ijth element of Y, Uii, is nonzero iff 
there is a branch in ??7. connecting node i and node j. It 
can be shown that by applying any of the locally optimal 

14We compare the computations required for the solution of the node 
voltages. Therefore the fact that the diakoptic approach gives, in addi- 
tion to the node voltages, also the tearing-branch currents is not taken 
into account. 
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Fig. 5. (a) Nonzero pattern of Y (nonzero elements of Y are marked 
A’) and fill-ins (marked F) introduced by the LU decomposition. (b) 
Nonzero pattern of T and fill-ins introduced by LU decomposition. 

ordering schemes [5] to Y, the ordering (a, b, c, d,, 
d 4,’ * - 9 d,,) will result. The nonzero pattern of Y, together 
with the fill-ins15 is shown in Fig. 5(a). A little calculation 
shows that the total number of multiplications for the 
solution in this case is equal to y,=2CP,+:k(k+ I)-4p - 
66. 

Now let us consider solving this problem by diakoptics. 
Suppose we pick the branches (b, ds), (c,d,,-,), (c, &,- ,), 
and (c,d+) as the tearing branches t,, t2, t,, and r4, 
respectively. Let us form the matrix T. Again it can be 
shown that within their blocks, (a, b, c, d3, * . . ,d,,) and 
(ti, t,, f,, t4) are optimally ordered.16 The nonzero pattern 
of T, together with the fill-ins, is shown in Fig. 5b. The 

15The ijth position is said to be a fill-in if Y = LU and Yu = 0 but either 
the 0th element of L (if i>j), or of U (if i <j) is nonzero. 

leThe same letter, e.g., di, is used to denote the rows and columns 
corresponding to the node di for both Y and T. 
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total number of multiplications to obtain the solution in 
this case is equal to 6, =2X$+_: k(k + 1) + (p + 2)(/, + 3) - 
4p + 88. Hence (y, - 6,) =p2+ 5p - 148. 

If p > 10, y, > aP, i.e., the diakoptic node analysis re- 
quires less multiplications. On the other hand, if 3 < p < 9, 
y, < S,, i.e., the diakoptic node analysis requires more 
multiplications. 

V. OTHER DIAKOPTIC AND CODIAKOPTIC ANALYSES 

There are several standard network analysis procedures, 
namely, node analysis, mesh analysis, cutset analysis, loop 
analysis, and mixed analysis. Each of them provides a 
systematic way of writing linearly independent Kirchhoff 
laws. Once it is understood that diakoptics involves 
merely partition of branches and the Kirchhoff laws, 
similar derivation as in Section II can be applied to other 
network analysis procedures. In the following, we will not 
repeat the obvious similarities. Only the diakoptic mixed 
analysis is derived in some detail. We call the dual of a 
diakoptic analysis codiakoptic analysis [ 131. 

1) Diakoptic Cutset Analysis 

Given a tree of the network GJL, the set of tree branches 
can be partitioned into two classes; i.e., those of the 
remaining branches and those of the tearing branches. 
The set of tree-branch voltages, which are the network 
variables in this case, is partitioned into I’, and V,, accord- 
ingly. Also the set of fundamental cutsets y is partitioned 
into yI and yl. Hence the fundamental cutset matrix Q 
takes the form 

p; +&. (25) 

Note that if we choose a tree such that it contains as 
many remaining branches as possible then q,=O. On the 
other hand, if we choose a tree such that it contains as 
many tearing branches as possible then Q, = 0. 

2) Codiakoptic Mesh Analysis 

This is the dual of the idakoptic node analysis for a 
planar network. Consider the set of meshes y. If the 
tearing branches form loops, we pick a mesh from the 
region enclosed by such a loop. Let pc denote the collec- 
tion of such meshes, Let p0 denote the set of other meshes. 
Hence p is partitioned into p0 and IJ~ and the reduced 
mesh matrix M takes the form 

M= ; &+ . (26) 
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The dual torn network is defined as the network resulted 
from % by contracting all the tearing branches.17 In order 
to have the dual torn network: having several “indepen- 
dent” subnetworks, the set of tearing branches should be 
so chosen that the dual torn network has hinged sub- 
networks and the subnetworks are not mutually coupled. 
For a planar network the set of tearing branches having 
this property can be characterized as 

i) they divide the plane into several regions; 
ii) there is no mutual coupling between branches be- 
longing to different regions. 

3) Codiakoptic Loop Analysis 

This is the dual of the diakoptic cutset analysis. Given a 
tree of %, the set of link currents (the network variables 
for loop analysis) is partitioned into I, and Z,. The funda- 
mental loops I are partitioned into 1, and Z,. Hence 

Pr P, 

B= ; /+j--+ (27) 

Note that if we choose a tree such that it contains as 
many remaining (respectively, tearing) branches as possi- 
ble then B, = 0 (respectively, b,l = 0). 

4) Diakoptic Mixed Analysis 

The essence of mixed analysis is that a set of indepen- 
dent Kirchhoff law equations is selected from two 
network analysis formulations. We will base our deriva- 
tion below on the mixed cutset and loop analysis. We will 
comment on the generality of the approach later. 

Let us first pick a tree of % such that it contains as 
many remaining branches as possible. Now we write 
down Kirchhoff laws for the cutset analysis and the loop 
analysis side by sideI 

Cutset analysis 

(KCL) 
Q,i,+ Q,i,=O 

qli, =0 
P-9 
(30) 

(KVL) 
i 

ur = Q,‘K (32) 
0, = QtTK + eTK (34) 

(Jw 
i, = 4, +y,u, -y,u,, (36) 
v, = vst + zt i, - z, is, (37) 

from GJt by contracting all the remaining branches. Note 
that both (32) and (33) are complete characterization of 
KVL constraints for the network sr, similarly, both (30) 
and (3 1) are complete characterization of KCL constraints 
for the network %* [14]. Therefore, (28) and (31) form a 
complete set of KCL for % and (32) and (35) form a 
complete set of KVL for ‘%. We thus proceed our analysis 
for % with KCL constraints (28)-(31), KVL constraints 
(32)-(35), and BR (36) (37). 

Motivated by the cutset analysis on “Jt, and the loop 
analysis on %, , we combine (28), (32) (36) and (3 l), (35), 
(37). We then eliminate i, and v, from the expressions by 
substituting (31) and (32). Thus we obtain 

Qru,Qr= Q,b,T K = Jr 
brQ,T I! 1 I b,z,brT 4 Er I (38) 

where J, k Q,ylv,, - Q,i,, and E, 2 b,z,i,, - b,v,,. Note that 
b, Q,‘= - 6, Q,’ as a consequence of the fact that BQ T = 0 
[7, p. 4931. We may interpret J, and E, as follows. Suppose 
we first transform the voltage (current) source associated 
with a remaining (tearing) branch into an equivalent cur- 
rent (voltage) source. Then J,(E,) is the sum of all equiv- 
alent current (voltage) source in the fundamental cutsets 
(loops) defined by the remaining-branch-tree-branches 
(tearing-branch links). 

Remark 10 

Note that the cutset analysis (28) merely provides a set 
of linearly independent KCL for the network ‘%, and (32) 
provides a complete characterization of the KVL con- 
straints for %,. We certainly may replace (28) by a set of 
linearly independent KCL for %l supplied by the node 
analysis equations and also replace (32) by the corre- 
sponding node voltage characterization of KVL con- 
straints from node analysis.” Similarly for planar 

Loop analysis 

1 

i, = BrTIr + brTI f (29) 
i, = btTIt (31) 

i 

B,v,=O (33) 
b,.v,+b,v,=O (35) 

4 = hr +Y,v, -Y,v,, (36) 
v, = v,, + z, i, - zt iSt (37). 

Let $X+ denote a network dlerived from % by removing networks, the loop analysis (31) and (35) may be replaced 
all the tearing branches and $X, denote a network derived by the mesh analysis equations. Thus we may have di- 

akoptic mixed node-and-loop (or node-and-mesh) analy- 
“A branch is conrructed if its two end nodes are coalesced into one sis. 

node and the branch itself is then mmoved. 
IsDifferent trees may be chosen for the cutset analysis and the loop 

analysis so long as each tree contains maximal number of remaining 
branches. 

191f there are several separate parts in CL,, node analysis should be 
performed for each separate part. 
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5) Codiakoptic Mixed Analysis 

This is the dual of the diakoptic mixed analysis. Here 
we start by picking a tree of 92, such that it contains as 
many tearing branches as possible. 

APPENDIX 

Proof of Fact 1 

We first prove the fact that each row of a, is a linear 
combination of the rows of A,, i.e., a,= CA,. 

Consider a row in a,, which corresponds to a node in 
vc,, i.e., this row is associated with the node which is 
picked from a separate part 9Li of the torn network. This 
row is indeed the negative of the sum of those rows in A, 
that correspond to the nodes in 9Li, because all these rows 
together form the (unreduced) incidence matrix of 9Zi. 
Next consider a row in a, that corresponds to a node in 
vcZ. It is a zero row, which is a trivial linear combination 
of the rows of A,. Hence, a,= CA,. 

Now we substitute a,= CA, into the left-hand side of 
the expression (16) and obtain 

wrarT - wrA,T(4y,4T)- ‘4yrarT 
= CA,Y,A,~C T - CA,y,ArT (Ary,ArT) - ‘P,Y,A,‘C T = 0. 
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